
programmabie controüers

Manuat PCAO standard
Compact-PLC with high inteHigence

Engiish edition 26/79 E2

Series PCA0

The compact

highly-intelligent

programmable controller

Four standard versions with up to 64 I + 0

4K user steps

Programmable according to ladder diagram, logic diagram, flow-chart or
functional diagram as per DIN-standard.

Arithmetic instructions and security commands for permanent monitoring
of the operation (watchdog and check sum).
Easy beginning for learners but with big power reserve for the demanding
PC-user.

01.03.1987 Setting price: sFr. 20.--

satapc
Who uses the PCA0-manual?

We do not know how familiar you are with programmable controllers. Maybe you
are a beginner or already an experienced PC-specialist.

This manual serves as a course, in order to give the beginner an easy
introduction to the world of programmable controllers. Read especially the
chapters 1 to 5 carefully before you start to work and do not let yourself
be confused with the diagrams in the chapters 6 and 7. These are not im-
portant at the beginning if you have equipped yourself with the simulation
and power supply unit PCA2.S05 (see chapter 5e).

In chapter 9 you will be gradually led up the staircase from A via B to C.
For this, we use easy and clear examples, which can be collectively tested
on your desk with the above-mentioned simulation unit.

If you do not know how to go on, please make use of the experience of our
specialist in your vicinity or register for the next workshop.

We wish you a lot of fun with the versatile PCA0!

If you are a PC-specialist, you do not have to read all the information in
chapter 9. In this case, concentrate on the instruction lists at the be-
ginning of parts A, B and C. If you want to know more about these instruc-
tions, refer to the elaborated "Basic Manual".

(LANHIS&GYR)

Eatapc PCA0-1

1. A look at the exterior and interior of the PCA0

The PCA0 is the compact series of the SAIA-PC system family. The input and
output assemblies are combined on a single pc-board. Owing to the high
intelligence very simple as well as quite complex problems can be solved
with the PCA0.

On the exterior, the following functional parts are distinguished:
Plug-on terminals
for WATCHDOG

Optional
hardware timer-
PCA0.H20

Lamps indicating
operating states

PGU-connector
for connecting _
the programming
unit PCA2.P05

Plug-on terminals,
for voltage supply 24VDC

o

,/
^̂

o

Ô
-O
Ô

o o

RUN

CPU RUM

WATCH OO

Ooooooooo

oooooooo

oooooooo-

oooo oooo- -

Plug-on screw
terminals for
inputs

Labelling of the
inputs

LED for inputs (green)
Cover fastening screws
LED for outputs (yellow)

Labelling of the
outputs

* Plug-on screw terminals
for outputs

The following functional units can be seen inside:

Programming
unit

CPU

Central
processing
unit
MEMORY

User
memory

SUPPLY

Power
supply

Process inputs

BUS

OUT

Process outputs

The programming unit serves to transfer the user program to the user memory
(RAM). The CPU executes this program, interrogates the states of the process
inputs and controls the process outputs accordingly.

PCA0-2 saiâ pc
2. Common technical data

Microprocessor system

Cycle time per user instruction
(average)

Instruction set level (]H)

Number of parallel programs

Number of index registers

Number of subroutine levels

User memory

Volatile/non-volatile flags

Number of software counters and timers

Counting capacity

Time ranges (time base 0.1 or 0.01s)

Hardware timer PCA0.H20

Connection of peripherals

Operating modes
Indicating lamps

Inputs
(B90)

Relay outputs
(A21)

Transistor outputs
(B90)

Supply voltage

Ambient temperature

High noise immunity

8085-2

70 us

32 basic instructions + 20 additional
instructions incl. arithmetic

16

16 (1 per parallel program)

3

4K program tines (s 8K Bytes)

477* + 235 = 712

64 addresses (C = 64, T = 32)

65'535

0.1 (0.01) to 6500 (650)s

4 time ranges 0.9/3.7/30/240S

via 25-pole PGU-connector

RUN, BREAK, STEP, MAN, PROG

LED for RUN/CPU RUN/WATCHDOG
LED for I/O

galvanically connected, source
or sink operation nominal +24VDC
H = +19...+32V
L = 0...+ 4V
I = 10mA, 24VDC, tj = 9ms

galvanically isolated, normally
open contacts
contact rating 3A, 250VAC AC1

3A, 24VDC DC1

galvanically connected, positive
switching 0.5mA...0.5A, 5...36VDC

24VDC +20%

0...+50°C

as per IEC 255-4/E5 class III,
i.e. 2500V and IEC 801-4
class III (2000V)

*) By inserting the jumper "NV", all flags and registers for timers and
counters are made non-volatile.

satapc PCA0-3

3. The four standard versions

3.1 With relay outputs

Type PCA0.M12R M4

16 I, 24VDC
8 0, relay contact

max. 3A, 250VAC
! — !

t t

o
o
o

[1

t _ !

] []
0...7)8...15

)
2x81

t
t
t

,
2x*40

<
Re'tay

27...24J19...16
) t t

Type PCA0.M14R M4

32 I, 24VDC
16 0, relay contact

max. 3A, 250VAC

])

[!

o
o
o

1 1

[]

0...7

——— -^

59. ..56

) H !
8...15J16...23

,
4x81
!
t

^ ——— _f.-_-
i

4x4O
!

Re!ay
51. ..48 }43. ..40

t]
24. ..31

35. ..32
JE.

3.2 With transistor outputs

Type PCA0.M12T M4

20 I, 24VDC
12 0, 0.5A/24VDC

Type PCA0.M14T M4

40 I, 24VDC
25 0, 0.5A/24VDC

! t

! !

o
o
o

i !

! i,)
P...7 8..

2x81

------- --^

8O 4O

Transi itor
3l. ..24 23.

1
. 15

— — .

41

.16

1 1

o
o
o

! 1

0... 7 's... 15i 16. ..23
! l
i 4x81
! i
]]

, 1
' ,1 !
]3x8Oi
l '

Transistor
63. ..56 [55. ..48 [47. ..40

24. ..31

t — — — — *

81

39. ..32

Detailed information on the inputs/outputs see chapter 7.

Please note: If a certain number of units are ordered, we Mill supply
you, too, with a custom-made version. Please contact our
nearest selling agency.

PCA0-4 satâ pc
4. Important accessories

4.1 The hardware timer module PCA0.H20

3OGG

64 65 66

Fastening screw

Potentiometer for infinitely
variable time setting

Selector switch for 4 ranges

G 0.1 ... 0.9s
(D 0.4 ... 3.7s
O 3.2 ... 30s
O 25 ... 240s

-LED lights up if the timer is active
(running down)

-Addresses of the hardware timers

-Connector to CPU pc-board

This module is an option and must be ordered separately. It allows easy
setting of four time ranges in the RUN-mode independently of the program
(e.g. for setting delay times).

The repetition accuracy is:

- under constant conditions 0.1% of the time range set
- under extreme conditions 1% of the time range set

(T = 0...50°C, U = 24V +20%)

For waiting for a time to elapse, set at timer 64, use the following
simple program:

REO 64
SEO 64
WIH 64

The corresponding LED lights up while the timer is running down.

Please do not forget that this module is only necessary, if the 32
software timers included in every standard PCA0 do not suffice. The
software timers can be modified in the range 0.01s to 6500s by the
program or via 8 inputs by means of the BCD-switches in the RUN-mode
(see example A8).

satapc PCA0-5

4.2 The user memory

Three different types of user memories with 4K (4096) user steps each are
available:

- RAM-chip 8464 on socket, order no. 4*502*4718*0

This type of memory allows one to write, erase or overwrite a program as
desired with the hand-held programming unit P05. In case of a voltage
failure, the memory contents are stored in the CPU for approximately
2 months thanks to the buffer battery. The program, however, cannot be
transported, as it is lost when the RAM-chip is removed.

- Buffered RAM-memory module type PCA1.R95

Contrary to the RAM-chip, the program in this memory can be transported,
as it is protected by an integrated electronic system and stored by a
lithium battery for approximately 8 years.

Programming with the hand-held programming unit P05.

- EPROM-chip 2764 on socket, order no. 4*502*4719*0

In an EPROM a program is reliably stored for more than a decade.
However, the program cannot be entered directly into the EPROM with
the PCA0. For this, the following possibilities are offered (ask for
the special documentation):

a) with the EPROM-load module PCA2.P16
b) with the universal programming unit PCA2.P21
c) with the CPUs of the series PCA2 (M31 and M32)

Every EPROM can be erased with an appropriate UV-light source almost as
often as desired.

Depending on the user memory in use, the selection jumpers on the CPU
must be inserted (see also figure in chapter 5).

for R95 for EPROM 2764 for RAM 8464

2764 —̂ L̂o 2764
8464/R95 -̂ ^
2764/R?? -̂ _.. 2764
8464 —<

Standard
factory setting

*) Position for write-protection

Please note: The jumpers should be repositioned only with the PC
switched off.

PCAP-6 satspc
4.3 The programming units

- The hand-held programming
unit PCA2.P05

Connecting cable for PGU-connector

Indication where input is effected

7-segment LED-display of a line of
the logic operation

Display of the accumulator

Display of the selected operation
mode

Keys for selecting the operating
modes

16-part keyboard with 10-part
block and function keys

This handy programming unit was developed in particular for the series
PCA0, but it can also be used for the series PCA1 and PCA2.

All operating modes can be selected with keys. Programming is performed
in the PROG-operating mode by means of a 10-part keyboard in the easily
understandable numerical code. All elements (inputs, outputs, timers,
counters) can be interrogated or set in the "MAN"-operating mode.

