
Getting started with Modbus

Modbus_PG5_20_E3.doc 1/34 12.01.2010

Getting started with Modbus

Contents

1 Introduction.. 3
2 Required hard- and software ... 3
3 The Modbus basics.. 4

3.1 Typical applications ... 4
3.1.1 Serial .. 4
3.1.2 Ethernet.. 5

3.2 Historical background.. 6
3.3 Comparison S-Bus � Modbus.. 6

3.3.1 Comparison Serial S-Bus � Modbus RTU/ASCII 7
3.3.2 Comparison Ether-S-Bus � Modbus TCP/UDP... 8

3.4 Modbus Media Mapping and characteristics ... 9
3.4.1 Master/Slave � Client/Server .. 9
3.4.2 16 bits � 32 bits... 9
3.4.3 Offset .. 9
3.4.4 What is a UID ... 9
3.4.5 Why do we need a Mapping? ... 10
3.4.6 Mapping and UIDs...11
3.4.7 Channel Definition .. 12
3.4.8 Connections.. 12
3.4.9 Holes .. 12
3.4.10 Programming client... 13
3.4.11 Programming server ... 14

3.5 Comparison Saia solution � Engiby solution ... 14
3.6 Limits to consider .. 15

4 Description of the project example .. 16
4.1 Datenaustausch über Modbus .. 16

4.1.1 Communication IP .. 17
4.1.2 Communication RS 485.. 18

5 Preparation of the sample project .. 19
5.1 Configuring PCD ... 19
5.2 Further configuration ... 21

5.2.1 Communication IP .. 21
5.2.2 Communication RS... 22

5.3 Programming PCD.. 24
6 Programming of the PCD... 25

6.1 Client... 25
6.1.1 Client_IP... 25
6.1.2 Client_RS ... 27
6.1.3 Modbus server (IP) ... 29
6.1.4 Server_RS.. 32

6.2 Transmitted data ... 33
6.2.1 IP Ethernet.. 33
6.2.2 Serial RS 485 ... 33

7 Troubleshooting ... 34
8 References .. 34

Getting started with Modbus

Modbus_PG5_20_E3.doc 2/34 12.01.2010

Project history
Date Author Modification
30.04.2009 TCS / sr V1 Preparation of the documentation (Version 1) and project for PG5

1.4.300

23.06.2009 TCS V2 Updated project and documentation for PG5 2.0

03.12.2009 TCS / sdu V3 Improved the explanation of UID and Media Mapping

Getting started with Modbus

Modbus_PG5_20_E3.doc 3/34 12.01.2010

 1 Introduction

This document offers a simple introduction for the use of Saia Modbus. With the
associated PG5 project, it is meant as a guide for the implementation of Modbus
communication.
The information contained in this document is an abstract of the corresponding
manual and online help and will make it easy for you to get started. For more
information, please consult the appropriate document (see section "References").

 2 Required hard- and software

Hardware
This project has been configured for the following hardware configuration.

� PCD3.M5540 as client IP and/or RS
Firmware 1.10.16 or higher

� PCD3.M3330 as server IP
Firmware 1.10.16 or higher

� PCD2.M5540 as server RS
Firmware 1.10.16 or higher

� Ethernet cable (CAT5) to connect PCD3 client (IP) and PCD3 server (IP)
� Cable to connect the RS interfaces RS 485
� A USB cable (max. 1.8m) for programming the PCD

Software
For programming the PCD, the following softwares with valid licences are required.

� PG5 2.0.90 or higher
For programming the PCD. (HLK library was used for the time function, but is
not necessary for the operation of the Modbus communication.)

� Modbus Saia library
This project can also be certainly operated with other hardwares. Specific adaptations
of the configuration have to be undertaken according to the hardware for that
purpose (hardware configuration in PG5, software settings in PG5, available memory
in Fupla and corresponding settings for the communication between the PCDs).
The Modbus Saia library is supported only by the new systems like PCD3 and
PCD2.M5xxx.

Getting started with Modbus

Modbus_PG5_20_E3.doc 4/34 12.01.2010

 3 The Modbus basics

This section will give you a brief overview of Modbus – the typical applications,
historical background, special features of Modbus and the comparison with S-Bus.
The mapping of the PCD resources is briefly explained. Also, the differences between
the Saia Modbus library and the existing Engiby library are pointed out.

