

Handling_Application_Example_E1.doc 1/27 20.09.2005

Description of the Handling Application Example

Contents

1 Introduction.. 2

1.1 Programming languages .. 3
1.1.1 Instruction list (IL editor) .. 3
1.1.2 Graftec .. 3
1.1.3 Function plan (Fupla editor) .. 4
1.1.4 FBox Builder.. 4

1.2 Structuring.. 5
2 The example project .. 6

2.1 Model description ... 6
2.1.1 Interface to other stations.. 7

2.2 Installation of the project .. 7
2.3 Operation ... 7

2.3.1 Operating modes... 7
2.3.2 Manual movement of cylinders.. 7
2.3.3 Resetting the station ... 8

2.4 Fault monitoring.. 8
3 Procedure.. 9

3.1 Preparations... 9
3.1.1 Breakdown of the installation into stations .. 9
3.1.2 Production of input and output lists ... 10

3.2 Programming the PLC.. 12
3.2.1 Structuring the software .. 12
3.2.2 Breakdown of modules.. 12
3.2.3 Modules for stations 1 .. n ... 13
3.2.4 Advantages of this type of structuring ... 14
3.2.5 Disadvantages of this type of structuring .. 14
3.2.6 Information flow within a station .. 15

3.3 Structuring of the example project.. 15
3.3.1 Main program.. 15
3.3.2 Transfer module – station 1... 16
3.3.3 Choice of tools .. 16
3.3.4 Coding: general... 17
3.3.5 Coding: output connections... 18
3.3.6 Coding: operation.. 19
3.3.7 Coding: sequence ... 20
3.3.8 Coding: alarm analysis.. 21
3.3.9 Coding: Storing alarms.. 22
3.3.10 Coding: Sending alarm messages .. 23

Operation with Web Editor .. 24
3.4 Movement sequences .. 25

3.4.1 Cube in correct position .. 25
3.4.2 Cube in incorrect position.. 26
3.4.3 Cube in rotated position .. 27

Handling_Application_Example_E1.doc 2/27 20.09.2005

1 Introduction

This document describes an example of an automated industrial installation and is
intended to serve as a template for larger projects.
The aim of these training documents is not to describe the PG5 programming tool but
to help you to select the right programming language with the associated editors and
to structure your project effectively.
The example covered here shows how a transfer station (“pick and place” facility) can
be programmed. The station presented here picks up a workpiece, rotates it as
necessary, and places it on a rotary table.
The sensors are all digital and the actuators are pneumatically operated (and so can
be addressed digitally).
As this type of hardware is not widely available, a second controller is integrated into
the example project. This controller acts as a simulator for the hardware. For
example, the simulator responds to the input for a cylinder valve with the limit switch
signal, after a slight delay. This combination also allows us to simulate cable breaks
and to test the behaviour of the system in “exceptional situations”.

Handling_Application_Example_E1.doc 3/27 20.09.2005

1.1 Programming languages
Just as nails are best driven in with a hammer, and screws fixed with an open-ended
spanner or a screwdriver, PG5 contains various tools for different tasks.
The choice of the appropriate tool is driven by the tasks set, the form of
documentation required, and the strengths and preferences of the programmer.
In this project, we have tried to select the most efficient programming language for
each of the various tasks. This means that a relatively large number of functions are
implemented in the Instruction List (IL) language.

1.1.1 Instruction list (IL editor)
The IL editor is a very efficient text-based tool, which does however assume some
basic knowledge of the individual instructions. For the beginner, the online help and
the “Overview of IL instructions” will be important aids in the initial phase. In them,
you will find the descriptions of the instructions, their syntax and also some
examples.
The efficiency of IL programming is partly due to the fact that it uses the same
instruction set that is processed by the controller itself. This means that the exact
code produced by the programmer is processed by the controller.

1.1.2 Graftec
GRAFTEC is a graphical
tool for easy creation,
administration and
documentation of
sequential process flows.
The individual branching
conditions (transitions) and
actions (steps) can be set
up in the IL editor or the
FUPLA editor.
This structure allows
simple and clear “online
monitoring” of the program
on the controller.

Picture 1: Graftec Screenshot

Handling_Application_Example_E1.doc 4/27 20.09.2005

1.1.3 Function plan (Fupla editor)
Fupla in PG5 is a graphical programming tool. The range of functions extends from
simple elements for contact plan programming, binary, integer and floating-point
functions, to complex transformation, communication and control functions.

