

Manual of the PCD2.M5_ series

Document 26/856; Version EN 12 | 2014-07-24

Contents

0

PCD2.M5_	
----------	--

0 0.1 0.2	Contents Document-History Trademarks	
1	Graphical index	
2	Overview	
2.1	Introduction	
2.2	Instructions for connecting Saia-PCD® controllers to the internet	2-1
2.3	Planning an application with PCD2.M5_ components	2-2
2.4	Cabling	
2.4.1	Cable routing	
2.5	Addressing	
2.6	HW Overview	
2.6.1	PCD2.M5xx0	
2.6.2	PCD2.C2000 and PCD2.C1000	2-5
3	PCD2.M5xx0 CPUs and module holders	
3.1	System overview	3-1
3.2	General technical details	3-3
3.3	System resources	3-5
3.3.1	Program blocks	3-5
3.3.2	Computation ranges for count types	3-5
3.3.3	Media	3-5
3.4	PCD2.M5_CPUs	3-6
3.4.1	Block diagram for PCD2.M5	
3.4.2	Hardware and firmware versions for the PCD2.M5	3-9
3.4.3	Extensions with various module holders	3-10
3.4.4	Expansion housings	
3.4.5	Addressing of module holders and modules	
3.4.6	Decentralised expansion of RIO with PCD3 components	3-16
3.4.7	Dimensions	3-17
3.5	Mounting	
3.5.1	Mounting position and ambient temperature	3-18
3.5.2	Remove cover from housing	
3.5.3	Replace housing cover	
3.5.4	Remove upper part of housing	
3.5.5	Replace housing cover	
3.5.6	I/O module slots	
3.6	Installation and addressing of PCD2 I/O modules	
3.6.1	Insertion of I/O modules	
3.6.2	Address and terminal designation	
3.7	Power supply, earthing scheme, cable layout	
3.7.1	External power supply	
3.7.2	Internal power supply	
3.7.3	Earthing concept	
3.7.4	Cable layout	
3.8	Operating states	
3.9	Connections to PCD2.M5_	
3.10	Partitioning options for user memory	3-30

3.11	Data storage in case of power failure	3-31
3.11.1	Battery changing	3-31
3.12	Memory space on the PCD	3-32
3.12.1	General	3-32
3.12.2	Program backup and restore on backup flash	3-35
3.12.3	Transferring an application with flash card	3-36
3.12.4	Backup program after download option	3-37
3.12.5	Backup/restore of RAM texts/DBs at run-time	3-38
3.13	Memory module PCD2.R6000 for flash cards (FCs)	3-43
3.13.1	System overview	3-43
3.13.2	Technical data	3-43
3.13.3	Operation	3-44
3.13.4	Displays and switches	3-46
3.13.5	Flash card	3-47
3.13.6	User program backup to the flash card	3-48
3.13.7	Order details	3-49
3.14	Hardware clock (Real Time Clock)	3-50
3.15	Hardware watchdog	3-50
3.16	Software watchdog	
3.17	User inputs and outputs	3-53
3.17.1	Basics	
3.17.2	PCD2.M5_ 24 VDC interrupt inputs	3-53
3.17.3	PCD2.M5_ user outputs	3-54
3.18	Operating mode switch (Run/Halt)	3-55
3.18.1	Run/halt push button	3-55
3.18.2	Run/halt switch	3-55
3.19	E-display with PCD7.D3100E nano-browser	3-56
3.19.1	Technical data	3-56
3.19.2	Installing the display	3-56
3.19.3	Function and use of Joystick	3-57
3.19.4	Structure of the setup menu	
3.19.5	PG5 Device configuration for eDisplay	3-62
3.19.6	USER project	3-63
3.19.7	Web-Editor	3-66
3.19.8	Browse the eDisplay pages on the PC	3-69