All timer and counter values can be indicated in the RUN-mode. In the
operating mode "STEP" a jump can be effected to any user step of the
4K-user memory. Finally, "BREAK" permits the program execution up to a
set break-point and continuation in step-by-step operation. For details
refer to "Operating modes" in chapter 8.

- The programming interface PCA0.P01
25-pole connector for
the PCA0 programming
connector

Flat cable

Operating mode
selector switch

Connector for any other
programming unit of the
SAIA-PC system family

This interface also allows connection of all SAIA-PC programming units
with the series PCA0, namely the following:

- P10 hand-held programming unit with numerical code
- P18 hand-held computer with numerous possibilities
- P21 universal programming unit
- IBM-PC with SAIA-macro-assembler.

As a result, all upwards-compatible members of the SAIA-PC system
family are available also for the PCA0.

PCA0-7

5. Brief instructions for operating the PCA0

Connection terminals
for WATCHDOG PCA0.M12

PCAO.M14

Function jumpers

User memory

Operating mode indicating
lamps

PGU-connector for'programming
unit

Connection terminals for
power supply

t

CD

)
'

C30
C3C3C3

C3C**t"*]t**]
C3C3C3C3
C3C3CDC**)
C3C3C3C3

PCA2.P05

Programming
unit

a) Function jumpers

(T) When delivered, the function jumpers are inserted as follows:

- Time base "1/10" is inserted (for a time base of 1/10s)

- Flags and registers are non-volatile, when "NVOL" (non-
volatile) is not inserted

- Jumpers for user memory as evident from the above figure
apply to the buffered RAM-module PCA1.R95.

If the jumpers are not in these positions, they can be changed
with a small screw-driver. In order to provide access to the CPU
the cover needs to be removed by two screws.

The jumpers should be repositioned only with the PC switched off.

[J.ANOISXGYR]

PCA0-8 satâ pc
b) Power supply

(2) Take a transformer (for "playing" 20VA is enough) with a secondary
voltage of 24VAC and connect the terminals + and M of the PCA0 via a
bridge rectifier. (The PCA2.S05 simulation unit already contains this
power supply, see section e).

(3) A switch gives the advantage that by switching off the PCA0 all
resettable elements and the STEP counter can be easily reset to
their initial defined positions.

c) Installation of the user memory R95 and programming unit P05

(4) The buffered RAM-module PCA1.R95 needs to be plugged onto the empty
user socket in the specified position (notch on the left).

(5) The programming unit PCA2.P05 is connected via the 25-pole PGU-
connector.
If any other programming unit than P05 is used, the interface PCA0.P01
needs to be interposed.

d) Program example "Blinker"

(6) Switch on voltage supply. Yellow lamp "CPU RUN" blinks every 2s
(1s on, 1s off).

(7) Select the operating mode "PROG" by pressing the [PJ-key of the pro-
gramming unit (for at least 0.5s). As a result, the red LED "PROG" on
the P05 lights up.

(8) Enter the following blinker program:

STEP CODE

A,0,E (0000) * (00)
E (0001) 02
E (0002) 14
E (0003) 00
E (0004) 13
E (0005) 20
E (0006) (00)

OPERAND Program in mnemonic code

(0000)
256
256
5

24/40 **
1

(0000)

- STL
S TR

COO
— JMP

256
256

0.5s
24/40 **

1

*) The values in brackets do not have to be entered, but they are
indicated.

**) For the small PCA0.M12.. enter output 24, for the big PCA0.M14.
enter output 40.

saopc PCA0-9

Set program counter to zero:

Key sequence [1 operating mode STEP, as confirmation the red LED
"STEP" lights up

[A] address, [BE]

Q) Select operating mode "RUN":

Press key [R] (RUN) for 0.5s

—— Red LED "RUN" lights up on P05
—— Green lamp "RUN" lights up on PCA0
—— Output 24 or 40 blinks 0.5s on and 0.5s off

(frequency 1Hz)

e) Connection of the input simulation unit PCA2.S05

Including the 1-simulation unit PCA2.S05 gives a complete set of pro-
gramming and practicing devices which can be used to try out all examples
of programs contained in this manual.

r

0......7 8...15

805

J O 7 ![B ...15 1

PCAO.M12..
M 0 1 2 3 4 5 6 7 L

Connection of the
S05-cable to the
input connector
0...7.
Connecting M with
L results in source
operation.

Instead of the 1-simulation unit PCA2.S05 the bigger PCA2.S10 can also be
used with the connecting cable PCA1.K80.

PCAP-]0 satapc
Dimension diagram of the PCA0

?t 1 ' M P
oooo

oooo
*

o
o
o

'

!

-i H -H
185
205— ———— . ————— ... — .. ——————— . ————— — .

— ̂ m

— ———— *- !

\
^Cylinc
screw

-tr
61

OOOO

o o o o
i
O
O
o

! !

295

315

! H H -t̂

-s-

61

satapc PCA0-11

6. Detailed information on power supply and watchdog

6.1 Power supply of the PCA0

Supply voltage U-in
Tolerance for U,in- general
- for version with relays

Supply current
- PCA0.M12T
- PCA0.M14R

Fuse

24VDC smoothed or pulsating

+20%
pulsating voltage ±20%

=%---S0°C)
smoothed voltage +20%

= %...35°0 -5%

max. 0.5A (with P05 connected)
max. 0.9A (with P05 connected)

1.6A quick-acting

Several components protect the PCA0 against interference voltages, wrong
polarity and voltage drops. The 5V for supplying the electronic components
is generated by means of a switching regulator.

Reverse polarity Fuse, 1.6A
Interference
suppression filter

] — 1
^

M
M

J
Ĥ

1̂

r H CD t=D-̂
= ̂
j

\KJtt/ ^
. Regulator . \̂ - ^

gy û!HL/̂ *

= =

^

f
Monitoring

^ ^ circuit
for 24V and 5V —————— ̂

Watchdog decoder
of ADOR 255

RESET

PCA0-12 satapc
6.3 The WATCHDOG-monitorirtg circuit

The WD-circuit reliably monitors the correct execution of the user pro-
gram. In case of an error effective safety measures can be taken.

The WD-relay remains excited (contact H-J is closed) as long as the address
255 receives an alternating signal of > 5Hz. This signal is generated in
a circulating program simply with the instruction COO 255. During normal
operation of the CPU in the RUN-mode, the terminals H-J remain closed and
the green WD-lamp lights up. If a malfunction occurs in the CPU or any
other operating mode than "RUN" is selected, the contact H-J opens, the
WD-lamp goes out.

For critical systems it is recommended to make use of the WD-function in
combination with the following safety circuit. Upon releasing of the WD-
relay the PCA0 is no longer supplied with voltage, which has the result
that all outputs are reset at once.

Contact rating of the WD-contact: 1.5A, 48VAC or DC

Alarmsignal

+2W-

PCA0 Process outputs

A A

Process

L A N B I S & G Y R J

satapc PCA0-13

7. Detailed information on inputs and outputs

7.1 Inputs 24VDC (B90)

Input voltage LLin
Voltage level

Input current at 24VDC

Input delay

Operating mode

24VDC, smoothed or pulsating

H: 19...32VDC
L: 0... 4VDC

10mA

9ms

Source or sink operation,
depending on the connection

Source operation Sink operation

external

.24V-

Terminals

+ at 1: LED on
- at I: LED off

Interference
suppression
filters

47k

Threshold
switch

47k

Load resistors
2.2k/0.5M

^——^.
t' User ground

LED
green

external

Terminals

: LEO off
-l_:LEDon

„.

(Terminal assignment)

*) The inputs 16...19 of the PCA0.M12T can be acted upon only in source
operation.

(Terminal assignment) +]23] 22] 21]20]19[18[17]16 [H

PCA0-14 satâ pc
7.2 Transistor outputs (B90) Type T

Output current range

Voltage range

Voltage drop

Operating mode
^ =* LED

yellow

(Terminal assignment)

7.3 Relay outputs (A21) Type R

Type of contact
Contact rating

Contact protection

Contact life (AC 1)

5mA...0.5A
In the voltage range 5...24VDC
the load resistor should have
a value of at least 48 Ohm

5...36VDC, smoothed or pulsating

Max. 1.5V with I = 0.5A

Source operation (positive switching)

Output] Load external

t—

transistor j <

^ !̂

Protective
diode ^

,

, 1

?NP :

-4-0—1
[i

rJ

n

o

+ ;

&.S <
5 S— <

User ground

31 [30[2?]28 [27] 26 I 25]24 I M

Pure silver, make contact
3A, 250VAC
1A, 250VAC
3A, 24VDC
1A, 24VDC

AC1
AC11
DC1*
DC11*

3.3nFand 33 Ohm

3A, 220VAC: number of switching
cycles is 0.1 mio.

1.5A, 220VAC: number of switching
cycles is 0.5 mio.

0.3A, 220VAC: number of switching
cycles is 5 mio.

Relay Contact Terminals
protection

+24V'

33- -

(Terminal assignment)
33-Ei j

3.3nF a2,7b]a2,6b[a2 5b! a2 4b

System ground

*) For reasons of life and reliability transistor outputs should be
preferred for switching a DC-voltage of 24V.

[HNHIS&GYRJ

satapc PCA0-15

8. The operating modes of the PCA0

In order to prepare and test programs, it is necessary to operate the PC in
different operating modes. This is effected by pressing the corresponding
keys on the small programming unit PCA2.P05 or with the programming
interface PCA0.P01 for other programming units.