As Fupla programs are programmed graphically with so-called FBoxes (function
blocks linked together), the corresponding page of code can be easily interpreted.
Another advantage of the FBoxes is that a very complex function can be
programmed with very few (possibly even just one) specific FBox(es).
Where required, special libraries can be used, e.g. the HeaVAC (heating-ventilation-
air-conditioning) library. This library was developed specifically for building
automation, and includes FBoxes for temperature control, time switches etc.

Picture 2: Fupla Screenshot

The files Modem_SMS.fup as well as Logger.fup are program files created with
Fupla. The file Modem_SMS.fup is responsible for sending SMS messages while the
Logger.fup does organize the alarm buffer.

1.1.4 FBox Builder
Each FBox contains (for the user hidden) IL code that realizes the requested function
on the PCD.

Handling_Application_Example_E1.doc 5/27 20.09.2005

Using the FBox Builder it is possible to compress Fupla pages to FBoxes. This allows
the easy reuse of once tested program structures and avoids programming errors
due to careless mistakes.
The FBoxes used in the Fupla file Logger.fup can be taken as examples for created
FBoxes. The FBox with the name “Logger” contains the code shown below. Instead
of copying the whole page, just the relevant FBox can be placed in new programs.

Picture 3: FBox created with the FBox Builder

The optional FBox Builder can also be used to integrate self-programmed IL
components (functions) into FBoxes, in order to place them graphically within a
program. For this usage, an additional license (FBox Builder full version) is to be
acquired.

1.2 Structuring
It is very important to structure the programs properly. This enables very complex
and unwieldy functions within a controller to be implemented in small steps, which
can be modified in a modular way.
The following points are vitally affected by the structure of the programs:

• Breakdown of the installation into small, manageable units;
• Definition of clear interfaces between the individual units;
• Improved readability, clarity and documentation of programs;
• Reduced sources of error;
• Simplified fault identification;
• Dependencies clearly defined and easy to understand;
• Reusable program code (modules).

Handling_Application_Example_E1.doc 6/27 20.09.2005

2 The example project
The aim of this project is to describe the approach to creating an SPS project and to
show possible solutions. The progression of an SPS project will be described, from
the definition of the task to the commissioning of the installation. The focus is less on
the details of programming than on the structuring of the project and the clear
presentation of the individual sub-tasks.
In the following sections, we will always refer to the same model, as described below.

2.1 Model description
The model is a transfer station, which picks up a workpiece and transfers it to the
correct position on a rotary table.
The workpiece is a cube with a hole drilled through the centre. The hole should be
aligned so that it can be positioned in the retainer on the rotary table as shown in the
drawing below. If the hole is positioned vertically, the cube cannot be rotated into the
correct position and the workpiece will be ejected in the centre position of the
horizontal cylinder.

Picture 4: View of the robot

Handling_Application_Example_E1.doc 7/27 20.09.2005

2.1.1 Interface to other stations

The interface to the rotary table is achieved with two signals, as per the diagram
below.
As the rotary table is also only virtual, the "Turn rotary table" signal is supplied via the
web interface to the model station. The relevant button (Start rotary table) is located
on the Operations page of the web project on the controller.

Picture 5: Transfer conditions

2.2 Installation of the project
For the installation of this project, Please refer to the accompanying
“Handling_Application_Installation” document. This document describes the
procedure for installing and commissioning the project.

2.3 Operation
The operating concept is taken from actual practice, and has already been tried and
tested on large installations with several stations.

2.3.1 Operating modes
It should be possible to operate the station in the following modes:

• Manual (step-by-step, by keystroke)
• Cyclical (one complete cycle per keystroke)
• Automatic (start automatically when rotary table released).

2.3.2 Manual movement of cylinders
It should also be possible to move all cylinders into their different positions manually,
where the mechanism allows it (crash situations should be avoided). The limit switch
signals should be monitored, and appropriate error messages output where
necessary.

Handling_Application_Example_E1.doc 8/27 20.09.2005

2.3.3 Resetting the station
When a station is reset, all the associated cylinders are moved to their home position
in an orderly manner. In other words, mechanical collisions are avoided.

2.4 Fault monitoring
Each sensor should be monitored and a detailed error message output in the event
of a fault. Where error messages are output, the processes for the station concerned
should be stopped. A restart should only be allowed after the error has been
acknowledged.

