

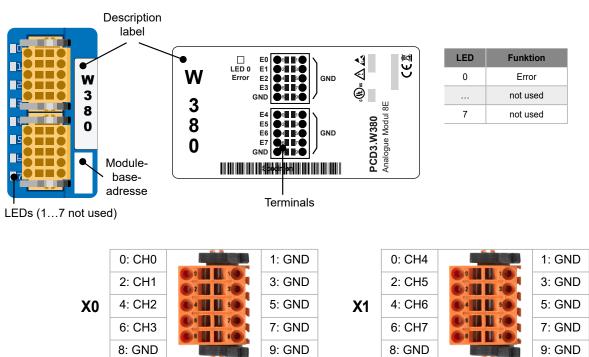
Universal analogue input module, 8 channels, 13 bits (12 bits+sign), selectable by software

This module PCD3.W380 is a universal analogue input module with innovative embedded features. It offers many advantages for all involved parties (project manager, programmer, panel builder and end user).

The 8 analogue inputs with 13 bit resolution can be individually configured by software for the various sensor types. Opening the module case and plugging jumpers is no longer necessary. There are 2 connection terminals for each input. Additional external distribution terminals are not required. In addition to $0 \dots 10 \text{ V}$, $\pm 10 \text{ V}$, $0(4) \dots 20 \text{ mA}$, Pt/Ni 1000 also NTC10k/NTC20k temperature sensors are supported.

Thanks to the numerous measuring ranges spare parts handling and service become easier, more flexible and less expensive. The precision of the inputs is 0.3 % or better (based on the full range).

This module can also be used in applications where the data acquisition speed is important. Each channel value is updated in internal buffer every 680 µs that means each input value is refreshed at 1.5 kHz. Digital filters can be configured individually for all inputs.


An LED on the housing indicates module errors, which can also be evaluated in the user program. The inputs are also protected against configuration errors by the user.

PCD3.W380

I/O modules and I/O terminal blocks may only be plugged or unplugged when the CPU is de-energized. An external power supply at their connections must also be switched off.

Indicators and connections

Good to know

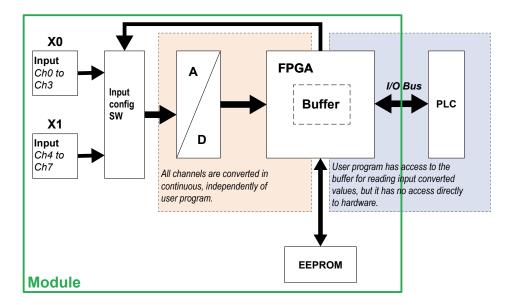
- 2 connections per channel (signal and ground). All the ground pins are internally connected together.
- ▶ 4 channels per connector.
- ▶ Wires up to 1 mm².

In supplement, 2 ground connections per connector (pins 8 and 9). One of this pin should be used for a protective ground connection.

LED 0 - Error

The LED 0 is enabled when an error occurs on the module.

The signaled errors are	Description
Configuration error	The desired inputs configuration is not applied correctly.
A/D-Error	A/D converter doesn't respond.
Calibration error	Module not calibrated.
Calibration error	An input channel has been automatically put in protection mode, because the module detects a situation which can cause important damages to hardware.



This is a general indication and the details of the error must be read in the specific register of the module.

Block diagram

The PLC communicates with the module through the I/O Bus.

The data acquisition is independent of the rest. The input values are continuously updated into the internal buffer. One value is stored per channel. The values are sent to the PLC when the user program sends a defined request to the module.

The configuration of the module is done in PG5 Device Configurator. The user program can read the input values or input configurations by specific registers.

npatibility	PCD3 (PCD1 and	d PCD2 in combination with PC	D3.Cxxx)
/er			
Module power supply voltage	+5 V and V+ IOB	US	
Current consumption	25 mA on +5 V a	nd 25 mA on V+	
Galvanic separation	No		
its			
Number of inputs	8		
Input ranges of each mode		Minimum	Maximum
	Voltage	-10 V	+10 V
	Current	–20 mA	+20 mA
	Resistance	0Ω	2'500 Ω
		0Ω	300 kΩ
	Diode	0 V	5 V
	Pt1000	–50 °C	+400 °C
	Ni1000	−50 °C	+200 °C
	Ni1000L&S	-30 °C	+130 °C
	NTC10k	used in range 0	300 kΩ
	NTC20k	used in range 0	300 kΩ
Absolute maximum input voltage	±20 V (independe	ent of the inputs configuration)	
Temperature error (0 °C +55 °C)	±0,2 %		
Inputs configuration	Each input can be (ranges above)	e configured individually in 5 m	odes
Configuration method	Software (PG5, D	Device Configurator)	
User connector	Per channel: 1 pin for input 1 pin for ground. 2 pins for protective ground 2 pins for ground in supplement		
Inputs wiring	Up to 1 mm ²		
ing			
Refresh of each channel	680 µs (all chann	els are updated during this tim	e)
Hardware input filter time constant	Voltage		т = 2,5 ms
	Current		т = 2,5 ms
	Resistance	(<2'500 Ω) * (typ. for R <300 kΩ) **	т < 4,4 ms т ≈ 8 ms
	Diode	(typ. for U <5 V)	т ≈ 4,4 ms
Digital input filter available	No Filter	Ein Wert pro Zyklus	т = 680 µs
	Filter 1	Mittelwert von 4 Zyklen	т = 2,72 m
	Filter 2	Mittelwert von 8 Zyklen	т = 5,44 m
	Filter 3***	Mittelwer von 16 Zyklen	т = 10,88 n

* ** *** Temperature sensors Pt1000, Ni1000 and Ni1000L&S. Temperature sensors NTC10k and NTC20k. Recommended filter, configured by default in Device Configurator.