 3.1 Typical applications

 3.1.1 Serial

Fig. 3.1.1.1 Serial structure

Getting started with Modbus

Modbus_PG5_20_E3.doc 5/34 12.01.2010

 3.1.2 Ethernet

Fig. 3.1.2.1 Ethernet structure

Getting started with Modbus

Modbus_PG5_20_E3.doc 6/34 12.01.2010

 3.2 Historical background

Modbus was introduced in 1979 by the company Modicon (today Schneider). It is a
single master bus. In the course of time the Modbus protocol became a de facto
standard supported by very many manufacturers.
Modbus communication protocols:

• Modbus RTU: Binary coded with breaks between telegrams. This type of
communication is efficient, but sensitive to delays in character transmission.

• Modbus ASCII: Allows easy interpretation/reading by humans. The Start and
Stop characters are used. The telegrams are approximately 2 times longer
than with Modbus RTU.

• Modbus TCP/UDP: Operated as client/server network. Implementation of
Modbus on Ethernet (TCP/IP and UDP/IP). This allows the implementation of
a multi-master network topology.

 3.3 Comparison S-Bus ���� Modbus

Even though serial S-Bus and Modbus RTU / ASCI are available on the same
physical layers, there are some differences. The protocols are contrasted with each
other in the following table.

• An important point is that an S-Bus server (slave) always has one address,
whereas a Modbus server (slave) can have several UIDs.

• In the S-Bus, all media (registers, inputs, flags, etc.) have fixed addresses.
However, in Modbus a specific mapping can be defined for each UID (Unique
Identifier).

• Modbus holding registers are 16 bits long. PCD registers are 32 bits long.

Getting started with Modbus

Modbus_PG5_20_E3.doc 7/34 12.01.2010

 3.3.1 Comparison Serial S-Bus ���� Modbus RTU/ASCII

Criterion Serial S-Bus Modbus RTU/ASCII

Physical interface RS 485, RS 232, RS 422,
current loop ...

Ditto, serial modem not
supported by our
implementation

Max. number of masters 1 Ditto

Max. number of slaves 252 247

Address per slave 1 S-Bus address Up to 9 unique Ids (UID)*

Broadcast address 255 0

Checksum CRC 16 Ditto

1 bit data Input / output, flag Discrete input (DI, read
only)
Coil (readable and
writable)

16/32 bits data Register (32 bits)
DB (32 bits)

Input register (IR, 16 bits
read only)
Holding register (HR, 16
bits, readable and writable)

First data address 0 1

Supported baud rates 300-115000 1200-115000**

Number of ports one can
operate with the protocol

As many as the serial
interfaces it has.

Maximum 10

Can the protocols be
mixed on a PCD?

Yes Ditto

Maximum telegram length
(data)

128 bytes 253 bytes

PCD3.F2xx module
supported

Yes Not yet

Influence on the
performance of the control.

The performance
decreases with every
configured port according
to baud rate.

Ditto

*In our implementation, plus default UID 0

** Given by the supported CPU’s

Getting started with Modbus

Modbus_PG5_20_E3.doc 8/34 12.01.2010

 3.3.2 Comparison Ether-S-Bus ���� Modbus TCP/UDP

Criterion Ether S-Bus Modbus TCP/UDP

Physical interface Ethernet Ditto

Connection Only UDP TCP or UDP

Standard port 5050 502

Max. number of servers
per network

Many Ditto

Max. number of clients per
network

Many Ditto

Max. number of client
connections per network

No restriction, as they are
sequentially processed

10

Max. number of server
connections per network

No restriction, as they are
sequentially processed

26 minus number of client
connections

Addresses per slave /
server

1 S-Bus address Up to 9 unique Ids (UID)*

*In our implementation, plus default UID 0

Important difference: In S-Bus, a communication channel is always assigned to a
physical port. A Modbus channel consists of port and protocol. That means several
channels with different protocols can be defined in one physical Ethernet port.

E.g. TCP on 502, UDP on 502, TCP on 503 and ASCII on the serial port 2.