Handling_Application_Example_E1.doc 9/27 20.09.2005

3 Procedure

3.1 Preparations
After gaining a broad overview of the task, we gather the information on the
hardware. We base this mainly on electrical and pneumatic schemas and any
available path/step diagrams.

Picture 6: State diagram

Any existing company standards and rules for control or drive design should also be
incorporated at the start of the project.

3.1.1 Breakdown of the installation into stations
First, the whole installation should be broken down into stations. By this, we mean
units that can perform a closed sequence of operations. Examples are:

• Rotary table (RT)
• Equipment handling
• Stacking mechanism
• Labelling station
• Marking cell
• Winding or unwinding mechanism
• Press
• Robot cell

 It should be possible to operate all these stations according to the same
operating concept. The cylinders and associated limit switches required for
processing are assigned to the stations.

Handling_Application_Example_E1.doc 10/27 20.09.2005

To break the project into sub-tasks, the PG5 development environment can be used
alongside tools like Excel and Word. This part of the project planning process is
crucial, and often determines the subsequent complexity of the project. This
breakdown defines the interfaces between the individual software modules. It also
has a bearing on the specification of data structures.

3.1.2 Production of input and output lists
As the input and output assignments are also required for programming, the input
and output lists should be entered into the programming tool at the outset if possible.
For this, self-explanatory symbols should be defined as far as possible, with
meaningful comments. This will make them easier to use later at the programming
stage.

The comments and element names can often be taken more or less directly from the
CAD system.

Picture 7: CAD schema

 The end-customer will gain the greatest benefit if the names of the SPS
symbols, the electrical equipment codes and the plain-text labels on the
control panel are identical.

Handling_Application_Example_E1.doc 11/27 20.09.2005

Picture 8: PG5 Project Manager

From the point of view of the programmer and the program documentation, the
symbol name should also be as self-explanatory as possible. Taking the simulator as
an example, the symbol list then looks something like this:

Picture 9: PG5 symbol table

Handling_Application_Example_E1.doc 12/27 20.09.2005

3.2 Programming the PLC
Before we can start programming, we need to structure the software. As
manufacturers of production equipment generally operate in one specific area, the
tasks and the type of installation are often very similar, and they can often be
implemented with one and the same basic structure.

 Experience shows that new requirements and functions necessitate
maintenance and possibly enhancement of the software. This demands
tidy management of the various development phases.

3.2.1 Structuring the software
The structuring of the software automatically defines interfaces between the
individual software modules. The aim of a good structure is to break the tasks down
into small, manageable modules, producing the simplest and clearest interfaces.

 It is important to note that an excessively detailed structure and
breakdown will not make the programs easier to understand.

Experience shows that the following tasks can be bundled into separate modules
without resulting in over-complex interfaces.

3.2.2 Breakdown of modules
In this example, the following modules have been generated. Some of the functions
can be produced with different tools. With these files, the choice of tool is mainly
influenced by the personal preferences of the programmer.

Task Tool Description
Main program
(Main_Program.src)

IL General functions such as blinker flag etc.

Starting the installation
(Facility_On_Off.sfc)

Graftec Starting and stopping the whole
installation. This includes e.g. switching on
compressed air - waiting for pressure to
build up – switching on and monitoring
hydraulic assembly, conveyor belts and
other motors in sequence – orderly shut-
down of installation etc.

General operation
(not used)

IL Special operational functions for the whole
installation, e.g. editing the system clock
on the OP

Analogue inputs
(not used)

IL or Fupla Cyclical reading and scaling of analogue
inputs

Analogue outputs
(not used)

IL or Fupla Cyclical conversion of control points, and
output to analogue outputs

Alarm aggregation
(not used)

IL or Fupla Collating alarms from all stations

Alarm monitoring
(PB_Alarm_evaluation.src)

IL or Fupla Set alarm monitoring with time delay
according to bits for individual stations

Alarm logging on SPS
(Alarm_Logger.fup)

Fupla or IL Saving alarms with timestamps

Handling_Application_Example_E1.doc 13/27 20.09.2005

Alarms via SMS
(Modem_SMS.fup)

Fupla Sending alarm messages to operator via
e.g. SMS

Functions 1..n Various Various functions that can be called with
different parameters from different stations

3.2.3 Modules for stations 1 .. n

Task Tool Description
Station_1_General LIST Calling the various functions of this station as

described below.
• Process day and total counters
• Check home position
• Check critical states, e.g. release of

rotary table from station, release of
workpiece from station

Station_1_Handling LIST Operation of station, setting of operating mode,
switching condition for station sequences

Station_1_Sequence_1 Graftec 1st processing sequence for station
Station_1_Sequence_n Graftec Further processing sequences
Station_1_Outputs LIST Control station outputs based on operating

mode and progress of work
Station_1_Alarms LIST Set alarm monitoring with possible time delay

for all operating modes

If you look more closely at the table above, you may notice that the outputs and
alarms are handled by separate modules and cover all operating modes.