Technical data of input

Each channel can be configured with the following modes:

Input specifications for	nput specifications for each mode				
Mode	Resolution (Bit)	Resolution [measure]	Accuracy (@ T _{Ambient} = 25 °C)	Display	
Voltage - 10 + 10 V	12 Bit + Sign	2,44 mV (linear) <i>R_{IN}</i> = 330 kΩ	0,2 % of measured value ±10 mV	- 10'000 + 10'000	
Current -20+20 mA	12 Bit + Sign	5,39 μ A (linear) R _{SHUNT} = 225 Ω	0,2 % of measured value ±20 mV	-20'000+20'000	
Resistance 0…2'500 Ω	12 Bit	0,50 0,80 Ω Measuring current 1,0 1,3 mA	0,2 % of measured value ±3 Ω	025'000	
Resistance 0 300 kΩ	13 Bit	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,2 % of measured value \pm 40 Ω 0,2 % of measured value \pm 160 Ω 0,5 % of measured value \pm 400 Ω 1,0 % of measured value \pm 800 Ω 2,5 % of measured value \pm 5,0 Ω	0300'000	
Pt 1000	12 Bit	-50+400 °C : 0,150,25 °C Measuring current 1,01,3 mA	0,2 % of measured value ±0,5 $^{\circ}\text{C}$	-5004000	
Ni 1000	12 Bit	-50+200 °C : 0,090,11 °C Measuring current 1,01,3 mA	0,2 % of measured value ±0,5 $^{\circ}\text{C}$	-5002000	
Ni 1000 L&S	12 Bit	-30+130 °C : 0,120,15 °C Measuring current 1,01,3 mA	0,2 % of measured value $\pm 0,5\ ^\circ C$	-3001300	
Diode 0 5'000 mV	12 Bit	1,22 mV (linear) Measuring current 0,7 1,3 mA	0,2 % of measured value ±10 mV	05'000	

The measuring current was chosen to be the best compromise between the resolution and the sensors self-heating effect, which is negligible for most of the sensors and applications. Even in bad measuring conditions with Pt/Ni1000 sensors with a low thermal coupling as 4 mW/K, the maximal error produced by the sensors self-heating is lower than 0.3 °C.

NTC-Temperatursensoren

The module offers the possibility to use NTC temperature sensors. The corresponding input must be configured in mode "Resistance 0...300 kΩ".

Specification	s of the chan	nels for NTC10	k and NTC20k			
Mode "Widerstand 0 … 300 kΩ"	Resolution (Bit)	Reso [mea	lution sure]	Accuracy (@ T _{Ambient} = 25		Display
NTC10 k ¹	13 Bit	-40+120 °C	0,050,1 °C	-20 +60 °C : -30 +80 °C : -40 +120 °C :	±1,0 °C	-4001200 -
NTC20 k ³	13 Bit		0,02…0,05 °C <0,15 °C	-15 +75 °C : -20 +95 °C : +95 +120 °C : +120 +150 °C :	±1,0 °C ±2,5 °C	-2001500 [·]

The temperature curves for the NTC10k are not standardized and may be different for each manufacturer. For this reason, the curves can be loaded by the user program using the linearization FBox. The curve of the NTC10k from Produal is available in a CSV file and can be downloaded from the Support Website.
 This is the output value of the FBox for linearization. The module gives a resistance 0...300'000 Ω.
 For the same reason of NTC10k, the curve of the NTC20k from Honeywell can be downloaded from the Support Website.
 This is the output value of the FBox for linearization. The module gives a resistance 0...300'00 Ω.

For an example of the utilization of a NTC sensor, please see the chapter "Example of linearization".

Temperature sensors with integrated circuits

With an input configured in "Diode 0...5000 mV", it is possible to use integrated circuit temperature sensors operating as a 2-terminal zener. A typical sensor for this measurement is the LM235 for example.

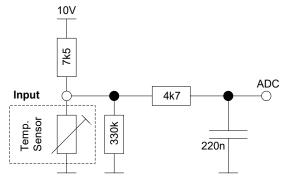
Specifications	Specifications of the channels for LM235						
Mode "Widerstand 0…300 kΩ"	Resolution (Bit)	Resolution [measure]	Accuracy (@ T _{Ambient} = 25 °C)	Display			
LM235	12 Bit	-40+125 °C : 0,12 °C	0,2 % des gemessenen Wertes ±0,5 $^{\circ}\text{C}$	-4001250 ¹			

¹ This is the output value of the FBox for linearization. The module gives a voltage 0 ... 5'000 mV

For an example of the utilization of a LM235 sensor, please see the chapter "Example of linearization".

Connection circuit

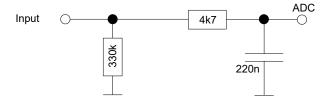
The module is connected to the PCD3 by the I/O bus connector. It can be plugged into all PCD3 versions. The module is fully powered via the PCD bus. An external power supply is not required.


The inputs are connected with the module by two 10-pins connectors for cables up to 1 mm². These connectors are very reliable and providing 2 pins per channel, one for the input and the other connected to the ground. In each connector, 2 pins are connected to the ground and can be used by user. In each connector, one of these pins should be used as protective ground connection to avoid immunity problems against external perturbations. A wire with a section of 1 mm² and a maximum length of 20 cm is recommended for a good PGND connection. (see **Connection concept (Example)**).

Every measurement mode has an equivalent input stage.

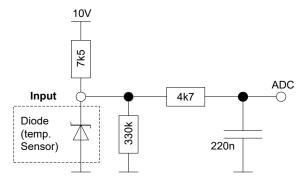
Temperature and resistance measurements

For resistance measurements (temperature sensors), 10 V are provided through a 7,5 k Ω resistor to the input.