Please note that these operating mode keys must be actuated for at least
0.5s for reasons of security. The actual selection of the appropriate
operating mode is confirmed by the indicating LED of the programming
unit P05. When the programming unit connector of the PCA0 is disconnec-
ted, the selected operating mode is maintained.

When switching on the PCA0, the following operating modes are selected
automatically:
- With the programming unit connected —— STEP (the LED "STEP" on the P05

lights up, the green LED "RUN" on the PCA0 does not light up!).

- Without programming unit —*-RUN (the green LED on the PCA0 lights up).

8.1 Operating modes (summary)

[R] RUN Normal program execution (lamp RUN on the PCA0 lights up)

P] PR06 A user program can be loaded into a RAM-memory (plugged
onto the user socket of the PCA0).

MAN Manual interrogation and setting of elements (inputs, out-
puts, flags, timers, counters).

STEP Jump to a preselected step address of the user program and
step-by-step execution.

IT] BREAK Program execution up to a set "breakpoint" and subsequent
step-by-step operation.

Tl TEXT Has no function in the standard PCA0.

ËYRJ

PCA0-)6 satâ pc
8.2 Detailed description of the operating modes

[*Rl RUN Normal program execution

The PCA0 is automatically in the RUN-ntode when switching on if
the programming unit is not connected.

]*P] PROG Programming

A program can be stored in a RAM-memory (on the user socket of
the PCA0) or overwritten (corrected).

Step Code Operand
[A] x x x x [Ë] x x x x x x

[Fjxx x x x x or [B deleting a wrongly
entered line

[+] Terminates the input

Test program BB °"" B B

[Ml MAN ** Manual interrogation or setting of elements

(Elements = inputs, outputs, flags, counters, timers)

Interrogation: [ÂJ x?x——— ̂"Y °f ̂-̂̂ ^ in the operand
Element address

Setting: [A]xxx[E] [T]-*——or@]
Element address

[Si STEP [V]—--Display showing where the program is.

Jump to the preselected step address of the user program
[A] 139 B———Program jumps to step 139, then

[+] [+]... step-by-step execution of the program with the

result of the logic operation being checkable ̂ ACC = 1*

Switching to RUN is always possible.

In case of parallel programs, only the activated paratlel
program is executed in the STEP-mode

[JBj BREAK Interruption of the program run and subsequent step-by-step operation

B———Display showing where the program is

B B step-by-step execution of the program with the

result of the logic operation being checkable -j^-ACC - 1*.

Switching to RUN is always possible.

In case of parallel programs, alt programs are executed
simultaneously (as in the RUN-mode).

Setting of a breakpoint

[A] 820 B ——— program runs up to step 820, then

BE] - - - - step-by-step operation skipping the "critical" point.

*) ACC = accumulator is used to indicate the result of the logic combi-
nation. If ACC = 1, (conditions of the logic combination fulfilled),
the following switching instructions are executed.

**) If the address of a timer or counter is preceded by a 3 (e.g.
3260 for counter 260), the value of this register can be read or
entered manually with [Ë] value [+1.

PCA0-17

9. Programming in three easy steps

Combined programming
C incl. arithmetic and index register

B Programming according to flow-chart

A Programming according to a ladder diagram

The PCA0 is equipped with a very efficient instruction set, level (fH).
Thanks to this instruction set even complex control problems can be
solved easily. The programs of the PCA0 can be used at any time with
other series of the SAIA-PC system family, too. This enables your
controller to "grow" according to your requirements, without having to
write new programs every time.

In order to make the start of programming easier for the beginner, the
performance of the PCA0 is split up into three easily understandable
steps. Maybe your control problem is so easy that it can be solved even
on level A.
Let's start programming with a tadder diagram, attrtough this is no ionger suitabie
for modern programming, because process runs are often particuiariy difficuit to
represent in reiay !ogic.
But you wi!! see that your PCA0 understands any tadder diagram.

PCA0-18 satâ pc
Programming according to ladder diagram

12 14 n Ladder diagram

PROG

CPU

MEMORY

i
)N

0
OUT

027 024

17

027 (43)

—̂B-
024 (40)

Program

1 STH 2
2 ANH 4
3 OUT 27
? STH 7
5 OUT 24

JMP l

The program prepared according to a ladder diagram is entered into the
user memory (RAM) by means of the programming unit. In the RUN-mode, the
CPU reads this program line by line and checks the relevant inputs. If one
of the contacts 12 or 14 is closed, an "H" (High = voltage greater than
+19V) is stored in the CPU and after reading the 2nd line it is AND-
connected with the latter. If both contacts are closed (H), the state of
the accumulator = 1 (ACCU = 1) and the output 27 is activated, the con-
tactor at output 27 is actuated.

In line 4 the CPU processes input 7. If this contact is closed, output
24 is activated, the indicating lamp lights up.

We can combine more of these logic operations, because our user memory of
4K = 4096 program lines is extremely large. If all logic operations have
been programmed, we have to tell the CPU to return to line 1. In this
way, our program is permanently run cyclically at a high speed, and all
alterations are immediately transferred as logic operation results from
the inputs to the outputs.

satapc PCAP-19

Instruction set (À) ladder diagram

The instructions available for programming such logic operations are
classified into logic instructions and switching instructions.

Their functions are listed in the following table. Do not let yourself
be confused by the large number of functions. When programming according
to a ladder diagram only about 8 of them are used frequently, which you
will soon know by heart.

Step address numerica! code

STEP CODE

Mu<w*ri Mntmo
ca! code cod*

01 STH
02 STL

Logic ————— —————
tnstruc- 03 ANH
tions 04 ANL

1 05 ORH
.i*̂) 06 ORL

' T** 07 XOR

08 NEC

09 DYN

Switching 10 OUT
tnstruc

11 SEO
) 12 REO

' — r** 1 3 coo

Time 14 SIR
tnstruc
tions

Jump 20 JMP
tnstruc
tions

, ... 00 NOPAuxthary
tnstruc
tions

Etement or jump address

OPERAND

twatructton

Start High
Start Low

And High
And Low

Or High
Or Low

Exclusive Or

Negate ACCU

Dynamic Control

Set Output with
Status of ACCU

Set Output
Reset Output

Complement Output

Set Timer

Unconditional Jump

No Operation

Accumulators
ACC = 1
\ t / LED displty
— ̂— on SMA°PC
/̂ p<. programing
' Input unit

Dttchptton

f Start of an operation: 1 High
\ Element interrogated for / Low

/ And-operation of ^ High
\ ACCU with element interrogated for / Low

(Or-operation of j High
\ ACCU with element interrogated for) Low

Exclusive-or-operation of
ACCU with addressed element

Invert state of the ACCU

Signal edge triggering or
dynamic control of an operation

Transfer the state
of the ACCU to an output or a flag

Set output or a flag and store
Reset output or flag and store

Interrogate state of output or flag
and set it to the opposite state

Set timer to presetected value and start it
Time value in '/;os (resp. '/iocs)

Unconditional jump to step address

No operation

PCA0-20 satâ pc
The program line

Each instruction in the user program consists of 1 line (in certain cases
of 2 lines). In addition to the line number or step address (STEP) a line
contains the instruction code (CODE) and operand (OPERAND). The instruction
code indicates "WHICH" instruction is to be executed, and the operand
determines "WHERE" this instruction is executed.

Structure of the program or instruction line:

STEP CODE OPERAND

Mnemonic code

or
Numerical code

Line number or
step address

Instruction code
"WHICH"

y v
Addition to the
instruction code "WHERE"

v
Instruction

Program line

STEP The line no. defines the position of the instruction in the user
memory. Decimal numbering from 0...409S (4K).

CODE Depending on the programming unit the instruction code can be
entered in a 3-digit mnemonic code or in numerical cod*e from
0 to 31. The mnemonic code is based on abbreviations of the
corresponding English instructions. It is therefore easy to
remember and understood internationally.

OPERAND Here, the address of an element (input, output, timer, counter or
flag) or in case of jump instructions the destination address
(line no.) is entered.

Timing and counting instructions consist of two lines. In the second line,
the appropriate time or counter value appears in the operand.

PCA0-21

(Al) A first programming example

Before starting to enter the program, it must be noted down in mnemonic
code on paper. For this, it is advantageous to copy the programming
lists added at the end of this manual.

027 (43)

17
024 (40)

Step

-6

Mnemo .
code

Numeric.
code

Operand

2?

Comment

For programming and simulation we establish the same configuration as
described in section 5. All the following examples always refer to
the small PCA0 with only 16 or 20 inputs. For the bigger versions the
output addresses are added in brackets respectively.

With the programming unit PCA2.P05 the above program can now be entered
into the plug-in user memory (RAM or R95).

-operating mode PROG

2)

3)

4)

-,9
STEP Mnemonic Numerical OPERAND

code code

0000

2
3
TT
4
5
c

(NOP)
(STH)
(ANH)
(OUT)
(STH)
(STH)
(OUT)
/ 1MD\

00
01
03
10
01
01
10
90)

0000
2
4
27
H* 3)
7
24i

1) Selection of the step address 0 (
contents with [El = Enter.

= Address) and erasure of the

2) Every following [Ê] increments the step address by 1 and the contents
of the old program line are erased and prepared for the new input.

3) 8 was entered accidently instead of 7. Correction with [C] and
repetition of the instruction. The step address is not incremented
as a result of [ci.

4) The last input must be stored with [j] , or

PCA0-22

After entering the program it is recommended to compare the program
stored in the user memory step by step with the program previously
written down:

Now of course we want to test whether the program runs.