Getting started with Modbus

Modbus_PG5_20_E3.doc 9/34 12.01.2010

 3.4 Modbus Media Mapping and characteristics

 3.4.1 Master/Slave ���� Client/Server

The serial Modbus is based on master/slave. However, Modbus TCP/UDP is based
on client/server. To simplify, the designation client/server is used in all FBoxes. In
which, Client=Master and Server=Slave correspond.

 3.4.2 16 bits ���� 32 bits

Modbus is based on 16 bits (word). The transmission of 32-bit values is normal, but
not standardised. Neither for integer nor for floating-point values. So, one also finds
several ways for the mapping of 32-bit values in holding register and vice versa.

In order to cover all these cases, we support all required mapping methods and
processes like "word swapping" and conversion. If 32-bit data are replaced with an
external product, the following mapping settings should be specified:

• Signed / unsigned?

• Lower word first or last?

• In floating point: IEEE or FFP

 3.4.3 Offset

Modbus resources are counted from 1 upwards, whereas PCD register begins with 0.
This offset can lead to problems, as there is a chance to read or write the wrong
value because of it. Therefore a checking of the offset settings is required on both
sides. The FBoxes permit the configuration of an offset.

 3.4.4 What is a UID

A UID (Unique Identifier) is like an S-Bus address, otherwise each station can have
up to 9 UIDs. In a serial network, each UID can exist only once. Each UID has his
particular mapping. The UID can be accessed over every Modbus communication
port (TCP, UDP, Serial).

Fig. 3.4.4.1 UID

Getting started with Modbus

Modbus_PG5_20_E3.doc 10/34 12.01.2010

 3.4.5 Why do we need a Mapping?

With the Mapping the UID allows access to certain resources. As server the following
FBoxes are available for the Mapping:

Fig. 3.4.5.1 Mapping FBoxes

As client we are able to access the resources and distribute them to the local
resources on the PCD with the following FBoxes:

Fig. 3.4.5.2 Read/Write FBoxes

Fig. 3.4.5.3 Read/Write FBoxes

Getting started with Modbus

Modbus_PG5_20_E3.doc 11/34 12.01.2010

 3.4.6 Mapping and UIDs

Each server PCD can have up to 9 Modbus UIDs. All these can be configured by the
user. A separate mapping can be defined for each UID. Up to 10 mapping areas can
be created per UID. The default mapping can always be used instead of the mapping
that can be configured by the user. In this case, all resources are available. If other
mappings are available, it should be ensured that no collisions are caused.

The UIDs are always valid for all Modbus ports (serial and TCP/UDP). Each UID can
exist only once in a serial network.
UIDs can be reconfigured in run-time.

Fig. 3.4.4.1 Mapping

If no mapping is created, the default mapping is active. However, as soon as a
mapping is created for a UID, it has priority.

UID 0 is the default UID for the serial Modbus. This UID is always available and can
be used to send broadcast telegrams.

In the TCP/UDP communication, the default UID is always active likewise, but no
default mapping is defined. Requests to a nonexistent UID is always answered by the
default UID. As soon as a mapping is defined for the default UID, this is used for the
default UID and all non-configured UIDs.

Getting started with Modbus

Modbus_PG5_20_E3.doc 12/34 12.01.2010

 3.4.7 Channel Definition

A Modbus Channel is always a pair of a port and a protocol. Per example: TCP on
Port 502 or ASCII on serial Port 2.

Bild 3.4.7.3 Read/Write FBoxen

Each channel can only be defined once. It is possible to define up to 4 Server-
Channels on a PCD.

 3.4.8 Connections

If a client requests data from a server, a connection is automatically opened. The
user need not tend to the opening and closing of the connections.
All the same, it is important to know when a connection is opened or closed, as the
number of connections is limited. The Modbus Manual 26/866 can be consulted for
details.

 3.4.9 Holes

If 32-bit values are mapped on the register, one can choose between two options.
One can work with holes. Then the data are easy to interpret, because register
addresses in the PCD agree with the holding register addresses in the Modbus.
However in this case only the even registers are used, which keeps the odd registers
unused for this purpose. Without holes it is more compact and saves more resources,
but the allocation proves to be somewhat more complex.