You may wonder:

 Aren’t the interfaces between operation, the sequences, the output
connections and the alarms then much too complex?

 No:
Operation from the OP or terminal only sets control bits (flags), not outputs.
The decision as to whether outputs can be addressed is always governed
by the SPS.
The sequences set status bits (flags) in the SPS which reflect the desired
status of the output and do not address the output directly.
In the “Station_x_Outputs” module, the outputs are not only set on the
basis of the desired status from the sequences. It can also be used to
prevent mechanical collisions during manual cylinder movements or an
orderly reset.

 The alarms are triggered independently of the sequence. Alarms are
generally incorrect sensor signals in specific actor states, and they can be
monitored independently of the operating mode.
In other words, where a vertical module (e.g. cylinder) is moved upwards,
the system should release the lower limit switch after a delay, and address

Handling_Application_Example_E1.doc 14/27 20.09.2005

the upper limit switch. If this has not happened after a certain time, an
appropriate alarm display should be output (as it is clear that the
mechanical movement of the cylinder has been impeded).

3.2.4 Advantages of this type of structuring

• The tasks are clearly assigned to certain modules and so handled in one
place.

• Anyone who knows this structure can find his way around the program more
quickly.

• Enhancements and corrections do not have to be made in several places
(sources of error are minimized).

• There is only one processing sequence for all operating modes.
• On commissioning, each operating mode does not have to be tested

separately.
• Troubleshooting is simplified if the outputs are set in one place only.
• The security of critical situations such as turning the rotary table can be

increased by additional querying of the “RT basic setting” flag by all the
stations involved. These are set up cyclically, independent of the sequence.
This also helps to detect loss of pressure or a limit switch left on after the
correct termination of the sequence.

3.2.5 Disadvantages of this type of structuring

• For very small simple tasks, the minimum effort is greater.

Handling_Application_Example_E1.doc 15/27 20.09.2005

3.2.6 Information flow within a station

File: Alarms

 File: Sequence

File: Outputs

Operation

Release (switching
condition)Reset

Operating mode (off,
manual, cyclical, auto)

Processing sequence

Alarm analysis

Output connections

Set outputs

Acknowledgement

HMI
alarm display

File: Operation

Man. cylinder
movement

Picture 10: Information flow

The following information can be inferred from the flow diagram shown above.
• The outputs are not set directly either by HMI or the sequence.
• Alarm analysis is driven mainly by the output connections, and only in special

cases by the sequence.
• In the processing sequence, the release signal (continue) and the state of the

installation (sensors) are accessed, not the individual operating modes.

3.3 Structuring of the example project
The following structure is suggested for the example project:

3.3.1 Main program

The main program (COB0) handles all general tasks. These include:

• Loading default values
• Setting timers
• Starting the installation

Handling_Application_Example_E1.doc 16/27 20.09.2005

3.3.2 Transfer module – station 1

The whole transfer module is handled by COB1. This includes the following functions,
held in separate files.

• General, with monitoring, basic settings, calls to various station modules
• Operation of the station
• Raising alarms on the station
• Output connections for the station
• Processing sequence for the transfer module

Picture 11: PG5 Project Manager with program structure

For test purposes, the image numbers for the animated model and the position of the
cube are set up in COB5.

3.3.3 Choice of tools
Experience has shown that the choice of tools is influenced by various factors. For
example, the customer may often prefer a particular type of documentation, or the
programming knowledge of the support staff may be taken into account. The
programmer will have a preference for one tool or another, or he may focus on
efficiency.

In our example project, we will deploy the best and most-used tools for the tasks.