[s] ——— The LED indicating operating mode "STEP" lights up

[A] SB ———The program execution should start at step 1

[R] ———The LED "RUN" lights up, the program is running

Now close contacts 12 and 14 ——the LED of 027 lights up. Upon
closing 17——024 lights up.

satapc PCA0-23

Parallel connection

Ladder diagram

027 (43)

Program

Step Mnemo.
code

Nunteric.
code

Operand Comment

/M/P
Z?

4?

Note:

- Every OR-instruction starts a new branch of the parallel connection at
the very beginning on the left. Afterwards, AND-operations can be added
again to this parallel branch. The whole program, however, is con-
sidered as only one logic operation.

- If the logic operations are finished, as many actions as desired (de-
pending on this logic operation) can be added.

- Enter the program as follows:

[f]—*̂ LED "PROG" for programming mode lights up

-The PCA0 is prepared to accept the above program
from step address 10

Continue to proceed as described in example A1, but make the PCA0
execute the program from step 10 on with [S] [À] EE BE-

PCAP-24 satâ pc
(A3j OR is "stronger" than AND and getting to know other "elements"

The following contact arrangement must be p

, 12̂ 1 ——— ̂ 027(43)"<̂ n tLÊ _J Ü '

One is tempted to prepare the program as ab
at the beginning of a parallel branch, the
result:

"̂ *̂ - 16<̂ * Î o""̂ ß2-?-*f?3)*̂i n
^^L^^ ^ *̂

There are two possibilities of implementing

— ft̂ "i-y
I6_J^ 13.̂

The contact 16 is programmed in both parall

b) 12̂r̂ <̂ ——— . 024 (40)
... ^ , , ,̂Ĵ... _ j

13̂ ^

) 027 (43)
is/ -*- jn _,

rog rammed:

TCTU 4toJ n X?
AM%/3
ORK\3

ove. However, as OR is always
following circuit would be the

the desired function:

r—20 STH 01 6
21 ANH 03 2
22 ORH 05 6
23 ANH 03 3
24 OUT 10 27

L— 25 JMP 20 20

el branches.

] — 20 STH 2
21 ORH 3
22 OUT 24
23 STH 6
24 ANH 24
25 OUT 27

' — 26 JMP 20
——— !/ ————————————————— 0 !< ————— L̂ ———— t

024 LJ
(40)

Programming is performed in two steps. As evident from possibility b)
outputs can be used as desired in other logic operations, too.

L. ^

UMiSHYRjn

PCA0-25

It would be a pity to sacrifice an extra output for this easy task. There-
fore, every PCA0 contains 712 FLAGS!

The elements and registers of the PCA0:

Elements Register

ADDR. ADDR.

999

765
764

320

319

288

287

256

Retentive flags H or
non-volatile flags

Flags M*

32 counters C*, which
can also be used as
flags

32 timers T* or counters C*

4 hardware timers, provided
that the module PCA0.H20
is attached

max. 64 inputs I
and outputs 0

319

256

64 registers*
as counters or
timers at 16 bit

*) By inserting the jumper "NVOL"
on the CPU all of these
locations can be made
non-volatile, i.e. when
switching off the PCA0 these
data are not lost.

With the aid of a flag the ladder diagram can now be drawn as follows:

Substitution Intermediate Final
result result

ADDRr-30
31
32

33
34
35

L-36

NC
01
05
10

01
03
10
20

MNC
STH
ORH
OUT

STH
ANH
OUT
JMP

OPRD
2
3

400

400
6
27
30

Interrogating 12
OR 13
Storing the intermediate result

Interrogating flag 400 (and thus
AND 16
Output of the result via 027
Return to the beginning

on flag 400

the OR-function)

PCA0-26 satapc
\4) Two kinds of start/stop circuit with latching contactor

a) Presented in a ladder diagram

The following classical example is known from the technique of
contactors:

Start
11

024 (40)

Stop
10 024 (40)

D——

Program

ADDR
r— 40

41
42

43
44
45

L- 46

NC
01
05
10

01
03
10
20

MNC
STH
ORH
OUT

STH
ANH
OUT
JMP

OPRD

Jl
401 J

4011
%24 J
40

> Start

> Stop

As in example A3 programming is performed using a flag. As evident
from the program, the normally open contact 10 is connected with "H",
as 024 can be activated only with contact 10 being closed.

This way of programming is fail-safe against wire break. If a wire
breaks in the lines of 10, 11 or 024, 024 is always inhibited.

b) Logic diagram presentation

Start

Stop

11-o-

10
-O-

Program

& 024 (40)

ADDR
r*-50

51
52

53
54

- 55

NC
01
03
11

02
12
20

MNC
STH
ANH
SEO

STL
REO
JMP

OPRD
11
924 J
01
24
50 J

> Start

* Stop

SEO (11): Set Output With this instruction an element (output or flag)
is continuously set until it is reset with REO.

REO (12): Reset Out- With SEO/REO we are able to program a flip-flop,
put Both instructions are executed only if the

result of the logic operation is positive (ACCU = 1),

The "Set" instruction of example b) is executed only if 10 = H. If
both keys are pressed, the "Reset" instruction takes precedence
because of the AND-operation.

This way of programming is also fail-safe against wire break.

saiapc PCA0-27

Example of a pulse divider (stepping switch) using the instruction
DYN and COO

The following function is referred to as a pulse divider (stepping switch)

027 _J L
The output 027 is modified
only upon each rising edge of
13.

Presenting this function in a ladder diagram results in a quite compli-
cated diagram and a long program.

a) Ladder diagram presentation

Try once on your own to draw a retay diagram that reaiizes this function.
)t wit) not be easy!

b) With SEO/REO and the above function drawn as a togic diagram, it is atready
much easier.

E3V ^
— c A "!!OL ̂

0

.A-
-- r R

———

,501

signai-edge trigging
DYN ^

<

r-̂

< —

&

&
"L
502

S
*R

A 27

Ü

compteraient
** coo

ADDR
r*60
61
62
63
64
65
DD
67
6855
70
7172
73
74"

NC
01
04
10
11
02
I?
Ol
03
10
01
041 1

12
20

MNC
STH
ANL
OUT
SEO
STL
REO
STH
ANH
OUT
STH
ANL
8̂

REO
JMP

OPRD
3 1

501 S
500 /
501 1

3 S
501 J500 1
27)
502 J
500 \
27 /
552 j
27 J
60

interrogate
* switches with

AND-combination
. Flip-Flop

lower
> AND-

combination
> upper

AND-combination
> Flip-Flop

with output

signal edge
triggering
(DYN)

Pulse
divider
or
complement
output
(COO)

(HNOIS&GYR)

PCA0-28 satapc
c) With the instructions DYN and COO

DYN (09): Dynamic execution of an interrogation function or signal
edge triggering. With the DYN-instruction (together with a
flag in the operand) the preceding interrogation instruction
accepts only the positive alteration (rising edge). A
permanent H-state or the falling edge are ignored.

COO (13): Complement output. The logic state of an output or flag is
tested and inverted i.e. if an output is set, it is reset
with COO and vice versa.

With these efficient instructions this problem can be solved really
easily.

500

,COO_ .027 (43) ,3

027

ADDR NC MNC OPRD
-—60 01 STH 3

61 09 DYN 500
62 13 COO 27
6̂3 20 JMP 60

Interrogation of 13
Edge triggering, storing in flag 500
Testing the state of 027 and negating it

Without the DYN-instruction in this example the output 027 would be
complemented in each program cycle, if switch 13 were closed; that is,
approximately 3000 times per second in this short program loop.

With DYN, output 27 will be complemented only in the 1st program cycle
upon closing of 13. Every other cycle will not have any effect, until
the signal state of 13 has changed and a new rising edge is formed.

sstapc PCA0-29

The software timers with switch-off delay

In example A3 all elements of every standard PCA0 and their corresponding
addresses were shown. The 32 software timers reside on the addresses
256...287. For each address there is a 16-bit register in which values
from 0...65535 can be stored.

For setting and starting a software timer a two-line instruction is
necessary:

STR (14) 256:
20:

Starting the timer with address 256
Loading the corresponding register with the value 20.
(Direct input up to 2047 for code 00).

T256

When the CPU reads this instruction, the logic state of timer 256 is
set to "H" and the register value is reduced according to the time base
(1/10 s). After this has been done 20 times (20 x 1/10 s = 2 s) the
logic state of the timer 256 is "L" again.

With this basic function a switch-off delay can be implemented easily:

17

027 (43) 1256

027 (43)

t = 7.5s

ADDR NC MNC OPRD
—70 J2M STH 7

71
72

14 STR 256
75

Interrogation of 17
Set timer and start
Input of time in 1/10S 2-line instruction

73 01 STH 256
74 10 OUT 27

— 75 20 JMP 70

Interrogation of timer T256
Transfer to 027

Upon closing of 17 the timer is set and its logic state is set to "H".
The time does not start to run down before 17 is opened. (In fact, the
time starts to run down at once. But as the timer is set again in the
next program cycle after some 100us with 17 closed, the time starts to
run down again from the very beginning, until the signal present at
17 is removed, i.e. the contact 17 opens).

If 17 is closed again while the time is running down, the timer is reset
and started again.

P.S.: As evident from chapter 5 the time base can be reduced to 1/100S
by removing the jumper "1/10" on the CPU thus enhancing the
resolution.

(L A N Q I S X G Y R J

PCA0-30

(AT) Use of the hardware timer module PCA0.H20

In addition to the 32 precise software timers (which are included in
every standard version) 4 hardware timers (additional module) are
available in order to use time functions in the programs.

The 4 hardware timers with the addresses 64...67 can be operated in a
similar way to the software timers.