Fig. 3.4.9.1 Holes

PCD
registers
(server)

R0

HR4 HR3 HR2 HR1 HR0 HR5

R1 R2

R0 R2 R4

UID: Holes = 0, Offset = 0

UID: Holes = 1, Offset = 0

Without holes

Modbus holding
registers

With holes

Channel: Only virtual.
This is not a physical
port number.

Port: physical port

Protocol: communication protocol

Getting started with Modbus

Modbus_PG5_20_E3.doc 13/34 12.01.2010

 3.4.10 Programming client

As client we need to know which UID to access and where the needed resources are
mapped.
Furthermore it is necessary to verify if there are binary, 16bit or 32bit values to
transfer and if an offset or holes are in use.

Fig. 3.4.10.1 Client

It is important to reserve the proper range for the received resources. This means
that if the base address is register 1000 and we read 3 elements, we have to reserve
register 1000, 1001 and 1002. PG5 will not recognize during compile that more than
one register is in use. Therefore it is recommended to reserve an array of registers,
per example R 1000 [3] or to make sure in another way that these registers are not
used for another purpose or overwritten.

Getting started with Modbus

Modbus_PG5_20_E3.doc 14/34 12.01.2010

 3.4.11 Programming server

Fig. 3.4.11.1 Server

As server we provide the resources for each UID with the datamapping.

 3.5 Comparison Saia solution ���� Engiby solution

If the Engiby library was used earlier, pay attention that the mapping is correctly
adopted. The designations are partially different, which can lead to confusion.
Therefore an overview of the different designations in the Engiby and Saia FBoxes is
given here:

Saia FBoxes Engiby FBoxes
32-bit swap words NO LITTLE Endian

32-bit swap words YES BIG Endian
Holding register R
Input register InR

Getting started with Modbus

Modbus_PG5_20_E3.doc 15/34 12.01.2010

 3.6 Limits to consider

Summary of limitations to consider in the Modbus network:

• Maximum 247 servers (slaves) per bus for serial Modbus

• Maximum 10 channels in toto, thereof maximum 4 server channels
(port+protocol)

• Maximum 9 user-specific UIDs (+default ID)

• Maximum 10 mapping areas per UID

• Serial modem connection is not supported

• Supported Modbus functions:

- READ_COILS
- READ-DISC_INPUT
- READ_HOLD_REG
- READ_INPUT_REG
- WRITE_SINGLE_COIL
- WRITE_SINGLE_REG (16-bit only)
- WRITE_MULTIPLE_COILS
- WRITE_MULTIPLE_REGS

Getting started with Modbus

Modbus_PG5_20_E3.doc 16/34 12.01.2010

 4 Description of the project example

There are 3 Saia PCD’s in this project example. A communication takes place over IP
(Modbus TCP) between the “Client” and the “Modbus_Server” and a serial
communication RS 485 (Modbus ASCII) takes place between the “Client” and the
“Server_RS”.

 4.1 Datenaustausch über Modbus

The PCD Resources (R, F, T, C, I, O…) can not be directly transferred to the Modbus.
On Modbus there are Holding Registers and Coils (read/write) or Input Register and
Discret Inputs (read only) available. Because of that a mapping for each UID is
necessary or the Default Mapping can be used. The mapping is the link between the
PCD resources and the Modbus resources. Details about the mapping can be found
in the Modbus manual 26/866 and in chapter 3.4.4. above.

Getting started with Modbus

Modbus_PG5_20_E3.doc 17/34 12.01.2010

 4.1.1 Communication IP

The following data exchange takes place between the PCD „Client“ and the PCD
„Modbus_Server“:
On the „Modbus_Server“ the clock is transferred to the registers 100, 101 und 102
(32 Bit registers). It will be transferred over Modbus to the „Client“ and there stored to
the registers 100, 101 und 102. The clock on the “Client” can now be updated with
the clock from the “Modbus_Server”
The flags 1000 bis 1007 of the „Client“ are transferred over Modbus to the
„Modbus_Server“ to the flags 1000 bis 1007. The flags are counting up on the
“Client” and if the communication is working correctly this up-counting can be
observed on the “Modbus_Server as well.
The following data-mapping is configured:

Bild 4.1.1.1 Modbus network-topology

Client IP
Saia PCD Medias (R u. F)

Modbus
Holding Register / Coils

Server IP
Saia PCD Medias (R u. F)