4 **RIO** (remote input/output) head stations

5 PCD2.M5xx0 Communication interfaces

5.1	Onboard interfaces	5-2
5.2	Plug-in communication interfaces	5-2
5.3	Onboard interfaces	5-3
5.3.1	PGU connector (PORT#0) (RS-232) for connecting programming devices	5-3
5.3.2	PGU connection (PORT#0) (RS-232) as communication interface	5-4
5.3.3	PGU connection (PORT#0) (RS-485) as communication interface	5-5
5.3.4	USB port as PGU interface	5-6
5.3.5	D-Sub x1 S-Net/MPI	5-7
5.4	Plug-in interface modules - Slots A1 and A2	5-8
5.4.1	RS-485/422 with PCD7.F110, Port#1 & Port#2	5-8
5.4.2	RS-232 with PCD7.F121, Port#1 & Port#2	5-10
5.4.3	Current loop with PCD7.F130, Port#1 & Port#2	5-11
5.4.4	RS-485 with PCD7.F150, Port#1 & Port#2	5-13
5.4.5	MP-Bus with PCD7.F180, Port#1 & Port#2	5-15
5.5	Serial interfaces on I/O module slots 0 - 3	5-16
5.5.1	General remarks on the PCD2.F2xxx	5-16
5.5.2	Communication ports on the PCD2.M5	5-16
5.5.3	Module overview	5-17
5.5.4	Port x.0: RS-422 / RS-485 on the modul PCD2.F2100	5-21
5.5.5	Port x.0: RS-232 on the modul PCD2.F2210 (for modem)	5-22
5.5.6	Port x.0: Belimo MP-Bus on module PCD2.F2810	5-23
5.6	Modem module for I/O module socket	5-24
5.7	Communication on Slot C	
5.7.1	CAN bus, module PCD7.F7400	
5.7.2	Profibus DP Master, module PCD7.F7500	5-27

6 Input/output (I/O) modules

7 System cables and adapters

7.1	System cables with I/O module connections to the PCD	7-1
8	Configuration and programming	
8.1	CPUs	
8.1.1	Configuring the PCD with PG5	8-1
8.1.2	"Hardware settings" option	
9	Maintenance	
9.1	Changing the battery on the PCD2.M5xx0	9-1
Α	Annex	
A.1	Icons	
A.2	Definitions of serial interfaces	
A.2.1	RS-232	A-2
A.2.2	RS-485/422	A-3
A.2.3	TTY/current loop	A-4
A.3	Order details	A-5
70		