Equivalent schematic of input in temperature and resistance mode.

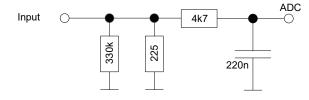
Voltage measurements

In voltage measurements, the input is "directly" connected to the ADC.


Equivalent schematic of input in "voltage" mode

Diode mode

In "Diode" mode, the module measures voltages in an "active" way. The schematic is the same as the mode for resistance measurements. The output values are given in [mV]. This mode is useful for temperature sensors as LM235.


Equivalent schematic of input in "diode" mode

Current measurements

For current measurements, a shunt of 225 $\boldsymbol{\Omega}$ is connected to the ground.

Equivalent schematic of input in "current" mode

Configurable digital filters

Each channel can be configured with a digital filter. Four possibilities are available:

Disabled	Each channel value is updated in buffer every 680 μs (f = 1,47 kHz)
3 ms	Mean of 4 cycles, value updated every 2,72 ms (f = 367 Hz)
6 ms	Mean of 8 cycles, value updated every 5,44 ms (f = 184 Hz)
12 ms	Mean of 16 cycles, value updated every 10,88 ms (f = 92 Hz)

Input values acquisition

The module is able to acquire and convert the each channel one by one, with a total cycle time of 680 μs :

CH0 → CH1 → CH2 → CH3 → CH4 → CH5 → CH6 → CH7 → CH0 → ... 680 μ s

Out of range indication

The module has an out of range indication. This information can be read in the registers "OutOfRange" (1 bit per input). The table on the right shows the values setting the bits "Out Of Range.

Limit values for overrange and underrange				
	"Out of rang	ge" bit set		
Modus	Limit min	Limit max		
Voltage -10+10 V	N/A	N/A		
Current -20+20 mA	–20'002 μA	+20'002 μA		
Resistance 02'500 Q	N/A	2'518,7 Ω		
Resistance 0300 kΩ	N/A	302'010 Ω		
Pt 1000	−50,0 °C	+408,7 °C		
Ni 1000	−50,0 °C	+210,3 °C		
Ni 1000 L&G	−30,0 °C	+ 130 °C		
Diode 05'000 mV	N/A	4'999 mV		

N/A = means not available.

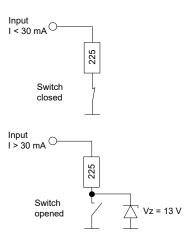
Input protections

The design supports an input voltage between -20 V to +20 V in all the modes of measurement. It can be considered a passive protection. Higher values can damage the module. For voltages higher than ± 13 V a current passes through the circuit. It can be calculated approximately:

 $I_{overvoltage}$ = (Vin – 13 V) / 225 Ω .

In this situation, the values measured on the other channels can be falsified.

For some measuring ranges active protection circuits are also available. As soon as a protection circuit is triggered by too high a signal, the corresponding bit in the "Module Error" register is set.


Current measuring range

If current mode is chosen the measuring shunt is connected to ground through the switch as shown in the picture on the left.

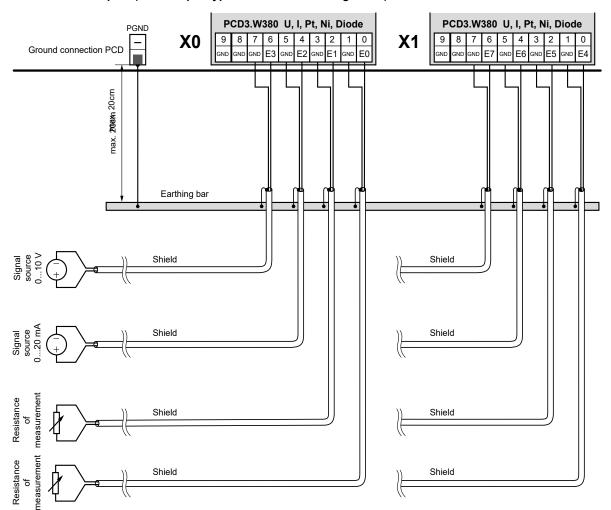
In case the current is higher than 30 mA* the switch opens to protect the measuring shunt. For voltage lower than \pm 13 V on the opened input the current will be kept lower than 1 mA. If the voltage on the opened input rises above \pm 13 V the current can be approximately calculated using the formula:

 $I_{overvoltage}$ = (Vin – 13 V) / 225 Ω

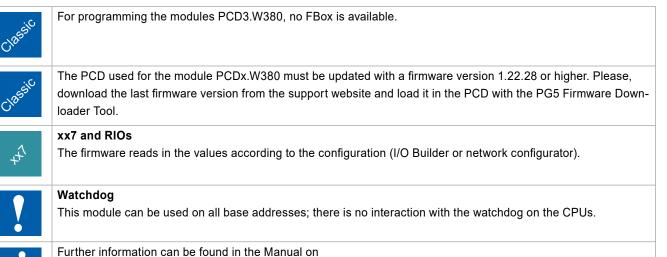
Care should be taken to keep input voltage below ±20 V.

* HW version 'A' and 'A1': Limit = ± 24 mA

Protection mode


The input stage configuration (switch) is automatically modified when the module enters in protection mode. The input values of the others channels could be out of the specified tolerances when a channel is in protection mode.

The modules from version 'A2' have an automatic reconfiguration mechanism after the active protection has become active. Once triggered, the input will remain for 10 seconds in protection mode. After 10 seconds, the input will switch back to normal operating configuration. If the input is still in overload condition, protection will again be activated. This feature is available only with firmware version greater than 1.24.10.


For Modules with version 'A' or 'A1' the protection will also be activated when an overload occurs, but to switch back to normal operation mode the PCD has to be restarted.