Software timers Hardware timers

STR
00

256
t

REO
SEO

64
64

For the hardware timer the time range and time are set directly on the
hardware module PCA0.H20.

Example according to A6:

17

027 (43) HT 64

027 (43)

ADDR NC MNC OPRD
— 80 ̂j STH 7

81
82

12
11

REO
SEO

64
64

83 01 STH 64
84 10 OUT 27

-̂85 20 JMP 80

Interrogation of 17
Start hardware timer HT 64

Interrogation of HT 64
Transfer to 027

As with the software timer, the time starts to run down at once in case
of the HT 64, too. As long as 17 is switched on however, HT 64 is reset
in each program cycle. The time actually starts to run down when 17 is
opened resulting in the above switch-off delay.

PCA0-31

(A8) Software timers with fleeting-on delay with external time input in
BCD-code

The PCA0 also allows reading the BCD-values directly into the registers
of the timers and counters. As a result, time values can be changed at
any time with the BCD-switch. If we use the input simulation unit
PCA2.S05 as described in chapter 5, we can see that the input addresses
18...115 are acted upon by a two-digit BCD-switch. For this, the BCD-
switch transmits the following signals to the input:

Binary signals present at 4 inputs (BCD-switch)

1 12

23 = 8

L
L
L
L
L
L
L
L
H
H

1 13

2? = 4

L
L
L
L
H
H
H
H
L
L

1 14

21 = 2

L
L
H
H
L
L
H
H
L
L

1 @

20 = 1

L
H
L
H
L
H
L
H
L
H

Decimal
value

0
1
2
3
4
5
6
7
8
9

Now, the STR-instruction can expanded in such a way that the delay time
can be directly read off the BCD-switch.

Code OPERAND

SIR (14)
NC

256
@

1st line
2nd line

BCD-switch
(2 pieces)

(En) : The highest input address of the two BCD-switches (e.g. @) is
introduced into the operand.

NC : The numerical code has the values 16, 17 or 18 with the following
meanings:

16 value 0... 99 x time base = 0...9.9s*
or 17 value 0... 990 x time base = 0... 99s*
or 18 value 0...9900 x time base = 0...990S*

*) These values result from the standard clock rate of 1/10s. It can
be changed to 1/100S by removing the jumper "1/10".

PCA0-32

Problem:

The time range 1 to 99s must be set with the external BCD-switch. The
inputs 18...15 are acted upon by the two BCD-switches. The time function
is to have a fleeting-on delay.

Because of the OYN-instruction only the rising edge of 10 is taken into
account, enabling the timer 258 to run down without interruption.

T258

024 (40)

402

024 (40)

Program:

23?! ,1,9 23222'?"

Tens Ones

ADDR
r— 90

91
92
93

94
95

L-96

NC
01
09
14
17

01
10
20

MNC
STH
DYN
STR
17

STH
OUT
JMP

OPRD
0

402
258
15

258
24
90

Interrogation of 10
Edge triggering, timer is set only in the 1st
Start timer and set it to the external value
x 10 x 1/10S using the inputs 8... 15

Interrogation of timer
Transfer to 024

cycle

If the same function has to be performed by a hardware timer, just
replace the lines 92 and 93 as follows:

ADDR
92
93

94

NC
12
11

01

MNC
REO
SEO

STH

OPRD
66
66

66

> Start hardware timer HT 66

Interrogation of hardware timer HT 66

PCA0-33

(A9) Switch-on delay with two new, very useful instructions

Problem:

t = 12s

287

TMR

17

.027 (43) T287

027

In case of the switch-on delay the timer is also started by the rising
edge of 17 as in case of the fleeting-on delay. However, output 27 should
be switched on only after the time has elapsed.
order to activate 027, the rising edge of 17 must have been generated and
the timer run down (L). This can be shown by means of the following logic
diagram:

402

027 (43)

As we are working with an intelligent PC, elapsing of the time has to be
displayed on the programming unit. This is achieved with the instruction
PTC (31): "Display Timer or Counter". Provided that this instruction is
Executed at least once every second (which does not constitute a problem
in circulating programs), the actual contents of the corresponding timer
or counter are displayed in the operand field of the P05. Activation of
the DTC is effective only if the ACCU = 1. Therefore, it needs to be pre-
ceded by the instruction SEA (19) 0: "Set Accumulator".

PCA0-34 satâ pc
Program:

ADDRr 10%
101
102
103

104
105
106

107
108

L-109

NC
01
09
14
00

01
04
10

19
31
20

MNC
STH
DYN
SIR
00

STH
ANL
OUT

SEA
DTC
JMP

OPRD
7

402
287
120

402
287
27

0
287
100

Interrogation of 17
Signal edge triggering
Start timer and set it to
120 x0.1s = 12s

Interrogation of the edge flag of 17
AND timer run down (L)
then output to 027

Set ACCU = 1
Display of the timer contents

If this function is to be performed by the hardware timer HT 67, the
lines 102/103 and 106 must be replaced as follows:

ADDR
102
103

106

NC
12
11

04

MNC
REO
SEO

ANL

OPRD
67
67

67

Start hardware timer HT 67

AND HT 67 run down (L)

satapc PCA0-35

Programming according to a flow-chart

Show a ladder diagram and this flow-chart to a 12-year old pupil. What
do you think will he interpret?

[Price - discount1

Bill

11

^

050

10 050

-2Ï2————L̂

So, is it surprising that more and more industrial processes, too, are
being described using a flow-chart. Especially in the chemical or food-
processing industry, as well as in many branches of mechanical engineer-
ing, there are many processes that can be described in an easy and
understandable way with the aid of a flow-chart.

The PCA0 comprises many instructions which can be used efficiently for
programming according to a flow-chart resulting in much easier and
clearer functions.

Counter instructions can be used of course both for programming with the
aid of a ladder diagram and flow-chart. In order to prevent level (/t)
from getting too complex, we have assigned them to level (B).

Step (or line)
address

STEP

SBB§
in nutwefica)

code

COM

Element or
jump address

OPERAND

B
Accumulators status

indicator

ACC = 1

<Mttmencai Mnemo- Instruction
coda =_ï code

Description

Timing and Counting
tnstructions

Set Counter Set counter to determined value (if accu = 1)
tncrement Counter
Decrement Counter

tncrement
Decrement

content of the counter by 1
(if accu = 1)

Jump tnstructions Unconditional Jump Unconditional jump to step address

RET
Jump to Subroutine
Return from Subrout

Jump to subroutine (regardless of accu)
Return from subroutine (regardless of accu)

Wait Actions 25 W.H Wait if High j element is

Auxiüary tnstructions NOP
SEA
PAS*

No Operation No operation
Set Accu Set accumulator status to 1
Program Assignment Assignment of the parallel programme
Disptay Operand Disptay content of operand (if accu = 0)

Display timer or counter value (if accu = 1)

* Two line instruction (second line contains determined value)
** Two line instruction (second tine contains starting address of parallel programme)

PCA0-36 satapc
(Bl) Upwards/downwards movement

Upper
limit switch 14

Start 10

Lower
limit switch 17

t DOMN

UP

(027) (43)

Problem:

As a result of a pulse at 10 the load
L must be moved upwards (UP = 027)
until 14 is opened. Then, the load must
be lowered again (DOWN = 024) until 17
is opened.

Additional conditions:

- If 10 is permanently on this sequence
must be continuously repeated.

- After a voltage break an upwards
movement must not be triggered before
a pulse is present at 10.

- Note: Before starting the program the
switches 14 and 17 must be closed.

Problem solving by means of a flow-chart:

Flow-chart Program Comment

UP((027) !

110

111] SEO (11) 27

112

113
114

115

116

117 (JMP (20) 110

Wait as long as 10 is
open (low).
If 10 is closed, then ...

Set output 27 (UP)

Wait as long as 14 is
closed (high).
If 14 is opened, then

Reset 027 (STOP) and
set 024 (DOWN)

Wait as long as 17 is
closed (high).
If 17 is opened, then

Reset 024 (STOP)

Return to the beginning

PCA0-37

As evident from the example, a sequence is described step-by-step when
programming according to a flow-chart. The stages of the process are split
up into conditions (wait for an input state) and actions (set or reset
outputs).

If we follow this program in step-by-step operation in the operating mode
STEP (key sequence ([S][A] 110 [+JB)...., we will notice that the
processor itself stays in the wait loop, until the condition for continuing
is fulfilled. This means: the program does not permanently circulate
cyclically like the program prepared with the aid of a ladder diagram, but
the program is executed according to the progress of the process.

This has three important advantages:

- The programs are made clearer, because they show the individual steps of
a process and not an abstraction in a ladder diagram which is not related
to the process.

- Only those program sections are processed which are of importance for the
current stage of the process. As a result, possible malfunctions resul-
ting from the execution of irrelevant program parts are avoided. Most
importantly, however, the reaction time between step condition and action
is considerably reduced.

- If the slide L stops after the first up-/down-movement, it is possible
to exactly localize the error in theprogram by means of the programming
unit in the operating mode "STEP", [+][jj ... At step 110, WIL 0 is
displayed. Moreover, the LED of 10 indicates that this input has not been
activated. Therefore, the error can be quickly narrowed down to the
contact or the connecting line of 10.

PCA0-38 satâ pc
) Up-/downwards movement with timer and counter

Problem:
The movement described in example 61 is to be effected not only once but
a certain number of times (e.g. 5 times) and a pause of 2.5s must be made
each time at the points where the direction is reversed.