0.1 Document-History

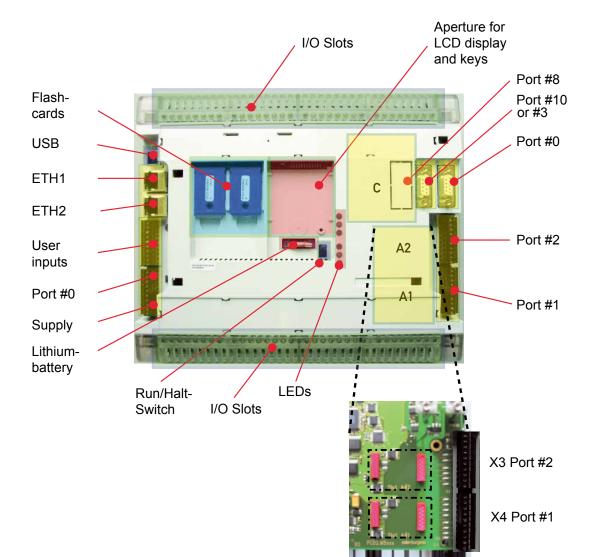
Version	Changed	Published	Remarks			
pEN01	07.01.2008		New document,			
			copied from PCD1 2 3 Manual			
EN02	2009-02-16	2009-02-16	Modifications			
	2009-06-01	2009-06-30	Minor modifications			
EN03	2009-09-30		Control unit for PCD7.F180 "MST" \rightarrow "MFT"			
	2009-10-01	2009-10-01	Memory Card is called			
			PCD2.R6000 not PCD3.R6000			
EN04	2010-03-01	2010-03-01	Definition of the signals Port#3 or #10, Pin 6, in			
	0040 04 40	0040 04 40	Chapter 3.9			
	2010-04-13		Chapter 5.3.1			
EN05	2010-05-10 2011-01-20		eDisplay in detail PCD2.C1000 added in chapter 3			
	2011-01-20	2011-01-20	Hardware Watchdog: Example of IL-Code			
			string modified			
			Standards added in chapter 3			
EN06	2011-04-08	2011-04-11	Switch off the +24 V before plug/unplug the I/O			
			modules and I/O terminals			
EN07	2011-06-23	2011-06-23	Chapter 3: New specifications for FW upgrade,			
			Chapter 5: LED, adjustment of status reports			
EN08	2011-11-22	2011-11-25	Correction HW watchdog error. Maximum load			
			for on-board outputs			
EN09	2012-01-24	2012-01-25	Reintegrated the description			
			of the I/O-modules			
EN10		2013-03-13	Storage temperature changed of -20 to -25°C.			
		2013-03-13	PWM outputs via FBox			
EN11		2014-01-07	Chapter 2.5: «Hardware Overview»			
	2013-04-23	2014-01-07	Internal wiring PCD2.K111			
	2013-05-10	2014-01-07	Behavior of the Diagnostic LED			
	2013-11-19	2014-01-07	Logo and company names changed			
	2014-01-07	2014-01-07	Chapter 2.2: "Instructions for connecting			
			Saia-PCD [®] controllers to the internet"			
EN12	2014-07-24	2014-07-24	Changed wrong connection diagramm			
			PCD2.E165/E166			
EN13	2014-09-19	2014-09-19	Chapter 6 outsourced to document 27-600			

0.2 Trademarks

Saia PCD[®] is a registered trademark of Saia-Burgess Controls AG. Siemens^{®,} SIMATIC[®] and STEP[®] are registered trademarks of Siemens AG.

Technical changes are subject to the state of technology

Saia-Burgess Controls AG, 2014. © All rights reserved.


Published in Switzerland

PCD2.M5_

1

1 Graphical index

The graphical index singles out some highlights from the Hardware Manual for the PCD2.M5_ Series, and allows you to click on a component/connector to jump straight to the corresponding section. The facility to jump to any section from the table of contents is still to be completed.

2 Overview

2.1 Introduction

This manual covers the technical aspects of the PCD2.M5_ components. The following terms are used frequently:

- CPU Central processing unit: the heart of the PCD
- LIOs Local I/Os: these are connected to the CPU via the I/O bus
- Modules Input/output elements designed for the PCD2.M5_ system
- Module holder CPU, RIO or LIO, to which modules may be attached

The aim of this section is to present the essentials of planning and installing control systems with PCD2.M5_ components. It covers the following topics:

- Planning an application
- Cabling

Details of hardware, software, configuration, maintenance and troubleshooting are described in separate sections.

2.2 Instructions for connecting Saia-PCD[®] controllers to the internet

When Saia PCD controllers are connected directly to the internet, they are also a potential target of cyber attacks. For secure operation, appropriate protective measures must always be taken.

PCD controllers include simple, built-in protection features. However, secure operation on the internet is only ensured if external routers are used with a firewall and encrypted VPN connections.

For more information, please refer to our support site: <u>www.sbc-support.com/security</u>

2.3 Planning an application with PCD2.M5_ components

The following aspects should be considered when planning PCD2.M5_ applications:

- The internal load current taken by the I/O modules from the +5V and V+ supply must not exceed the maximum supply current specified for the CPUs or LIOs (PCD2.C2000/C1000)
- The CPU type determines the maximum number of modules
- The total length of the I/O bus is limited by technical factors; the shorter, the better

When planning an application, we recommend the following procedure:

0

Select the I/O modules according to your requirements.