Connection concept (Example)

The sensors are connected directly to the respective 10-pole terminal blocks. In order to couple as little interference as possible to the module via the lines, the connection should be made according to the principle explained below.

Connection examples (define input type in the Device Configurator)

"27-600_ENG I/O-modules for PCD1 / PCD2 and PCD3 series".

Configuration

Number Of Media Per Statuy(Diagnostic 2 V Analogue Input 0 12 no. Digital Filer Input 0 12 no. 1000 Minimum Value Input 0 10000 V Analogue Input 1 12 no. Digital Filer Input 1 22 no. 10000 Minimum Value Input 0 20000 10000 V Analogue Input 1 20000 Monimum Value Input 1 20000 10000 V Analogue Input 2 20000 Monimum Value Input 2 20000 10000 Monimum Value Input 2 5000 100000 Monimum Value Input 3 12 no 100000 Monimum Value Input 3 20000 100000 V Analogue Input 3 1000000 V Analogue Input 3 1000000 V Analogue Input 3 20000 Monimum Value Input 4 3 nos 1000000 Manimum Value Input 4 30000 1000000 V Analogue Input 4 300000 10000000 V Analogue Input 4 3000000 100000000 V </th <th>CD-System</th> <th>Evaluation</th> <th></th> <th>PCD-System</th> <th>Evaluation</th> <th></th>	CD-System	Evaluation		PCD-System	Evaluation	
ised 3 1 KCD3/KD88 8 4 Andergoe Taputo, 10.0 - 20.0 - 20 m, 10 1000, 20 is a solution of the solution of th	lassic	It reads the values accordin (Device Configurator or Ne	ng to the configuration		values according to t	he configuration (Device Configur
V Control (Line Contro)))))))))))))))))))))))))))))))))))		Properties	- E ×		Die Leit bien breist Build Orden Debug Joch Merden Bied Bil die en nicht Beite X M 12 M 12 M 12 M 12 M 12 M 13 M 13 M 13	849 Gal [] - [] (四) Apploxies[BroketRClopic] - # # 영양의 → a 색 (고 인 산 산 왕 + (明) # (전 ·
 Lossed area Power Cossensition Power Power Powe		Slot 3 : PCD3.W380, 8 Analogue Inpu	ts, -10+10V, -20+20mA, Pt 1000, Ni 1000, 250			
 Vertex Consumption V [m], 25 Provet Consumption V [m], 25 Veda Typera <li< td=""><td></td><td>✓ General</td><td></td><td></td><td></td><td>Garbold Names PCD1/0200 Vendors San Gurgess Carthole AS</td></li<>		✓ General				Garbold Names PCD1/0200 Vendors San Gurgess Carthole AS
Power Consumptions V [m] <td></td> <td></td> <td>48</td> <td></td> <td>ED States seguration</td> <td>Categorium Anilogu UD Hodun Tager 17014 BD 1125 430 Vender 1.5 P</td>			48		ED States seguration	Categorium Anilogu UD Hodun Tager 17014 BD 1125 430 Vender 1.5 P
Netice National Na					C Application	Order number PCDS/9981 Description 3 othertalie analogue reputs, 13 bit
 Veteka Tagpia Meda Napai Esubled Na Analogue Equation Veteka Tagpia Veta Napafor Statubut Danasatic Pagafor Veta Napafor Statubut Danasatic Pagafor Veta Napafor Statubut Danasatic Pagafor Nanogue Equation Digafor Fire Statubut Danasatic Pagafor Nanogue Engatic Digafor Fire Statubut Danasatic Pagafor Nanogue Engatic Digafor Fire Statubut Danasatic Pagafor Nanogue Engatic Digafor Fire Statubut Danasatic Pagafor Statubut Danasatic Pag					10 PLC year (mail)	
Media Wage Wade Windowski Wage Wage Wage Wage Wade Windowski Wage Wage Wage Wage Wage Wage Wage Wage			25		· () MODER POSSESSEN	loar -
Media Wyze Media Wyze Register Winder Vielde V					Eterret, I (Eterret)	w 2 (111) 2 2
<pre>https://www.net.org/instructionstands.projectionstan</pre>			10 ⁻⁰		Standard (Standard)	3
Nedia Napong Status/Diagnostic Nedia Napong Status/Diagnostic 2 Nanobar Of Media Per Status/Diagnostic 2 Nanobar Status/Diagnostic Nanobar Status Nanobar Sta		media type	Register		- () Sets (Debord) - (1) (10 (00110)	8
Media Type For Status/Julia-positicRespiteNumber of Media For Status/Julia-positic2.7eeDipta Filter Type 12.7eeMedia Type Status/Julia-positic2.7eeMedia Type Status/Julia-positic2.7eeJulia Filter Type 22.0000Yassega: Exple 2-000Media Type Status/Julia-positic2.7eeJulia Filter Type 22.000Yassega: Exple 2-0.25000/nsMedia Type Status/Julia-positic2.7eeJulia Filter Type 31.2reeJulia Filter Type 32.7eeJulia Filter Type 32.7eeJulia Filter Type 32.7eeJulia Filter Type 32.7eeJulia Filter Type 30.0000////////////////////////////////			8		472 E365 PCD3.E366) - 477 A465 (PCD3.F46)	0
Number of Media Frankur/Diagonatic2Valasige Enpt0112.msPott 5 Range10.000Maniamur Valas Enpt0110000Obasige: Enpt0112.msPott 5 Range20.20mA in u.A resolutionManiamur Valas Enpt1120000Valasige: Enpt01320000Valasige: Enpt01420000Pott 5 Range27.msPott 5 Range27.msManiamur Valas Enpt01320000Valasige: Enpt0327.msPott 5 Range15.000 (So.400°C)Maniamur Valas Enpt032000Valasige: Enpt04000Valasige: Enpt05000Valasige: Enpt05000Valasige: Enpt05000 <t< td=""><td rowspan="2"></td><td></td><td></td><td></td><td>K State (State)</td><td></td></t<>					K State (State)	
 Analogue Input 0 Dipit 6 Pange Jouro II Ares Dipit 6 Pange Analogue Input 0 Dipit 6 Pange Analogue Input 1 Jouro II Ares Dipit 6 Pange Analogue Input 2 Dipit 6 Pange Pit 2 Pange Pit 1000 (-50-200°C) Minimum Value Input 3 Jouro II Pange 1 Jouro II Pange 1 Jouro II Pange 1 Jouro II Pange 1 Jouro JI Pange 1 <l< td=""><td></td><td></td><td></td><td></td><td>Lastbald 🔷 0 👼 6 Procepts 🛹 🦉 Project so</td></l<>						Lastbald 🔷 0 👼 6 Procepts 🛹 🦉 Project so