R 100…R 102 (32 Bit) <= HR 1…6 (16 Bit) <= R 100…R 102 (32 Bit)
F 1000…F 1007 => Coil 1000…1007=> F 1000…F 1007

Client: IP Node 61, Station 61
IP Port 502, RS Port 2

Modbus_Server: IP Node 62, Station 62
Port 502

Modbus
TCP

Saia PCD
R 100
…
R 102
F 1000
…
F 1007

Modbus
HR 1
…
HR 6
Coil 1000
…
Coil 1007

data-mapping UID 1

Getting started with Modbus

Modbus_PG5_20_E3.doc 18/34 12.01.2010

 4.1.2 Communication RS 485

Data exchange between the PCD „Client“ and the PCD „Server_RS“:
The „Client“ is reading 8 registers and 8 flags from the “Server RS”. The registers 0 to
7 and the flags 0 to 7 are read from the „Server_RS“. The registers are configured as
16 Bit signed values. In this case there is no specific mapping defined, means that
the default mapping is in use. For 16 Bit signed values this means that all PCD
registers are available on the Modbus in Holding Register 1…10000. The flags are
available in the Coils 1…10000.
The following data-mapping is in use:

Bild 4.1.2.1 Modbus network topology

Client RS
Saia PCD Medias (R u. F)

Modbus
Holding Register / Coils

Server RS
Saia PCD Medias (R u. F)

R 0…R 7 (16 Bit signed) <= HR 1…8 (16 Bit) <= R 0…R 7 (16 Bit signed)
F 100…F 107 => Coil 1…8=> F 0…F 7

Client: IP Node 61, Station 61
IP Port 502, RS Port 2

Server_RS: IP Node 63 Station 63
Port 0

Modbus
RS

Saia PCD
R 0
…
R 10000
F 0
…
F 10000

Modbus
HR 1
…
HR 10000
Coil 1
…
Coil 10000

Getting started with Modbus

Modbus_PG5_20_E3.doc 19/34 12.01.2010

 5 Preparation of the sample project

To import the project into the PG5, use the function "Restore" from the PG5 Project
Manager menu "Project".

In order to make a Modbus communication possible, at least two stations should be
configured and programmed.

 5.1 Configuring PCD

3 steps are required to prepare the PCD:

Establish online connection to the PCD
Before a connection can be established, PG5 should "know" over which
medium/cable the PCD should be accessed. This is defined in the "Online settings"
of the PG5 project tree:

Here "S-Bus USB" is selected as
"Channel", as the IP configuration is
not loaded at the moment. The
option PGU should be activated.

After these settings, it can be
checked with the "Online
Configurator" whether the
communication functions.

Fig. 5.1.1 Online Settings

Configuring hardware
Settings such as the IP address, usage of memory and activation of the "Run/Stop"
switches of the PCD are configured using Device Configurator. Device configurator
can be opened from PG5 project tree directly under the "Online settings".

Before you proceed further, please configure a not yet assigned IP address
and subnet mask compatible for your network in Device Configuration.

To load the configuration in the controller select ‘Download configuration’ from device
configurator or execute a Right Click on the CPU in the project tree. In the Context
Menu there is as well an option “Download Configuration” available. When asked
what should be loaded in the controller, the option "Memory allocation" should also
be selected at the first download, so that the memory is correctly configured.

Getting started with Modbus

Modbus_PG5_20_E3.doc 20/34 12.01.2010

Fig. 5.1.2 Download

If the exact type of the PCD is unknown, or if the existing configuration of
the hardware should not be changed, the button "Upload" in the window
"Hardware settings" can also be used. Consequently, the current
configuration of the PCD is transferred to the PG5 project.

The hardware settings are to be accordingly adapted in all PCDs that will be used:
Client, S-Bus address 61, IP node 61: This is the client (master) IP and RS.
Modbus server, SBus address 62, IP node 62: This is the server (slave) IP.
Server_RS, SBus address 63, IP node 63: This is the server (slave) RS.

Getting started with Modbus

Modbus_PG5_20_E3.doc 21/34 12.01.2010

 5.2 Further configuration

The example is construed in such a way that there is a client (master) on which one
Fupla file is located for each of the communication possibilities IP and RS.