Solution:
Flow-chart

closed

Set counter
to 5

UP (027)

open

STOP! (027)
Set timer

to 2.5s

run down
DOWN (024)

open
STOP! (024)

Set timer
to 2.5s

run down
Counter -1

Return

Programm

130

131
132

133 ! SEO (11) 27 !

134

146 ! STH (01)300!

T
/JIO (21) 133\-

<148 ^JMP (20)

Comment
Wait, as long as 10 is
open (low).
If 10 is closed, then .,

Set counter 300 to 5

Set output 27 (UP)

Wait as long as 14 is
closed (high).
If 14 is opened, then

Reset 027 (STOP).
Set timer 256 to 2.5s

'Wait while timer is
running down (high)

Set output 24 (DOWN)

Wait as long as 17 is
closed (high).
If 17 is opened, then

Reset 024 (STOP)
Set timer 256 to 2.5s

Wait, while timer is
running down (high)

Decrement counter 300
by 1

Test counter, if
0 (high)

If yes, jump

Return to the beginning

PCA0-39

Contrary to problem B1, in this example timers were also integrated into
the action parts. One must wait for these to run down in additional con-
ditional loops (WIH 256).

The use of the instruction SCR (15): Set counter is new.
This is a two-line instruction (as in case of the timer). In our example
the counter is set to 5. As long as the counter C300 is greater than zero,
its logic state is "H".

5 A 3 2 1
H

With the instruction DEC (18): Decrement Counter the counter state is
decremented by 1 in each run.

The interrogation instruction STH 300 allows to continuously check the logic
state of the counter. If the ACCU = 1 after the interrogation, the counter
contents are still greater than zero and another loop must be executed.
Returning to the beginning of a loop is effected with the conditional jump
instruction JIO (21): Jump if ACCU = 1.

In other words: If the counter is greater than zero, another loop must be
executed: If the counter state is zero, no more jumps are effected and
the last JMP-instruction leads back to the program beginning.

If the hardware timer HT 65 is used instead of software timer T256, the
corresponding program parts need to be replaced as follows:

STR 256^
00 25 ,

WIH 256J

REO 65
SEO 65
WIH 65

[LANQIS&GYR]

PCA0-40 satapc
What needs to be done, if we want other functions to be performed
together with the upwards/downwards movement?

In this case, we prepare a second or third parallel program out of the
16 parallel programs provided for each PCA0-standard version!

Problem:

Simultaneously and independently of program 32 a blinker with a flashing
time of 0.3s has to be generated in a parallel program and the actual
counter state of the upwards/downwards movement has to be continuously
displayed on the programming unit.

Program:

120
21
22

r-123

124
25
26
27
28

*-129

PAS (29) (D
00 130

DTC (31) 300

STH 2
ANL 257
SIR 257
00 3

COO 16
JMP 1 23

llhe parallel program number (T) is assigned to
J the up/down program starting with step address 130

The counter state of counter 300]̂
must be indicated continuously

/

^Output 16 blinks every 0.3s
as soon as 12 is closed

.̂

Parallel
program (0)

In the very beginning, we use the two-line instruction PAS (29) 1 (program
assignment) to assign the number (T) to the parallel program starting at
step address 130 in the so-called assignment part.

Other parallel programs can be added easily with PAS (2) or PAS (3).

The program at step addresses 123 to 129 is a so-called circulating pro-
gram without wait loops. It may include other functions such as monitoring
or other permanently performed tasks. This parallel program without assign-
ment is automatically given the number @.

If you want to execute PP0 at the same time from step address 123 on and
PP1 from step address 130 on, then jump to the start address 120 with the
following assignment: [s] [A] 120 [1J [R].

Now, test both programs! Both are executed separately and asynchronously.
As mentioned above, up to 16 parallel programs of any desired length can
be executed with the PCA0 (as with all SAIA-PCs).

PCA0-41

(B4) Subroutines help you save much time and result in shorter and clearer programs

Problem:

The following sequence has to be executed after closing of 11:

025

026

-s Is Is Is Is Is

Solution a: Of course with the aid of a flow-chart (if you want, try to
prepare the program with the aid of a ladder diagram!).

SEO
SEO
SIR
00

24
26
256
10

REO 24
SEO 25
SIR 256

10

SEO
SEO
REO
SIR
00

24
25
26
256
10

L
REO
SEO
SIR
00

24
26
256
10

The flow-chart shows the program sequence without subroutines. The
program parts which are marked with the brackets are repeated 6
times. Therefore, it is of advantage to write them as subroutines.

PCA0-42

Solution b: with subroutine

Main program

@

******************* Main program
ADDR
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

NC
26
11
11
23
12
11
23
12
23
11
11
12
23
12
11
23
12
12
23
20

MNC
MIL
SEO
SEO
JMSmi
SEO
JMS
REP
JMS
SEO
SEO
REO
JMS
REU
SEO
JMS
REU
REO
JMS
JW

OPRD
1

24
26
182 -**2?
25
182 -
**Z5*
182 =
"2"4
25
26
182 -"23*
26
182 -
"25*
26
182 -w

Mait, if

:>Jump to

^>Jump to

:>Jump to

>Jump to

^Jump to

^>Jump to

11 is open

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

182

182

182

182

182

182

Thanks to the instruction JMS (23): Jump to Sub-
routine the same program parts must be pre-
pared only once. Every subroutine ends with
the instruction RET (24): Return with the
operand 0.

Subroutine "182"

SIR 256
00 10

RET 0

Subroutine 182 (wait 1s)

-182 14 SIR 256
183 00 00 10
184 25 WIH 256
185 24 RET 0

It is also possible to program the
subroutine of the subroutine of the
subroutine i.e. down to the 3rd
level.

sata^pc PCA0-43

Indexing, arithmetic and check sum

At the programming level C you are already a professional!

Certainly, one can live happily without climbing up to this level. But,
once you are up here, you will be proud of yourself and the PCA0 for
having prepared your programs in such a nice and efficient way.

These are the remaining instructions for the software level
SAIA-PC system family.

of the

Step address

STEP

Instruction in
numerical code

CODE

Element or jump address

OPERAND

Accumulator

ACC =1

Display on
SAIA°PC
programming
unit

Transfer instructions

Arithmetic
instructions

Indexing
instructions

Special instructions

These instructions
consist of two lines

Num.
code

15

15

16

27
28

29

29

Mnemo .
code

SCR

19
20
7T
22
23
?4*
25
26
TT

SCR
27
28
29
30

SEI

INI
DEI

PAS

PAS

Instruction

Set counter
>

'2nd line

"*

Set counter

^2nd line

Set index

Incr. index
Deer, index

OPERAND

18

30... 34

Description

Read- in 5x4 bit BCD
Output 5x4 bit BCD
Output 8 bit binary
Output 12 bit binary
Output 16 bit binary
Read- in 8 bit binary
Read-in 12 bit binary
Read-in 16 bit binary
Transfer counter to
counter resp. IR

Addition +
Subtraction
Multiplication x
Division :

Set index register to
preselected value

Increment ̂) the index
Decrement J reg. by 1

Changing the number of
active parallel programs

Check sum

PCAP-44 sata^pc
(C1) In case of short programs address indexing has considerable effects

Problem:

All outputs of the PCA0 are to be activated upon closing of input 10.

016 (31)
017

031 (63)

Without address indexing this program would consist of 34 steps for a
PCA0 with 32 outputs.

Solution:

With indexing, however, the program will always consist of only 6 lines,
irrespective of the number of outputs.

ADDR NC MNC OPRD
r-200 16 SEI 0
f*201 01 STH 0
' 202 10 OUT 1016
! 203 27 INI 15
L-204 21 JIO 201
-̂205 20 JMP 200

Set index register (IR) to starting value 0
Interrogation of input 0
Set indexed outputs
Incrementing of IR up to the final value 15
Return, as long as IR < 15

In the following flow-chart the individual functions are easier to under-
stand:

Indexing
loop

With the instruction SEI (16) the
index register is set to 0 (max.
value is 255).

1000 is added to the first output
address 16. As a result, this
indexed instruction is processed by
the CPU as follows:
1016 - 1000 + IR

As a result of instruction INI (27)
the index register is incremented
by 1 in each run until it reaches
the value 15.

As long as IR< 15, the ACCU = 1,
which causes the return.
If IR = 15, the indexing loop is
left. All outputs from 16...31 have
been processed.

satapc PCA0-45

(C2) Thanks to upward and downward indexing high flexibility is obtained

Problem:

Upon closing of 10 the outputs 016...31 (63) are to switch on one after
the other every 0.3s. Upon opening of 10 the outputs 031 (63)...16
should be switched off again in reverse order every 0.1s.

Solution:

Mai t while
contact 0
is open

Indexing
loop for
staggered <
switcning-
on (0.3s)

SEO
SIR
00

1035
260
2

Wait while
contact 0
is closed

[SEI 25]

Indexing
loop for
staggered <
switching-
off (0.1s)

REO
SIR
00

1035
260

1

\

0.3s O.ls

10
015 (31)
017
018

031 (63)
0.3s

ADDR

210
11

r— 212
! 13

14
' 15
' 16
*— 217

218
19

r*-220
21
22
23
24

' —— 25
226

NC

26
16
11
14

25
27
21

25
16
12
14

25
28
21
20

MNC

MIL
SEI
SEO
STR
00

WIH
INI
JIO

WIH
SEI
REO
STR
00

WIH
DEI
JIO
JMP

OPRD

0
0

1016
260
3

260
15

212

0
15

1016
260

1
260
0

220
210

TURN-ON PHASE

016 + 1000 = 1016

031 -

TURN-C

031 -
016 +

—— —

16 = 15

)FF PHASE

16 = 15
1000 = 1016

The upper indexing loop is very similar to that in example C1. In the
lower loop the index register is set to 15 first. In the first run REO
1016 - 1000 + 15 = REO 31 acts upon output 31. The instruction DEI (28)
decrements the value of the IR by 1, as a result of which output 30 is
switched off in the next run, etc. As soon as the IR = 0, no further
return is effected, the indexing loop is left.