2 Check that the number of module holders is allowed:

PCD type	Max. number of I/O modules			dules Max. ¹⁾ digital I/Os		
PCD2.M5_	5_ PCD2 CPU PCD2 Total F		PCD2 CPU	PCD2 Total		
		expansion			expansion	
	8	56	64	128	896 (-1)	1024 (-1)

1) Using digital I/O modules with 16 I/Os each

The values in brackets have to be subtracted from the maximum number of digital I/ Os because of the watchdog relay.

To expand PCD2 CPUs with PCD3 RIOs, the planning instructions in the PCD3 Manual 26/789 should be followed.

If necessary, select the PCD2.C2000/C1000 expansion housing:

- PCD2.C2000 8 module slots or PCD2.C1000 4 module slots
- PCD2.K106 26-core extension cable to connect PCD2 CPUs.
 - PCD3.K1x6 26-core extension cable to connect the last PCD2.C2000 /C1000 expansion housing in a row to attached further rows of PCD2.C2000/C1000 expansion housings.
 - PCD2.K010 Connector to link PCD2.C2000 expansion housings for mounting side-by-side.

For the connecing cables and plugs required, see also section 3.4.3.

If PCD2.Wxxx and PCD2.Hxxx modules are used, calculate the load current at the internal +5V and V+ supply (use the worst, i.e. highest values)

.

Check that the max. supply current for the CPU is sufficient; it generally should be.

Estimate consumption from the 24 V supply. Use estimated values. The estimated values can be found in the section on the Current consumption of the PCD2 input/output modules.

Note that in most applications the outputs place the heaviest load on the 24 V supply. For 16 outputs with a load current of 0.5 A each, the loading will be 8 A with all outputs connected.

2.4 Cabling

2.4.1 Cable routing

- 230V supply lines and signal lines must be laid in separate cables at least 10 cm apart. Even within the switching cabinet, it is advisable to leave space between power and signal lines.
- Digital signal / bus lines and analogue signal / sensor lines should be laid in separate cables
- It is advisable to use shielded cables for analogue signal lines.
- The shield should be earthed at the entry or exit to the switching cabinet. The shields should be as short as possible and of the largest possible cross-section. The central earthing point should be > 10 mm² and connected to the PE ground wire by the shortest route
- The shield is generally connected to one side of the switching cabinet only, unless there is a potential equalization with significantly lower resistance than the shield resistance
- Inductivities installed in the same switching cabinet, e.g. contactor coils, should be provided with suitable suppressors (RC elements)
- Switching cabinet components with high field intensity, e.g. transformers or frequency inverters, should be shielded with separator plates with a good ground `connection.

Surge protection for long distances or external lines

- Where lines are laid outside the building, or over longer distances, suitable surge protection measures should be applied. For bus lines in particular, these measures are essential.
- With lines laid outside, the shield must have adequate current-carrying capacity and be earthed at both ends.
- The surge conductors should be installed at the input to the switching cabinet.

2.5 Addressing

The address of a module is determined by its module position in the configuration (see section 3.4.5).

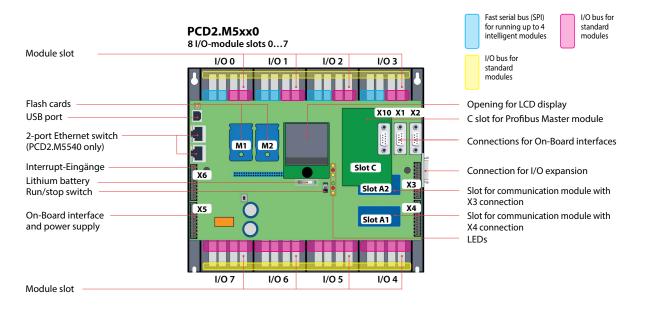
PCD2 CPUs: The module addresses begin at base address 0 (zero) on Slot 0 (addresses 0 to 15) and go up in increments of 16 to address 127 on Slot 7, regerdless of the number of I/Os (16, 8 or 4).