If only one Modbus communication should be implemented on IP, the other file is to
be deactivated. If only one RS communication is desired, the IP file is to be
accordingly deactivated and the RS file is to be activated.

Fig. 5.2.1. Links

 5.2.1 Communication IP

In the Fupla Client_IP.fup, some
settings are to be checked and adapted
according to their infrastructure A
Modbus TCP communication is
configured. If Modbus UDP is needed,
it can be set in the FBOX Init Client
TCP. The important thing in such a
case is that the communication partner
also gets the same settings.

Fig. 5.2.1.1 Client TCP

Getting started with Modbus

Modbus_PG5_20_E3.doc 22/34 12.01.2010

In the FBox Def Unit Client, the IP address of the communication partner needs to be
adapted.

Fig. 5.2.1.2 Def Unit Client

In the FBox Def Unit Client, the IP address of the communication partner needs to be
adapted.

 5.2.2 Communication RS

For a serial communication, the settings in the Fupla Client_RS.fup are to be
checked and if necessary adapted. The serial communication takes place via the
onboard RS 485 port 2 of the PCD3. If another port is used, it is to be adapted in the
FBox Init Client RS. If the baud rate or the protocol is changed, it is to be adapted in
the communication partner as well.

Fig. 5.2.2.1 Init Client RS

Getting started with Modbus

Modbus_PG5_20_E3.doc 23/34 12.01.2010

The communication port is also to be adapted in the Server_RS, unless it is
communicated via the onboard port 2 of the PCD3.

Fig. 5.2.2.1 Init Server RS Extended

Getting started with Modbus

Modbus_PG5_20_E3.doc 24/34 12.01.2010

 5.3 Programming PCD

Loading programme on the control
Now only the programming of the PCD is missing. For that, the programme should be
translated ("built") first. For this purpose you can use the "Rebuild all" button.

After the "build" of the programme is correctly carried out, you can load the
programme on the PCD with the button "Download programme". The PCD is thus
prepared. According to the setting of your PG5, the control automatically goes into
RUN after the download. If this is not the case, set the controls in RUN.

Getting started with Modbus

Modbus_PG5_20_E3.doc 25/34 12.01.2010

 6 Programming of the PCD

This section contains a brief description of the application.

 6.1 Client

This PCD acts with the Fupla Client_IP as TCP Client and with the Fupla Client_RS
as RS Client (RS 485).

 6.1.1 Client_IP

Page 1
The Modbus communication is programmed on the first page of this Fupla
programme.

The FBox Init Client TCP defines the communication channel, the remote port
number, the protocol and the timing behaviour.

The FBox Def Unit Client defines the IP address of the server and the unit identifier.
The flag Enable Def should be activated.

Integer values are read with the FBox Read Int. The field Add indicates the address
where the read elements are copied (Register: ReadIP, R 100). # defines the number
of registers to be read (10 = R 100 to R 109).

Fig. 6.1.1.1 Read Int FBox

Registers (32 Bit) are read. The base address of the Modbus Holding Registers is in
this case the address 1. On the Modbus Server the data to transfer (PCD Register
100-102) is mapped with the according DataMapping to the Modbus Holding
Registers 1 to 6. On Modbus there are only 16 Bit Holding Registers available. The
Saia PCD Registers to transmit contain 32 Bit values. This means that we will need 2
Modbus Holding Registers for each Saia PCD Register.

Getting started with Modbus

Modbus_PG5_20_E3.doc 26/34 12.01.2010

Fig. 6.1.1.2 Adjust Read Int FBox

The EnRead flag should be put up, so that data are read.
Important: If more than one Register is overwritten by the data from the Modbus (3
Registers in this case), it is necessary to reserve the correct range of registers for the
received data (Array of 3 PCD Registers).

Binary values are written with the FBox Write Bin. 8 elements are written. These flags
that are to be transmitted are flag WriteBin = F 1000 and the subsequent flags (F
1000 to F 1007).
The EnWrite flag should be put up to start the write operation. On the Modbus, these
Flags are mapped to the Coils 1000 to 1007.