Handling_Application_Example_E1.doc 17/27 20.09.2005

3.3.4 Coding: general
This file executes the following tasks:

• Various initialization tasks on the station
• Various monitoring tasks (guard doors, air pressure etc.)
• Checking the home position for the station
• Reading the enabling instructions (turning the rotary table, centring the

workpiece holder etc.)
• Calling the sequences
• Calling various program blocks (operation, outputs, alarms etc.)
• Alarm analysis

Picture 12: Saia IL Editor (SEdit)

 Important: So as not to have to reserve separate status flags for the
cylinder circuits, the same flags are used for all stations. The cylinder
states for 16 cylinders are held in a register for each station, loaded before
use, and save again afterwards. This procedure allows a kind of multi-
instance programming.

Handling_Application_Example_E1.doc 18/27 20.09.2005

3.3.5 Coding: output connections

Picture 13: SEdit

In the output connections, all the outputs assigned to the station are switched on or
off. As an example, we will look at the first cylinder on our transfer station.

In out case, a bipolar valve is set.
In other words, The valve is moved into an “On” or “Off” position with a coil for each.
The notes show such valves as monostable (e.g. 5/2-way valve) and bistable (5/3-
way valve with centre position) The control of the output connections des not change.
(Bistable valves are used e.g. where you want to interrupt the movement via the
hardware with a light curtain.)

Where unipolar valves are used, there is only one coil for the “On” setting. This is
switched on (SET instruction) when "Status_Zylinder_01_Ein” is set, and switched off
(RES instruction) when “Status_Zylinder_01_Aus” is set.

For each manual movement, i.e. “forward” and “back”, a separate crash blocking
mechanism can be implemented. In our case, the cylinder is only released for either
movement when the vertical cylinder is up (E251Bd2=low, E251Bd1=high). This
crash blocking mechanism is also used in the reset case.
When programming processing sequences, the status bits are manipulated directly,
i.e. the programmer is responsible for preventing collisions. On the one hand, it is
possible to program a collision into the processing sequence, but this will be
corrected in the manual operation module after successful commissioning, at the
latest. On the other hand, special operations like switching off pressure or two-way
pressurising of cylinders can be achieved.

Handling_Application_Example_E1.doc 19/27 20.09.2005

 Caution: The same flag is used to release the cylinder for all output
connections within a station.

The operation of individual cylinders (manual movement of cylinders) is handled via
the flags “Station_1.Bedienung.Zylinder_01_Ein” or
“Station_1.Bedienung.Zylinder_01_Aus”. In our case, these are manipulated with the
operation created in the web editor. The flags are set for as long as the
corresponding keys are pressed.

Picture 14: Graftec Editor with SEdit and Symbol Editor (SSE)

From the processing sequence, the movements are triggered by manipulating the
flags ”Status_Zylinder_01_Ein” and “Status_Zylinder_01_Aus”. In our case, the
global symbols have also been defined locally and expanded with information on the
movement. This makes the code clearer and possible oversights are easier to detect.

3.3.6 Coding: operation
Operation is mainly handled via flags. A group of identically named operating flags is
defined for each station.
When a control panel or the web editor is used, these flags are set directly whenever
the relevant control elements are activated. If operation is via mechanical keys and
switches, the flags have to be set and reset before operation using the digital inputs.

Handling_Application_Example_E1.doc 20/27 20.09.2005

3.3.7 Coding: sequence
We program the processing sequences with GRAFTEC, a graphical tool for easy
creation, administration and documentation of sequential process flows.

Picture 15: Graftec Editor

The programming of processing flows begins with the graphical construction of the
workflow structure. The starting point is the home position of the station, because a
reset of the station also remains active until the station returns to its home position.

We only call this sequential block (SB) where there is no reset. In the rest case, the
SB is returned to its initial setup to restart the sequence.

Picture 16: Reset and call of Graftec sequence

Handling_Application_Example_E1.doc 21/27 20.09.2005

3.3.8 Coding: alarm analysis
Before the alarms from a station can be analysed, the individual error bits must first
be set. This is done in the module “Station_1_Störungen.src”.

Picture 17: Setting active alarms

When an input signal does not reflect the expected state, a temporary error bit is set.
This will be the case e.g. where a cylinder movement is started, until its end-position
is reached. 32 of these temporary flags are placed together at the end of the module
in the “aktuelle_Störungen” register.

Alarm analysis is called once a second or by acknowledging the alarms.