Digital Fitter brout 0 12 ms Digital Fitter brout 1 2000 Winnum Value Digital 0 2000 V Analogue Tight 1 Digital Fitter brout 1 20000 Winnum Value Digital 0 20000 V Analogue Tight 2 Digital Fitter brout 1 20000 V Analogue Tight 2 Digital Fitter brout 2 12 ms Digital Fitter brout 2 12 ms Digital Fitter brout 3 20000 Winnum Value Digital 2 40000 V Analogue Tight 3 Digital Fitter brout 3 2000 Winnum Value Digital 3 5000 Manonum Value Digital 3 5000 Manonum Value Digital 3 5000 Manonum Value Digital 3 20000 V Analogue Einget 4 3 ms Digital Fitter brout 3 20000 V Analogue Einget 4 3 ms Digital Fitter brout 4 3 ms Digital Fitter brout 5 2 ms Digital Fitter brout 5 2 ms Digital Fitter brout 5 2 ms Manonum Valu			16 E		Parameter	
Ippl 8 Rage -1010V mV resolution Minimum Value Ippl 0 10000 V Analogue Input 1 12.00 Ippl 1 Rage -20.200A nu vresolution Minimum Value Ippl 1 -20000 V Analogue Input 1 -20000 Maimum Value Ippl 2 0000 V Analogue Input 2 -000 Digital Filter Ippl 2 20000 V Analogue Input 3 12.00 Minimum Value Ippl 2 -000 Maimum Value Ippl 2 -000 Maimum Value Ippl 2 -000 Maimum Value Ippl 3 12.00 Maimum Value Ippl 3 -000 Maimum Value Ippl 4 -000 Maimum Value Ippl 5 -0.3000/nms Maimum Valu			12 ms		SomenShets project" - Grone X ECS - Pre-Release Version - DO NOT USE FOR PRO	DOUCTION
Maximum Value Input 0 0000 • Analogue Input 1 20000 • Maximum Value Input 1 20000 • Maximum Value Input 1 20000 • Onalogue Input 2 20000 • Onalogue Input 3 20000 • Maximum Value Input 1 20000 • Maximum Value Input 2 2000 • Maximum Value Input 3 2000 • Maximum Value Input 4 3 ma Digital Filter Input 5 0 Maximum Value Input 6					Die Leit Ben Enject Beid Deine Detrog John Hinden 인상 및 금타 in 가 지 않 때 또 해 있 것 같 것 같 것 같 것 같 것 같	1949 월: [1]: [1] 西 Apploates (Broke PLC Legis) - 第第第第第二章 : :::::::::::::::::::::::::::::
 Analogue Input 1 Dipital Filter Input 1 20000 Analogue Input 2 Dipital Filter Input 1 20000 Analogue Input 3 Analogue Input 4 Dipital Filter Input 1 Analogue Input 3 Sou Sou Sou Analogue Input 3 Sou <li< td=""><td></td><td></td><td></td><td></td><td></td><td></td></li<>						
Anaboge input 1 12 ms Input 1 farge -20.200A in ux resolution Minimum Value Input 1 20000 Manapue Input 2 12 ms Input 2 fange P1 1000 (-50.400°C) Minimum Value Input 2 -500 Minimum Value Input 2 -500 Minimum Value Input 3 -500 Minimum Value Input 3 -500 Minimum Value Input 3 -500 Manapue Input 4 3 ms Input 4 Range 0.2000 (-50.200°C) Minimum Value Input 3 -500 Manaboge Input 4 3 ms Input 4 Range 0.2000 (-50.200°C) Minimum Value Input 4 3 ms Input 5 Range 0.2000 (-50.200°C) Minimum Value Input 4 3 ms Input 5 Range 0.20000hms Minimum Value Input 5 0 Mashmum Value Input 6 0 Mashmum Value Input 6 0 Mashmum Value Input 7 12 ms Input 5 Range 0.2000nV Di		Maximum Value Input 0	10000			
Digital Filter Input 1 12 mm Input 1 Filter Input 2 -20000 Maximum Value Input 1 -20000 Minimum Value Input 2 12 mm Input 2 Fange Pt 1000 (-50.400*C) Minimum Value Input 2 4000 V Anabogue Input 3 Digital Filter Input 3 12 mm Input 2 Fange Pt 1000 (-50.400*C) Minimum Value Input 2 4000 V Anabogue Input 3 Digital Filter Input 3 12 mm Input 4 Fange Minimum Value Input 4 Digital Filter Input 3 2000 V Anabogue Input 3 Digital Filter Input 4 3 mm Digital Filter Input 4 0 Maximum Value Input 4 0 Maximum Value Input 5 0 Maximum Value Input 5 0 Minimum Value Input 5 0 Minimum Value Input 5 0 Minimum Value Input 6 0 Minimum Value Input 6 0 Maximum Value Input 6 0 Minimum Value Input 6 0 Madiogue Input 6 0 <t< td=""><td></td><td>Analogue Input 1</td><td></td><td></td><td></td><td></td></t<>		Analogue Input 1				
Input 1 Range -20.20m Ah u Ak resolution Minimum Value Exput 1 -20000 V Analogue Input 2 Digital Filter Input 2 -500 Minimum Value Exput 3 -500 Minimum Value Exput 4 -500 Minimum Value Exput 3 -500 Minimum Value Exput 4 -500 Minimum Value Exput 5 -000 Minimum Value Exput 5 -0.30000hns Minimum Value Exput 5 -0.30000hns <tr< td=""><td></td><td>Digital Filter Input 1</td><td>12 ms</td><td></td><td></td><td></td></tr<>		Digital Filter Input 1	12 ms			
Minimum Value Input 1 -20000 Maximum Value Input 2 20000 Minimum Value Input 2 12 ms Input 2 Range Pt 1000 (-50.400*C) Minimum Value Input 3 -500 Maximum Value Input 3 -500 Minimum Value Input 4 3 ms Input 4 Range 0.250000hns Minimum Value Input 4 2000 Digital Filter Input 4 3 ms Input 5 Range 0.20000hns Minimum Value Input 5 300000 * Analogue Input 6 0 Maximum Value Input 5 300000 * Analogue Input 6 0 Maximum Value Input 5 300000 * Analogue Input 6 0 Maximum Value Input 5 5000 Maximum Value Input 6 0 Maximum Value Input 7 12 ms <td></td> <td></td> <td></td> <td></td> <td></td> <td>A lashes from Calcular</td>						A lashes from Calcular