Fig. 6.1.1.3 Write Bin FBox

Fig. 6.1.1.3 Adjust Write Bin FBox

Page 2
We obtain the time and date of the other control with the first 3 registers received via

Getting started with Modbus

Modbus_PG5_20_E3.doc 27/34 12.01.2010

the Modbus. On this page, the time is then transmitted to the hardware clock of the
control. As we obtain the time in hours, minutes and seconds in the first register, a
division by 100 is necessary to obtain only hours and minutes, as the FBox Write
Clock anticipates.

Page 3
Here it is taken care that the flags that are to be transmitted always change their
status, so that it can be immediately recognised whether the communication runs at
the opposite side.

 6.1.2 Client_RS

Page 1

The initialisation of the client RS takes place on this page. A channel (communication
channel = virtual), a port (physical port on the PCD), the physical interface,
communications parameters, protocol and timing are defined with the FBox Init Client
RS.

Fig. 6.1.2.1 Init Client RS FBox

Fig. 6.1.2.2 Adjust Init Client RS FBox

The FBox Def Unit Client defines the unit identifier UID of the communication partner.
There is no need to enter the IP address in this case. The field IP address can
contain any one address.

Getting started with Modbus

Modbus_PG5_20_E3.doc 28/34 12.01.2010

Fig. 6.1.2.3 Def Unit Client FBox

Fig. 6.1.2.4 Adjust Unit Client FBox

The EnDefRS flag should be put up.

Fig. 6.1.2.4 Read Int FBox

Fig. 6.1.2.5 Adjust Read Int FBox

16-bit signed register is read from the Modbus base address 1. These are filed in the
address ReadInt R 0 to R 9. Since the Default Mapping is activated on the Server,
the PCD Registers 0 to 9 (16 Bit signed) are mapped to the Modbus Holdingregisters
1 to 10.

Getting started with Modbus

Modbus_PG5_20_E3.doc 29/34 12.01.2010

Bild 6.1.2.6 Default Mapping

Fig. 6.1.2.7 Read Bin FBox

Fig. 6.1.2.8 Adjust Read Bin FBox

8 binary values are read from Modbus coil 1 onwards. They are filed in the flags
ReadBin F 100 to F 107.

Page 2
The flags 100 to 107 are changed from Bin to Int. If the transmission is successful, it
is incremented here.
Read registers are added with the Additions FBox. Here too the value should be
continuously changed in active transmission.

 6.1.3 Modbus server (IP)

Fig. 6.1.3.1 Init Server TCP FBox

Getting started with Modbus

Modbus_PG5_20_E3.doc 30/34 12.01.2010

The port and protocol for the IP connection are defined with this FBox.

Fig. 6.1.3.2 Adjust Init Server TCP FBox

The FBox Def Unit server defines the unit identifier UID. In addition an offset can be
defined, so that it starts with 1 and not 0. If required, word swapping can be activated,
and the holes can be switched on if need be.

Fig. 6.1.3.3 Def Unit Server TCP FBox

Fig. 5.1.3.4 Adjust Def Unit Server TCP FBox

A mapping for the binary area is created with the FBox Def Mapp Bin.

Fig. 6.1.3.5 Def Mapp Bin FBox

In this case the Modbus Coils 1000 to 1007 are mapped to the PCD Flags 1000 to
1007.

Getting started with Modbus

Modbus_PG5_20_E3.doc 31/34 12.01.2010

Fig. 6.1.3.6 Adjust Def Mapp Bin FBox

A mapping for the integer area is created with the FBox Def Mapp Int.

Fig. 6.1.3.7 Def Mapp Int FBox

The Modbus Holding Registers 1 to 6 are mapped to the PCD Registers 100 to 102.
Since the PCD Registers are 32 Bit and the Modbus Holding Registers only 16 Bit,
two Holding Registers are needed for each PCD Register.

Fig. 6.1.3.8 Adjust Def Mapp Int FBox

Getting started with Modbus

Modbus_PG5_20_E3.doc 32/34 12.01.2010

Page 2
The time and date of the PCD is read here. Then this is transmitted to the client.
Further the received flags are converted from binary to integer. An increment is seen
in continuous communication.

 6.1.4 Server_RS

Fig. 6.1.4.1 Init Server RS FBox

This FBox initialises the appropriate interface for Modbus.

Fig. 6.1.4.2 Adjust Init Server RS FBox

Fig. 6.1.4.3 Def Unit Server FBox

The unit identifier UID is set with this FBox and defined whether an offset should be
made. Word swapping and holes can be activated. The default mapping can be
moreover activated.