Picture 18: Calling alarm analysis

The bit pattern in the “aktuelle_Störungen” register is regularly checked for changes.
At every change to the bit pattern, the configurable delay for alarm displays in
restarted. Only when this delay time has elapsed and an error bit has been set is the
relevant alarm displayed and the station set to status “Störung_aktiv”. Based on the
error bit set in the “angezeigte_Störungen” register, a plain-text display can now be
output.
The status “Störung_aktiv” for the station is retained after the alarm has been cleared
until it has been acknowledged, to prevent any unintentional continuation of the
sequence.

 Advantage: This sequence-independent alarm analysis is generally
applicable and will always result in the correct alarm display, even in
manual cylinder movement.

Handling_Application_Example_E1.doc 22/27 20.09.2005

3.3.9 Coding: Storing alarms
Each time an alarm occurs, this event is stored by the program module
Alarm_Logger.fup. This is done by specially for this project created FBoxes with the
name Logger.
Thanks to these FBoxes, this rather complicated task is quick and easily realized:

• A rising edge at the input “Write” causes the value
present at input “Value” to be written into the in the field
“DB” specified data block (DB). The value is appended to
the existing values.

• The value present at input “DBSize” specifies the amount
of values to be written into the DB.

• A rising edge at input “Reset” resets the buffer.
• The position of the last entered value is written to the FBox output “Position”.

The values written into he DBs (one DB for the timestamp, one for the date and one
for the error code) will be visualized by the web interface of the PCD.

The FBox described is not present by default in the PG5! The relevant library
must be installed first!
To do so, please execute the file “FBox_Installer.exe” from the PG5 Project
tree folder „Common Files“.

Handling_Application_Example_E1.doc 23/27 20.09.2005

3.3.10 Coding: Sending alarm messages
The program module Modem_SMS.fup is responsible for sending an SMS to a
mobile every time an alarm occurs on the application.

Picture 19: Screenshot Fupla program Modem_SMS.fup

For this program module to work, the following prerequisites are to be fulfilled:

• An analogue modem module PCD2.T813 must be present, connected to the
TTL plug (port 1) over slot 2 of the PCD2.M480.

• An analogue phone line must be available and connected to the modem.
• The number of your provider’s SMS service center must be entered correctly

in the FBox “Call SMS”
• The button “Enable SMS” on page “Settings” of the web interface must be

activated.

Additional information regarding the SMS functionality as well as online connections
to the PCD with modems can be found in the example project “Sending and receiving
SMS” on the support site:
http://www.sbc-support.ch/GettingStarted/examples/examples.htm.

Handling_Application_Example_E1.doc 24/27 20.09.2005

Operation with Web Editor
The PCD2.M480 control used has an integrated web server. With this, it is simple
and economical to implement a user or configuration interface.
An (optional) Saia S-Web Editor is integrated into the PG5 programming tool; this
especially simplifies connection to the PLC program via the symbol tables. The
functions of the web editor are outside the scope of this document; please refer to the
relevant manuals.
The WEB Builder tool is used to group the HTML pages created in S-WEB Editor and
other files into PCD-compatible data blocks.

For instructions of the operation of this project, Please refer to the accompanying
“Handling_Application_Installation” document. This document describes the
procedure for installing and commissioning this project, and the use of the web pages
on the stations.

Picture 20: Main page of web interface

Handling_Application_Example_E1.doc 25/27 20.09.2005

3.4 Movement sequences
In the following sections, the movement sequence of the stations is presented in
diagrammatic form. Depending on the position of the cube, the movement sequence
of the transfer station may vary.

3.4.1 Cube in correct position

Home position

Home position with cube (position OK)

Vertical down

Pick up cube

Raise cube

Horizontal forward

Cube on rotary table

Open holder

Handling_Application_Example_E1.doc 26/27 20.09.2005

Raise holder

Starting position

3.4.2 Cube in incorrect position
The cube cannot be moved into the correct position. It is removed and discarded in
the eject position.

Set stop

Vertical down (cube incorrect)

Pick up cube - incorrect

Vertical up (cube incorrect)

Move to centre

Centre lower

Handling_Application_Example_E1.doc 27/27 20.09.2005

Centre open holder

Centre raise

3.4.3 Cube in rotated position
The holder most be turned to pick up the cube, to place it in the correct position on
the rotary table.

Turn holder

Lower rotated

Pick up rotated

Raise rotated

From this position, the sequence continues as for the correct position of the cube
from “Raise cube” onwards.