 Analogue Input 2 Ipput 2 Range Pt 1000 (-50400°C) Minimum Value Input 2 -500 Analogue Input 3 -500 Maximum Value Input 4 Digital Filter Input 5 12ms Input 5 Range Cassookohms Minimum Value Input 5 Objetal Filter Input 5 Digital Filter Input 6 Maximum Value Input 5 Objetal Filter Input 6 Maximum Value Input 6 Out 6 Range Maximum Value Input 6 Maximum Value Input 7 Input 7 Range Use Gefinder Cange for current input -20.20 Minimum Value Input 7 Input 7 Range Use Gefinder Cange for current input -20.20 					= @ number @ nc.mc	José arge Minimum value Meximum value (Di
Digital Filter Input 2 12 ms Input 2 Range P1 1000 (-50.400*C) Minimum Value Input 2 4000 V Analogue Enput 3 12 ms Digital Filter Input 3 12 ms Minimum Value Input 3 2000 V Analogue Enput 4 0 Digital Filter Input 4 3 ms Digital Filter Input 4 0 Minimum Value Input 5 0 Maximum Value Input 7 12 ms Input 4 Ran			20000		 HoldBare PCD1/68106am) Ehennet, 1 Ehennet 	
Iput 2 Range Pt 1000 (-\$0400*C) Minimum Yalue Input 2 4000 V Analogue Input 3 Ipital Filter Input 3 12 ms Input 3 Range Minimum Yalue Input 3 Maximum Value Input 3 500 Maximum Value Input 3 500 Maximum Value Input 3 2000 V Analogue Input 4 Ipital Filter Input 4 3 ms Ipital Filter Input 4 25000 Maximum Value Input 4 25000 Maximum Value Input 4 25000 Maximum Value Input 5 0 Input 5 Range 0300kOhms Minimum Value Input 5 0 Maximum Value Input 5 0 Maximum Value Input 5 0 Maximum Value Input 6 5000 V Analogue Input 6 Input 6 Range 05000mV Diode Minimum Value Input 7 12 ms Input 7 Range User defined range for current input -2020 Minimum Value Input 7 1000					Control, (Control Control Control Scale(0, 1) (Control Scale(0, 1) (Control	Analogue 10 000 (0 (000 (0 (0 (0 (0 (0 (0 (0 (0 (0
Minimum Value Input 2 4000 V Analogue Input 3 Digital Filer Aput 3 12 ms Input 3 Range 11000 (-50.200°C) Minimum Value Input 3 2000 V Analogue Input 3 Digital Filer Aput 3 2000 V Analogue Input 4 Digital Filer Aput 4 3 ms Imput 7 Range 0.25000hms Minimum Value Input 4 0 Maximum Value Input 4 25000 V Analogue Input 4 Jopt 5 Range 0.300kohms Minimum Value Input 5 000 Maximum Value Input 6 12 ms Jopt 5 Range 0.5000mV biode Minimum Value Input 6 12 ms Jopt 6 Range 0.5000mV biode Minimum Value Input 6 12 ms Jopt 7 Range 0.5000mV biode Minimum Value Input 7 12 ms Jopt 7 Range User defined range for current input -20.20 Minimum Value Input 7 12000					C direty's = () Sets (240amit)	
Maximum Value Input 2 4000 V Analogue Input 3 Digital Filter Input 3 12 ms Input 3 Range N1000 (-50200°C) Minimum Value Input 3 2000 V Analogue Input 4 Digital Filter Input 4 3 ms Input 4 Range 025000hms Minimum Value Input 4 25000 Maximum Value Input 4 25000 Maximum Value Input 4 25000 Maximum Value Input 5 12 ms Input 5 Range 0300kOhms Minimum Value Input 5 0 Maximum Value Input 6 300000 V Analogue Input 6 Input 6 Range 05000hmV Diode Minimum Value Input 6 5000 Maximum Value Input 7 12 ms Digital Filter Input 7 1000						
 Analogue Input 3 Digital Filter Input 3 12 ms Input 4 Range Az3000 Analogue Input 4 O Maximum Value Exput 4 O Analogue Input 4 O Maximum Value Exput 4 O Analogue Input 4 Digital Filter Input 5 Japut 5 Range Analogue Input 5 Ono Maximum Value Exput 5 Ogoodow Analogue Input 6 Input 5 Signo Analogue Input 6 Digital Filter Input 6 Input 5 Signo Analogue Input 6 Digital Filter Input 7 Digital Filter Input 7 Digital Filter Input 7 O 					- B-A wate (PCD3.wate)	
Digital Filter Input 3 12 ms Minimum Value Input 3 -500 Maximum Value Input 3 2000 Vanadiogue Input 4 0 Jogital Filter Input 4 3 ms Jogital Filter Input 5 2000 Vanadogue Input 4 0 Maximum Value Input 4 0 Maximum Value Input 4 0 Maximum Value Input 4 0 Minimum Value Input 4 0 Minimum Value Input 4 0 Minimum Value Input 5 12 ms Input 6 Range 03000chms Minimum Value Input 5 0 Minimum Value Input 5 0 Minimum Value Input 5 0 Maximum Value Input 5 000000 Vanadogue Input 6 0 Minimum Value Input 6 0 Minimum Value Input 6 5000 Maximum Value Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Input 7 1000					< >	Analogue 20pd 7 0000er Dode v 0 0 0.0000 0 e
Input 3 Range Mit000 (-50200°C) Maximum Value Input 3 :500 Maximum Value Input 3 :2000 V Analogue Input 4 :3 ms Jiput 4 Range 025000hms Minimum Value Input 4 :25000 Maximum Value Input 4 :25000 Maximum Value Input 4 :25000 Maximum Value Input 4 :25000 Minimum Value Input 5 :0 Input 5 Range :.300k0hms Minimum Value Input 5 :0 Maximum Value Input 5 :0 Maximum Value Input 5 :0 Maximum Value Input 5 :0 Minimum Value Input 6 :0 Minimum Value Input 7 :2 ms Input 7 Range :0 Ugital Filter Input 7 :2 ms Input 7 :000			12 ms		Messages - Total 1 error(s), 0 warning(s), 0 message(s)	Lastbald Q 0 = 6 Prozensk 🗸 🔇 Project se