PCD2.C2000 Determined by the module position in the configuration; also goes up and C1000: in increments of 16

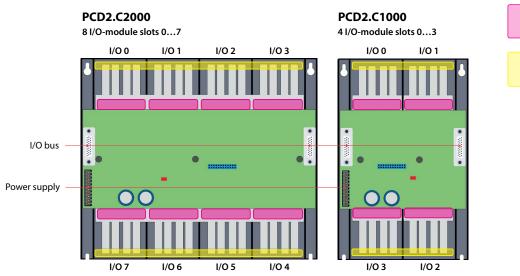
Extension cables connect the expansion housing at the right-hand end of a row with the first expansion housing at the left of the next row. The address of the first module in a second or third row equals the address of the last module in the previous row +16.

Address 255 is reserved for the watchdog relay. Modules that use this address must not be installed in module position 16. For more details, please refer to the section on the "Hardware watchdog".

Each additional PCD2.C2000/C1000 expansion housing provides space for 8/4 more I/O modules. The connection to the next row is made via the 26-core extension cable or the connector (see section 3.4.3).



Forces arising with too small cable radii (smaller than the natural radius) may damage the plug connection.


The extension cables must not be plugged in or removed with the controller connected to the power supply.

2.6 HW Overview

2.6.1 PCD2.M5xx0

2.6.2 PCD2.C2000 and PCD2.C1000

3 PCD2.M5xx0 CPUs and module holders

3.1 System overview

The PCD2.M5_ series is basically a combination of the PCD2 housing design and circuitry with extensive compatibility and ease of upgrading along with PCD3 technology. The proven functions of the PCD2 series have been supplemented with new functions such as USB and "onboard" Ethernet, and the facility to use flash cards and/or future SD memory cards (for program backup, file system for web pages, data, documents, etc.). For easy labelling of the I/O signals, there are preprinted sheets that can be protected by the transparent covering. I/O modules can be reconnected or replaced without removing the central housing.

The circuitry and labelling have been completely revised. When I/O modules are replaced, the electronic components on the CPU are protected. However, the I/O modules themselves must not be plugged in or removed with the power on, the supply voltage and the external +24 V must be disconnected. As with the PCD3, the CPU has no jumpers; all the required functions have to be configured in "Hardware Settings". The unit provides 4 integrated ports and two RJ-45 Ethernet sockets, including switch. These make the PCD2.M5_ an extremely powerful communication system. FTP and web access are also supported directly via http.

On the motherboard there are also 6 digital inputs (4 interrupt inputs or one encoder connection) and 2 outputs. The option to configure the inputs as interrupt or encoder inputs and the outputs as pulse-width-modulated (PWM) means that the PCD2.M5_ can be used as a "low-cost solution" for machinery and systems.

SBCS-Net networking concept

SBC S-Net is the name of the new, flexible networking concept for innovative and economical automation systems with Saia PCD[®].

• Based on the Ethernet-TCP/IP (Ether-S-Net) and Profibus (Profi S-Net) open standards: use of existing network infrastructure → no duplicate cabling required

- Supports multi-vendor and multi-protocol operation: Reduces costs for project planning, programming, commissioning and maintenance by general use of Ethernet TCP/IP and Profibus with S-Net, the Private Control Network (PCN) for Saia PCD[®]
- General use of web technologies via Ethernet TCP/IP and Profibus for commissioning, operation, monitoring and diagnostics
- Network connections integrated into the base unit; Profibus interface integrated into the operating system of the new PCD controllers and PCD3 RIOs (included in the base unit, at no extra charge)
- Profi S-Net with optimized protocols and services for efficient operation of PCD3 RIOs and PCD3 controllers on the Profibus
- Multi-protocol operation: The new PCD controllers and PCD3 RIOs support Profibus-DP and S-Net on the same socket
- Continuity and security of investment: All PCD systems can be integrated into almost any design using existing Profibus and Ethernet TCP/IP connections For further details, see Manual 26/845.