You will have noticed that in case of the version with relay outputs, a
pause is made after 4 relays respectively. This is due to the fact that
the 4 unoccupied addresses 20...23 are processed too.

(LANBIS&GYR)

PCA0-46 satâ pc
(C3) Even calculating is possible with the little PCA0

The 64 counter registers of the PCA0 can be used in many ways. In connec-
tion with the instructions SIR and SCR we have only dealt with the codes
00 and 16, 17, 18 of the second line. As evident from the following
table, 32 functions are available.

With the codes 01...15 the area from 2048 to 65535 can be reached.

With the codes 19...26 8- to 20-bit digital values can be loaded into the
counter register or transferred to elements.

Finally, with the codes 27...30 arithmetic functions can be performed.

Code 31 serves to transmit values from index registers to a counter
register or from one counter register to another.

1.
line

2.
H ne

Mnemonic
code

SIR/
/SCR

Numeri-
cal code

14/
/15

00
01
02
03
04
05
06
-%7_
08
09
10
11
12
13
14
15

16
17
18

19
20
21
22
23
24
25
26

27
28
29
30

31

Operand

256. ..319

xxxx

xxxx

] Highest addr.
^of 8 subse-
J quent
elements

Highest addr.
of the
'sequence of
elements

XXX
XXX
XXX
XXX

iii

Explanations

Address of the register

Value in the + 0
operand + 2048

+ 4096
+ 6144
+ 8192
+ 10240
+ 12288
+ 14336
+ 16384
+ 18432
+ 20480
+ 22528
+ 24576
+ 26624

Value in the + 28672
operand + 30720

2 x 4 bit BCD x 1
2 x 4 bit BCD x 10
2 x 4 bit BCD x 100

Read instr. for 5 x 4 bit BCD
Output instr. for 5 x 4 bit BCD
Output instr. for 8 bit binary
Output instr. for 12 bit binary
Output instr. for 16 bit binary
Read instr. for 8 bit binary
Read instr. for 12 bit binary
Read instr. for 16 bit binary

Addition *i with a constant
Subtraction I (0...25S) or with
Multiplication [the contents of a
Division J T/C (256. ..319)

iii = 0: value of index register
is loaded into counter

iii = 256. ..319: Value of
corresponding
T/C is loaded
into counter

satapc PCA0-47

Problem:

In order to introduce the arithmetical possibilities of the PCA0, we
will play a bit with figures in this example. Processing of numerical
values plays an important role in counting problems or when analog values
have to be processed.

The following functions are assigned to the inputs of our simulation unit:

10
11
12
13

17
16
15

18...15

C260
C270
C266

024 (56)
025 (57)
026 (58)

Addition +
Subtraction
Multiplication x
Division :

Storing of the 1st value via BCD-preselection switch
Storing of the 2nd value via BCD-preselection switch
Triggering of the arithmetic operation

BCD-preselection switch

Register for first value
Register for second value
Display register for DTC

Acknowledgement for storing of 1st value (17)
Acknowledgement for storing of 2nd value (16)
Acknowledgement for performing the operation

The individual values stored with 17 and 16 have to be indicated on
the operand display. This applies also to the result of the arithmetic
operation preselected with 10...13.

Example: 87 - 25 = 62

. Turn on 11———subtraction

. Set 87 via BCD-switch

. Upon switching on and off 17 the 1st value is loaded into counter C260

. 87 is indicated on the operand display, at the same time LED 24
lights up acknowledging the first step

. Set 25 via BCD-switch

. Upon switching on and off 16 the second value is loaded into counter C270

. 25 is indicated on the operand display, at the same time LED 25
lights up acknowledging the second step

. When 15 is on: operation is being performed

. The result of 62 appears on the operand display, at the same time
LED 26 lights up acknowledging the third step

. Upon switching off 15 the outputs 24, 25, 26 are reset, with 17 a new
input can be effected

. If the subtraction had a negative result (2nd figure >1st figure),
9999 appears on the display

. If in a division a value is divided by 0, 8888 is displayed. In
both cases, one benefits from the fact that the CPU sets the ACCU = 0
in these special cases

PCA0-48 sata^pc
Solution:

We use a flow-chart, which enables us to follow the individual steps of
the process.
Rough flow-chart

First BCD value!
intoC260]

Second BCD val.
into C270

Read in
first value

Read in
second value

Addition

—1 Subtraction

Multiplication

Division

satapc PCA0-49

-

^̂

Program :

In order to
in the
PP1 is

ADDR
230
231

232
233

t—234
L- 235

r-238
' 39

40
41
42
43
44

246
47
48
49
50
51
52

254
55
56
57

58
59

60
61

62
63

r— 264

paral
display the
lei

assigned

NC
29

00
00

31
20

26
11
15

15

25

26
11
15

15

25

26
11
01
21

01
21

01
21

01
21

20

MNC
PAS
00

NOP
NOP

DTC
JMP

MIL
SEO
SCR
16

SCR
31

WIH

MIL
SEO
SCR
16

SCR
31

WIH

MIL
SEO
STH
JIO

STH
JIO

STH
JIO

STH
JIO

JMP

numerical values
circulating program PP0,

continuously, we execute DTC 266
while the flow-chart containing

to address 238.
OPRD

1 1, Assignment of PP1 from
238

0
0

266
234

7
24
260
15
266^
260)
7

6
25
270
15
266^
270)
6

5
26
0

265

1
270

2
280

3
285

295

J address 238

\ PP0 display
/

PP1

on

C266

^
Acknowledgement of step 1
BCD value to C260

Copy C260 to C266
for display

Storing the
> 1st value
(2-digit)

J
^

Acknowledgement of step 2
BCD value to C270

Copy C270 to C266
for display

^
>

Acknowledgement of step 3

—— — Jump for addition

— *- Jump for subtraction

— *- Jump for multiplication

—— *- Jump for division

(LAMnm

KM

Storing the
> 2nd value
(2-digit)

> Performing
operation

GYR)

PMP-50 satapc
ADDR NC MNC OPRD

-*-265 15 SCR 260 r\ C260 + C270 — - C260
66 27 270 7
67 15 SCR 266 ̂ CopyC260 toC266
68 31 260 7 for display

——— 69 20 JMP 295

-*-270 15 SCR 260^ C260 - C270 — — C260 ^
71 28 270 ^
72 22 JIZ 276 Jump, if result is negative
73 15 SCR 266^ Copy C260 toC266
74 31 260 ^ for display

-' —— 75 20 JMP 295
L-̂ 276 15 SCR 266 1 Load display counter

77 M 9999*J with 9999
- — 78 20 JMP 295

-*-280 15 SCR 260 ̂ C260 xC270— — C260 1
81 29 270 *J
82 15 SCR 266̂ Copying 260 toC266
83 31 260 J for display

- —— 84 20 JMP 295

—-285 15 SCR 260 ?\ C260 : C270— *- C260
86 30 270 'J
87 22 JIZ 291 Jump, if division by 0
88 15 SCR 266^ Copy 260 toC266
89 31 260 J for display

-' — 90 20 JMP 295
L-*-291 15 SCR 266 1 Load display counter

92 00 8888*J with 8888

— ̂295 25 MIH 5 Step of operation finished?
96 12 REO 241
97 12 REO 25 > Resetting the acknowledgement
98 12 REO 26 J
299 20 JMP 238 —— — Return to the beginning

> Addition

> Subtraction

^ Multiplication

> Division

outputs

3f PP1

Manual interrogation or loading of a counter register:
If you want to check the contents of a counter register or modify
these manually at any time, proceed as follows:

E.g. display C270

[M] Press key "MAN" 0.5s

[A] 3270 (that is, 3000 is added to the counter address 270)

—*̂ Counter contents are displayed

*) As the operand can be at most 2047, enter the following (according to
the table in example C3):
instead of 00 9999—- 04 1807 (4 x 2048 +1807)
instead of 00 8888—*- 04 696 (4 x 2048 + 696)

[LANHIS4EYH)

satapc PCA0-51

E.g. enter the value 1234 into C266

[M] Press key "MAN" 0.5s

[A] 3266 (address + 3000)

[Ë] 0 1234 (values < 10^000 must be preceded by 0)

If contact 17 is open, the value introduced in the above program is
displayed with DTC, too, in the RUN-mode.

It is hard to believe how many possibilities the little PCA0 offers!

PCA0-52 satapc
(C4) If long jumps are to be programmed

A program consisting of 2047 steps is a long program for a PCA0. But the
user memory has a capacity of 0...4095 steps.

If long jumps with end addresses in the second half of the user memory,
i.e. from 2048 to 4095 are to be programmed, these jump instructions
must be entered using two lines.

This applies to all jump instructions JMP, JIO, JIZ and JMS.

a) Jump instructions with operands 1 to 2047
(Operand 0000 is not allowed, see b.)

Example: Conditional jump with end address 1845

either

or

JIO (21) 1845

JIO (21)
00

0
1845

-one line as usual

two lines, with the first
line containing the operand 0

b) Jump instructions with operands 2048 to 4095

Example: Jump to the subroutine 3280

For programming: 501
502

JMS (23) 0
00 3280

For checking: 501
502
502

JMS (23) 0
01 1232
EE 3280

= convert

The value 01 1232 residing in the user memory corresponds to the jump
address 3280. 01 stands for the multiple of 2048 and 1232 is the
remainder (1 x 2048 + 1232 = 3280).