Minimum Value Input 3 -300 Maximum Value Input 3 2000 V Analogue Input 4 Digital Filter Input 4 3 ms Jopit 4 Range 0.25000hms Maximum Value Input 4 2000 V Analogue Input 4 Digital Filter Input 4 25000 V Analogue Input 5 Digital Filter Input 5 300000 V Analogue Input 5 Digital Filter Input 6 12 ms Input 6 Range 0.5000hrV biode Minimum Value Input 5 300000 V Analogue Input 6 Digital Filter Input 6 12 ms Input 6 Range 0.5000hrV biode Minimum Value Input 6 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Analogue Input 7 12 ms Input 7 - 1000 User defined range for current input -20.20 Minimum Value Input 7 -0000		Input 3 Range	Ni 1000 (-50200°C)		Monning	
 Analogue Input 4 Digital Filter Input 4 0 25000hms Minimum Value Input 4 0 Minimum Value Input 4 25000 Analogue Input 5 0 Maximum Value Input 6 12 ms 1put 6 Range 0.5000mV biode Minimum Value Input 6 1put 6 Source Analogue Input 6 1put 6 Source Maximum Value Input 7 10gital Filter Input 7 12 ms 1put 7 Range User defined range for current input -20.20 Minimum Value Input 7 						200/104
Analogue Input 4 Jojit Filter Input 4 3 ms Jopit 4 Range 0.25000hms Minimum Value Input 4 0 Maximum Value Input 4 25000 V Analogue Input 5 Jigital Filter Input 5 12 ms Jigital Filter Input 5 300000 V Analogue Input 5 Digital Filter Input 5 300000 V Analogue Input 6 Digital Filter Input 6 12 ms Input 6 Range 0.5000mV Diode Minimum Value Input 6 5000 Maximum Value Input 6 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Input 7 -1000			2000		Die 16t Hen Briet Build Online Datus Josh Hindow	
Digital Riter Input 6 0.25000hms Minimum Value Input 4 0 Maximum Value Input 4 0 Minimum Value Input 4 25000 V Analogue Input 5 0 Jiput 5 Range 0.300kOhms Minimum Value Input 5 0 Maximum Value Input 5 0 Maximum Value Input 5 0 Maximum Value Input 6 12 ms Jiput 6 Range 0.5000nV biode Minimum Value Input 6 12 ms Jiput 6 Range 0.5000nV biode Minimum Value Input 6 12 ms Jiput 7 Range User defined range for current input -20.20 Minimum Value Input 7 120ms Jiput 7 Range User defined range for current input -20.20 Minimum Value Input 7 -1000						(2) 11. [112] Absorber traves or relation with a start of the first of the first of the line in the line of the
Input 4 Range 0.25000hms Minimum Value Input 4 25000 V Analogue Input 5 12 ma Digital Filter Input 5 0 Maximum Value Input 5 0 Minimum Value Input 5 0 Maximum Value Input 5 0 Minimum Value Input 5 0 Maximum Value Input 5 0 Minimum Value Input 5 0 Digital Filter Input 6 12 ma Input 6 Range 0.5000mV Diode Minimum Value Input 6 5000 V Analogue Input 6 0 Digital Filter Input 6 12 ma Input 6 Range 0.5000mV Diode Minimum Value Input 6 5000 V Analogue Input 7 12 ma Digital Filter Input 7 12 ma Input 7 Range User defined range for current input -20.20 Minimum Value Input 7 -1000						Find, Filter, Devi al
Maximum Value Input 5 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Enput 7 -1000						Veidle Mapping Channel Address Type Unit Descrip
Maximum Value Input 5 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Enput 7 -1000					Device Like Management PC03 W383 8C Objects PC03 W383 8C Objects	% % Ansigne (port 1 %
Maximum Value Input 5 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Enput 7 -1000			25000		C Aptication Solution Solution Solution Solution	% 8/26_bindspathput3 % Antispathput3 % <
Maximum Value Input 6 5000 ✓ Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Exput 7 -1000			17 mc			Y micro, Annapaceyses Yes Annapaceyses Yes Annapaceyses Yes Nature
Maximum Value Input 6 5000 ✓ Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Exput 7 -1000						W INTE_Statushywith Sp Statushywith Sp Statushywith Sp Statushywith <
Maximum Value Input 6 5000 ✓ Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Exput 7 -1000					Iherec(2()here() Golde, 3 (Debug)	THING, Statushypetz Tip Status lypet 2 %822 WYE
Maximum Value Input 6 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Input 7 -1000			•		- 11 H3_405 (Seriel Port 22) - C - displays - 11 Size (proceed)	WING Standboxts Stand Poxt 5 NAILS NYT VING Standboxt Stand Poxt 6 NAILS NYT
Maximum Value Input 6 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Input 7 -1000		✓ Analogue Input 6				Total Standbox7
Maximum Value Input 6 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Input 7 -1000					■17 Ares (PCD0.AreS) ● ● w300 (PCD0.AreS)	Overfee Space 2 Overfee Space 2 NEX State
Maximum Value Input 6 5000 V Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Input 7 -1000			05000mV Diode			Total Overfice Space Overfice Space Direction Space <thdirection space<="" th=""> Direction Space</thdirection>
Analogue Input 7 Digital Filter Input 7 12 ms Input 7 Range User defined range for current input -20.20 Minimum Value Input 7 -1000						winds_contrological w
Digital Filter Input 7 12ms Input 7 Range User defined range for current input -20.20 Minimum Value Enput 7 -1000			5000			
Input 7 Range User defined range for current input -2020 Minimum Value Input 7 -1000						Tg - Clarks new variable Tg - Map to existing variable
Input 7 Range User defined range for current input -20.20 Minimum Value liput 7 - 1000					Messageri - Total T erroriya O warningbal, O messagethi	Lastbuld 🔕 ü 🕸 i Prozentik 🗸 🔯 Project um
		Maximum value Input /	1000			