SBC PCD web server

All PCD controllers and PCD3 RIOs come with an integrated web server as standard:

- Web browser as a tool for commissioning, support and visualization: Access to the SBC web server is via standard web browsers such as Internet Explorer or Netscape Navigator. This makes the web browser, which can be operated intuitively by anyone, the standard tool for commissioning, service, support and visualization of machines, units and installations. The user can retrieve pre-defined device and system-specific HTML pages, giving access to all data on controllers and RIOs. Graphical elements (images, diagrams etc.) as well as text documents (operating and repair manuals) can also be integrated into the HTML pages, to provide a personalized user interface
- General access to any desired interfaces and networks: Access to the web server is available not only via Ethernet TCP/IP, but also via cost-effective standard serial interfaces (RS-232, RS-485, modem etc.) and via Profibus networks, throughout the system and at different levels in the network. This makes it economical to use web technology to operate and monitor even the smallest applications.
- The SBC PCD web server is integrated into all products: Having a web server integrated as standard eliminates the cost of run-time licenses or additional modules. In all new PCD controllers and the PCD3 RIOs, the web server is already included in the base units, at no extra cost.

General technical details

3.2 General technical details

Supply (external and internal)					
Supply voltage	24 VDC -20+25% smoothed or				
	19 VAC ±15% full-wave rectified (18V DC)				
Power consumption ¹⁾	typically 15 W				
Capacity of internal	1,400 mA				
5 V bus ²⁾					
Capacity of internal +V bus (1624 V) ²⁾	The capacity of the +V bus depends on the capacity of the 5V bus, as follows (the more precisely the 24 V are maintained, the higher the possible capacity):				
	24 V				
	24 V				
	24 V				
1) The loads handled by the output the internal power consumption	s and other consumers are generally more important for sizing the supply than of the PCD2.M5.				
	t is essential to check that the two internal supplies are not overloaded. This en using analogue, counter and positioning modules, as these may have a very				
It is advisable to use the "device consumption of the modules.	configurator" from the PG5 2.0 which automatically calculates the internal power				
Atmospheric conditions					
Ambient temperature	When mounted on vertical surface with vertically aligned terminals: 0+55 °C				
	In all other mounting positions, a reduced temperature range of 0+40 °C applies				
Storage temperature	-25+85 °C				
Relative humidity	1095% without condensation				
Vibration resistance					
Vibration	according to EN/IEC61131-2:				
	13.2 Hz constant amplitude (1.42 mm)				
	13.2150 Hz, constant acceleration (1 G)				

Electrical safety	
Protection type	IP20 according to EN60529
Air/leakage paths	according to EN 61 131-2 and EN50178: between circuits and bodies and between electrically isolated circuits: surge category II, fouling level 2
Test voltage	350 V / 50 Hz AC for nominal unit voltage 24 VDC

Electromagnetic compat	Electromagnetic compatibility			
Electrostatic discharge	according to EN61000-4-2: 8 kV: contact discharge			
Electromagnetic fields	according to EN61000-4-3: field intensity 10 V/m, 801000 MHz			
Bursts	according to EN61000-4-4: 4 kV on DC supply lines, 4 kV on I/O signal lines, 1 kV on interface lines			
Noise emission	according to EN 61,000-4-6: Class A (for industrial areas). Guidance on the correct use of these controls in residential areas can be found at www.saia-support.com (additional measures).			

General technical details

Noise immunity	acc. to EN61000-6-4
Mechanism and mounting	
Housing material	Base:
	Cover:
	Fibre optics: PC, crystal-clear
Mounting rail	2 top-hat rails acc. to EN50022-35 (2 x 35 mm)

Connections							
Terminal	Spring	Spring	Spring	Spring	Earth	Terminal	
blocks	terminals	terminals	terminals	terminals	terminal	2-pole	
	10-pole,	10-pole	14-pole,	24-pole,		supply	
	4-pole		12-pole,	6-pole			
			8-pole				
Section							
stranded	0.52.5 mm ²	0.52.5 mm ²	0.51.5 mm ²	0.51.0 mm ²	0.08	0.5	
single wire	0.52.5 mm ²	0.52.5 mm ²	0.51.5 mm ²	0.51.0 mm ²	2.5 mm ²	1.5 mm ²	
The termina	The terminal blocks may only be plugged onto 20 times. They must then be replaced, to						
guarantee a	guarantee a reliable contact						
Length of	7 mm	7 mm	7 mm	7 mm	56 mm	7 mm	
insulation							