With key [C] the actual jump address is displayed, with the code
containing the character EE (applies to the programming unit
PCA2.P05).

In case of a jump instruction with the operand 0 the second line is
automatically read for the end address. Therefore, a jump to the
address 0 always consists of two lines:

JMP (20)
00

0
0

c) The following is an example using a blinker in a subroutine. The
subroutine starts at address 3500.
Main program

ADDR NC MNC OPRD
^500 26 MIL 1
501 23 JMS
502 00 3500
-503 20 JMP 500

Subroutine

ADDR NC MNC OPRD
3500 02 STL 256
3501 14 STR 256
3502 00 2
3503 13 COO 24
3504 24 RET 0

satapc PCA0-53

The instruction PAS 18 serves to stop the parallel programs, if
they are no longer required

Limitation of the assigned parallel programs

All SAIA-PCs allow assignment of up to 16 parallel programs and running
them in parallel. Up to now it has been necessary to.reassign a PP to a
dummy program loop if it was no longer required. However, no time could
thus be saved during the execution of the remaining PPs.

In case of the PCA0, however, it is now possible to limit a maximum
number of active PPs with the PAS 18-instruction.

After the PP-assignment with PAS 0...max. 15 a limited number of PPs
can be determined in the user program at any place and as many times as
desired.

1st line

2nd line

Parallel program
assignment

x in the range 0...15

PAS

Assigned PP

PP 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

*) If a higher number than the PPs originally assigned is entered with
PAS 18, no malfunction is caused. The inactive PPs 9...11, however,
will require processing time in the system program.

PCA0-54 saopc
(C6) With the instruction "Check-sum" the reliability of your PCA0 is

considerably increased

PAS 30 and PAS 31...34 "Check Sum" of the system and user program

The "Check Sum" serves to establish the check sum of the memory contents
of system programs (PAS 30) or of user programs or texts (PAS 31...34).
Thus, it can be ensured that the contents of the memories checked have
not been changed.

After execution of the instruction:

- ACCU = 1 If the comparison is correct

- ACCU = 0 If the reference value does not comply with the check
sum.

The instructions PAS 30...34 are always executed irrespective of the ACCU
state.

If a change in contents has occurred, the user can take the measures which
seem necessary to him: triggering an alarm, resetting the watchdog etc.

PAS
00

PAS

XX

30
0

31..

xxxx

.34

Check sum of the system program
2nd line is always 00 0

Check sum of the user program, 31...34 being intro-
duced corresponding to the program sections 1K...4K.
Reference value

The appropriate reference value for the user program is obtained by exe-
cuting the respective PAS-instruction in the operating mode STEP. The
PCA0 displays this check sum on the PCA0 programming unit for a few
seconds. In the operating mode PROG, the corresponding reference value can
then be introduced in the 2nd line of the PAS 31...34 instruction.

Attention: Execution of these instructions takes quite a long time:

PAS 30 = 28.0ms
PAS 31...34 = 8.3ms

Therefore, use "Check Sum" only if the sequence to be controlled allows
it: e.g. when switching on the PC, at the end of an operation cycle, etc.

It is recommended not to introduce this instruction into the user program
until it has been completely developed and tested. Each program altera-
tion, irrespective of whether the program was extended or reduced,
results in an alteration of the "Check Sum".
Example: A 2K-user program is to be executed upon switching on

20
21

r- 22
23
24

— 25

PAS
09

JIZ
PAS
07
JIZ

30 r— COO
31 '-JMP

—35
—̂ 36

SEO
JMP

31
825
35
32

1540
35

255
30

16
35

Ï Check Sum
J 1.K

\ Check Sum
J 2. K

\ Main program with
-* MD-monitoring

\ Set a t arm output
/ outside the main

program

Proceed:
- After entering and checking the
program, select operating mode STEP

- Type in ADR 23 +
-*-the reference value for 2. K (PAS

32) appears for approx. 20 sec.
- Type ADR 24 (+) for input of
reference vaiue in mode PRG

- Same procedure for PAS 31

[LANOtSmYR]n

satapc
ANLAGE :

Schritt

0

1

2
3

4

5

6

7

8

9

0

1

2

3

4

5
6

7

8
9

0

1
2
3

4

5

6

7
8

9

0

1

2
3

4

5

6

7

8

9

Mnemo-
code

Zahlen-
code Operand Kommentar

NOP

SÎH

STL

ANH

ANL

ORH

ORL

XOR

NEG

DYN

OUT

SEO

REO

COO

SIR

SCR

SEI

INC

DEC

SEA

JMP

JIO

JIZ

JMS

REI

WIH

MIL

INI

DEI

PAS

DOP

DTC

Mn
em

oc
od

e

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Za
hl

en
co

de

1

1

1

1

1

1

1

0
1

]
Be
fe
hl

 w
ir
d

nu
r
au
s-

[
qe
fü
hr
t

we
nn

 A
CC
U

=

X

X

X

X

X

X

X

X

X

ûu<c
N

4)
M

^tu
CO

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
AC
CU
 w

ir
d

be
ei
nf
lu
ss
t

Ein-,Ausqänge 0-255
Zeitglieder, r,r, 70-,Zähler 256-287
Merker 764
Haftsoeicher 765 - 999^

SODECO-SAtA AG CH-32W MUHTEN SCHWEtZ
[tAMiStEYRJ

saiâ pc

-̂

ANLAGE:

Schritt.

00
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5
6
7
a
9

1nemo-
code

Zahlen
code)perartd Kommentar

Logik-Befehle

î --<
!SL 'S

0- 1C
0)-z tn

r*t̂.

= j
W
tn

M\
tm

ẑ*t

ĵ
15L

]̂
Z
^

û
13.

i:ce
O

^
15

etc

r̂
^ is

ce
o
X

00
L̂

L3
LJ
Z

o\
13.

Z
>-
O

Aktions-Befehle

L̂

t—
^
O

,̂

C3
LJ
Öl

c-̂

0
LJ
ce

M^

0o
t-i

-?

o:
tn

Û s

ce
ü̂n

SODECO-SAtA AG CĤ 2M MUHTEN SCHWEtZ

\o

UJ
Ul

r-

uz

30 O\

-i -t
_J UJ
^ 01

[UMOtS

Schritt

50
1
2
3
4
5
6
7
8
9
60
1
2
3
4
5
6
7
8
9
70
1
2
3
4
5
6
7
8
9
80
1
2
3
4
5
6
7
8
9
90
1
2
3
4
5
6
7
8
9

Inemo-
code

Zahlen-
code

Sprung-Befehle

ts

O-ïi
!*1

^ CM

O !--!

<*] "*i

tMH)

Eiitj]

f

L:

"< <t
-J CN

n i—: bj
*) ce

tn
C-Q

3:
3

ô
ĉ

î

3

Operand Kommentar

Hilfs-Befehle

r-
CM

z

oc
t̂

L-
C

! O\
CM

< Ln
^ -t
i Q-

IS

G-
O
O

^

LJ

O

Eingänge
Ausqanqe ^
Zeitglieder 756-287
Zähler
Merker 288-764

Haftspeicher 765-999 j

SAIAAG
CH-3280 Murten Switzerland
Industrial Components and Controls

Betgique Landis & Gyr Belge SA, Dépt. Industrie
Avenue des anciens combattants 190, B-1140 Bruxelles
3* 02/2440211,1x65930

Denmark E.Friis-MikkelsenA/S
Krogsh0jvej 51, DK-2880 Bagsvaerd
'S' 02/986333,1x37350

Deutschiand Landis & Gyr GmbH
Friesstrasse 20-24, Postfach 600529, D-6000 Frankfurt 60
S' 069/40020,1x0417164

Espana Landis & Gyr BC SA
Batalla del Salado 25, Apartado 575, Madrid 7
S 91/4671900.1x22976

France AcirSàrl
29-31, rue de Naples, F-75008 Paris
'S* 1/7823795,1x630680

Great Britain Landis & Gyr Ltd
Elgee Works, Victoria Road, North Acton, London W3 6XS
'S* 01/9925311,1x21486

ttatia Landis & Gyr SpA, Divisione Commerciale
Via P. Rondoni 1,1-20146 Milano
S 02/4248,1x332142

Nedertand Landis & Gyr BV, Div. Electrowater
Kampenringweg 45, Postbus 444, NL-2800 AK-Gouda
S 01820-65432,1x20657

Norge MaltheWinje&CoA/S
Cort Adelers gate 14, Postboks 2440, Solli, N-0202 Oslo 2
S 02/56 59 90, Tx 19629

Österreich Landis & Gyr Gesellschaft m. b. H
BreitenfurterStrasse 148a, Postfach 9, A-1230 Wien
^ 0222/84 26 26-0, Tx 132 706

Schweiz Saia AG, Verkauf Schweiz
CH-3280 Murten
S 037/721185,1x942127

Suomi OY Landis & Gyr AB
Finntand SF-02430 Masala

'S (90) 29731, Tx 121 037

Sverige Beving Elektronik AB
Box 21104, S-10031 Stockholm
IB* 08/151780, Tx 10040

Austratia Landis & Gyr (Australia) Pty Ltd
411 Ferntree Gully Road, P.O. Box 202, MountWaverley, Vie. 3149
T̂ 3/544-2322, Tx 32 224

Printed in Switzerland 26/79 E2 3.87 H07 Subject to change without notice