Example of linearization

The choice of NTC sensors is not available in the Device Configurator because these sensors are not standardized. To use a NTC with the module PCD3.W380, please configure the desired channel in mode "0...300 k Ω " and use the linearization FBox available in PG5 environment. This FBox can be used to enter the own tables for the conversion of a resistance value in a temperature value.

A project example can be downloaded from the SBC Support Website at this location: https://sbc-support.com/en/produkt-index/pcd3/wxxx-analoge-io/w3xx-analoge-inputs

	Y=f(X1-X20)	\bigcirc
-	-X00	Y00-
-	-X01	Y01-
-	-X02	Y02-
-		+
-	-X18	Y18-
-	-X19	Y19-

0

Software Program example for PCD3.W380, linearization of analogue values.

FBox HLK > General > "Conversion20 points"

This project example can be used for temperature measurements with integrated circuits operating as a 2-terminal zener too. This FBox can be used to enter the own tables for the conversion of a voltage value in a temperature value. The desired channel must be configured in mode "Diode 0... 5000 mV".

ATTENTION

These devices must only be installed by a professional electrician, otherwise there is the risk of fire or the risk of an electric shock.

WARNING

Product is not intended to be 0used in safety critical applications, using it in safety critical applications is unsafe.

WARNING - SAFETY

The unit is not suitable for the explosion-proof areas and the areas of use excluded in EN61010 Part 1.

WARNING - SAFETY

Check compliance with nominal voltage before commissioning the device (see type label). Check that connection cables are free from damage and that, when wiring up the device, they are not connected to voltage. Do not use a damaged device !

NOTE

In order to avoid moisture in the device due to condensate build-up, acclimatise the device at room temperature for about half an hour before connecting.

CLEANING

The device can be cleaned in dead state with a dry cloth or cloth soaked in soap solution. Do not use caustic or solvent-containing substances for cleaning.

MAINTENANCE

These devices are maintenance-free. If damaged during, no repairs should be undertaken by the user.

GUARANTEE

Opening the module invalidates the guarantee.

Observe this instructions (data sheet) and keep them in a safe place. Pass on the instructions (data sheet) to any future user.

WEEE Directive 2012/19/EC Waste Electrical and Electronic Equipment directive

The product should not be disposed of with other household waste. Check for the nearest authorized collection centers or authorized recyclers. The correct disposal of end-of-life equipment will help prevent potential negative consequences for the environment and human health.

EAC Mark of Conformity for Machinery Exports to Russia, Kazakhstan or Belarus.

PCD3.W380

4 405 5048 0

Ordering information			
Туре	Short description	Description	Weight
PCD3.W380	Analogue input module 8 inputs, 13 bits resolution	Universal analogue input module, 8 channels, 13 bits (12 bits + sign), selectable by software, 0 10 V, ±10V, 0(4) 20 mA, ±20 mA, Pt/Ni 1000, 0 2500 Ohm, 0 300 kOhm (for NTC sensors), Plug-in spring terminal block (2 connectors type K (4 405 5048 0) included).	80 g

Ordering information Accessories				
Туре	Short description	Description	Weight	
4 405 5048 0	connector type K	Plug-in spring terminal block, 2×5 pole up to 1.0 mm² (orange block), labelled 0 \ldots 9, connector type "K"	15 g	

Saia-Burgess Controls AG Route-Jo-Siffert 4 1762 Givisiez, Switzerland www.saia-pcd.com

support@saia-pcd.com | www.sbc-support.com

Subjects to change without notice.

Honeywell | Partner Channel