Standards / approvals	
EN/IEC	EN/IEC61131-2 "Programmable controllers"
Shipbuilding	ABS, BV, DNV, GL, LRS, PRS.
	Please verify if your chosen product is mentioned in the
	list of corresponding Type-Approval-Company under
	www.saia-support.com.
cULus-listed	Please verify if your chosen product is listed in the corresponding
	Certificate under <u>www.saia-support.com</u> . The condition for cULus
	Compliance are mentioned on the sheet annexed to the product
	or can be required under <u>www.saia-support.com</u> .

3.3 System resources

3.3.1 Program blocks

Туре	Quantity	Addresses	Remarks
Cyclic organization blocks (COB)	32* (16)	031 (015)	Main program elements
Exception/system-dependent organization blocks (XOB)	32	031	called from the system
Program blocks (PB)	1000* (300)	0999 (0299)	Sub-programs
Function blocks (FB)	2000* (1000)	01999 (0999)	Sub-programs with parameters
Sequential blocks (SB) total 6000 steps and transitions each (with PG5 \ge 1.3 and firmware version \ge xxx)	96	095	for Graftec programming of sequential processes

* This information is valid for firmware 1.10.16 and later. Before this version 16 COBs, 300 PBs and 1000 FBs were supported.

3.3.2 Computation ranges for count types

Туре		Remarks
Integers	- 2,147,483,648 to + 2,147,483,647	Format: decimal, binary, BCD or hexadecimal
Floating point numbers	- 9.223,37 × 10 ¹⁸ to - 5.421,01 × 10 ⁻²⁰ + 9.223,37 × 10 ¹⁸ to + 5.421,01 × 10 ⁻²⁰	Instructions are provided to convert values held in Saia format (Motorola Fast Floating Point, FFP) to IEEE 754 format and vice versa.

3.3.3 Media

Туре	Quantity	Addresses	Remarks
Flags (1 bit)	14'336** (8192)	F08191	By default, flags are not volatile, but a volatile range can be configured, beginning with address 0
Registers (32 bit)	16384	R 016383	For integer or floating point values
Text/data blocks	8191	X or DB 08190	The texts 03999 are always written to the same memory area as the user program. Where the user memory has been extended, the base memory can be configured to hold RAM texts and DBs. The texts and DBs held in this way have addresses ≥ 4000
Timers/counters (31 bit)	1600 ¹⁾	T/C 01599	The breakdown of timers and counters is configurable. Timers are periodically decremented by the operating system; the basic time unit can be set between 10 ms and 10 seconds
Constants with media code K	any		Values 016383; may be used in in- structions instead of registers
Constants with no media code	any		Values - 2,147,483,648 to +2,147,483,647. Can only be loaded into a register with an LD command, and cannot be used in instructions instead of registers.

1) The number of timers configured should be only as many as required, to prevent unnecessary CPU loading ** Since firmware 1.14.23 14'336 flags are supported, before it was 8192. In order to use flags > 8191 PG5 2.6.150 is

required.

3.4 PCD2.M5_ CPUs

Differences between base units PCD2.M	5440	5540			
General features					
I/O bus extension	уе	es			
Number of inputs/outputs or	up to 1	023 ^{1) 2)}			
I/O module sockets		4			
Processor (Motorola)	CF 5272	/ 66 MHz			
Processing time					
Bit instruction:		.5 μs ³⁾			
Word instruction:	0.9	µs ³⁾			
Firmware, firmware update	Downloadable from t	he PG5 environment			
(firmware memory soldered on)					
Programmable with PG5	from 1.4.200				
Main memory for user program,	1 MB				
text, DB (RAM)					
Backup memory onboard	1 MByte flash card (optional)				
(Flash)					
Hardware clock	Yes, better than 1 min/month				
Accuracy					
Data backup		n battery, 13 years 4)			
User inputs		4			
Max. input frequency		Hz ⁵⁾			
User outputs		2			
Interfaces					
Programming interface	USB ⁶⁾				
Optional serial data interface	2 x				
Port 1, 2	RS-232, RS-422/485 or TTY current loop 20 mA				
Port 0 (PGU) also as RS-232					
interface (D-Sub) or RS-485		1			
(X5 terminal block), up to					
115 kbit/s					