Getting started with Modbus

Modbus_PG5_20_E3.doc 33/34 12.01.2010

Fig. 6.1.4.4 Adjust Def Unit Server FBox

The following FBoxes provide for a flashing of the flags that are to be transmitted and
for a conversion of the values in the registers that are to be transmitted.

 6.2 Transmitted data

 6.2.1 IP Ethernet

The Registers 100 to 102 of the Server IP are transmitted to the Modbus Holding
Registers 1 to 6. On the Client IP these Holding Registers are transmitted to the
Registers 100 to 102.
The Flags 1000 to 1007 of the Client are transmitted to the Coils 1000 to 100. On the
Server these Coils 1000 to 1007 are mapped to the Flags 1000 to 100.

 6.2.2 Serial RS 485

The flags 0 to 7 are transmitted from Server_RS to the Modbus coils 1 to 8. These
are then recorded in the Client_RS on the flags 100 to 107.

The registers 0 to 9 (16 bits) are transmitted to the Modbus holding registers 1 to 10
and recorded in the client on the registers 0 to 9.

Getting started with Modbus

Modbus_PG5_20_E3.doc 34/34 12.01.2010

 7 Troubleshooting

Symptom Possible cause Solution
Default mapping is not read,
even though the FBox
"Default Mapping" is set =
"Yes".

As soon as a mapping is
configured for a UID, the
default mapping is
deactivated.

Delete all mappings for
this UID on the PCD.

Data do not come in, are not
transmitted, but the FBox is
green.

The data possibly appear
in another address.

Check mapping

FBox is red, communication
doesn't function / only
partially

Communication
parameters don't agree
with the communication
partner. Port is configured
otherwise (HW settings).
Incorrect wiring

Check communication
parameters,
configuration and wiring

A project, which was
previously implemented with
the Engiby library, does not
function anymore with the
Saia Modbus library.

The mapping possibly
doesn't agree. The
different designations can
lead to confusion.

Check whether the
mapping has been
correctly adopted
according to section
3.6.1.

The "Define unit server"
FBox has a "Range error".

The range is incorrectly
defined (e.g. wrong
length) or only a "half" of
the PCD register is read
by a 32-bit mapping (e.g.
only HR 0 instead of 0 and
1).

Check range and
examine whether 32-bit
registers are correctly
read.

 8 References

Subject Document No.
Modbus Modbus Manual 26/866
Miscellaneous Saia® FAQ Manager www.sbc-support.ch/faq -

http://www.sbc-support.ch/faq

	1 Introduction
	2 Required hard- and software
	3 The Modbus basics
	3.1 Typical applications
	3.1.1 Serial
	3.1.2 Ethernet

	3.2 Historical background
	3.3 Comparison S-Bus (Modbus
	3.3.1 Comparison Serial S-Bus (Modbus RTU/ASCII
	3.3.2 Comparison Ether-S-Bus (Modbus TCP/UDP

	3.4 Modbus Media Mapping and characteristics
	3.4.1 Master/Slave (Client/Server
	3.4.2 16 bits (32 bits
	3.4.3 Offset
	3.4.4 What is a UID
	3.4.5 Why do we need a Mapping?
	3.4.6 Mapping and UIDs
	3.4.7 Channel Definition
	3.4.8 Connections
	3.4.9 Holes
	3.4.10 Programming client
	3.4.11 Programming server

	3.5 Comparison Saia solution (Engiby solution
	3.6 Limits to consider

	4 Description of the project example
	4.1 Datenaustausch über Modbus
	4.1.1 Communication IP
	4.1.2 Communication RS 485

	5 Preparation of the sample project
	5.1 Configuring PCD
	5.2 Further configuration
	5.2.1 Communication IP
	5.2.2 Communication RS

	5.3 Programming PCD

	6 Programming of the PCD
	6.1 Client
	6.1.1 Client_IP
	6.1.2 Client_RS
	6.1.3 Modbus server (IP)
	6.1.4 Server_RS

	6.2 Transmitted data
	6.2.1 IP Ethernet
	6.2.2 Serial RS 485

	7 Troubleshooting
	8 References