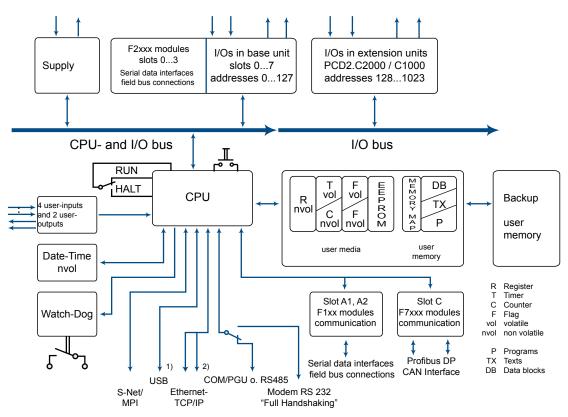
3

PCD2 CPUs

Differences between base units PCD2.M	5440	5540		
Profi-S-Net interface	Port 10 up to 1.5 Mbps			
Ether-S-Net interface	2			
Field bus connections				
Serial-S-Net	✓			
Profi-S-Net	✓			

1) Using digital I/O modules PCD2.E16x or A46x with 16 I/Os each

3) Typical values; the processing time is dependent on the load on the communication ports


4) The period given is a buffer time; it is dependent on the ambient temperature (a higher temperature means a shorter buffer time)

5) The 1 kHz applies with a pulse/pause ratio of 1:1 and refers to the total frequencies of the inputs

6) The USB port is type "USB 1.1 Slave Device 12 Mbps" and can only be used for programming and as an S-Bus Slave, together with certain software products (Webconnect, ViSi-PLUS with S-Driver). With a USB 2.0 hub, the download runs twice as fast

Can also be used as a serial data port, e.g. to connect a terminal; but this hampers commissioning and troubleshooting with the debugger

²⁾ On all PCD units, address 255 is reserved for the watchdog. The I/Os reserved for the watchdog cannot be used, and no analogue and H modules can be used on the sockets with base address 240

3.4.1 Block diagram for PCD2.M5_

Connection for the programming unit
 With PCD2.M5540

No changes (e.g. plugging/unplugging I/O modules) should be made with the power switched on.

To prevent loss of data, batteries should be changed with the power switched on.

3.4.2 Hardware and firmware versions for the PCD2.M5_

The firmware for the PCD2.M5_ is stored in a Flash EPROM, soldered to the motherboard. A firmware update can be applied by downloading a new version with the PG5. The procedure is as follows:

- · Go to www.sbc-support and download the latest firmware version
- Establish a connection between PG5 and the CPU, as when downloading an application (according to the facilities available, serial with PGU cable, modem¹), USB, Ethernet)
- Open the Online Configurator and go offline
- From the Tools menu, select "Update Firmware", then use the Browse function to select a path to the file for the new firmware version. Ensure that only one file is selected for download
- Start the download
- After the download, the power supply to the PCD must not be interrupted for 2 minutes (CPLD programming sequence). Otherwise, the CPU may be blocked in such a way that it has to be returned to the factory. The download operation is terminated by rebooting the PCD.
- 1) A modem connection is not always reliable. A modem may become blocked in such a way that remote access is no longer possible. In such cases, an on-site visit will be necessary. Other connection options are preferable.

3.4.3 Extensions with various module holders

The PCD2.M5_ controllers can be expanded with PCD2.C2000/C1000 components, making additional module sockets available. Up to 7 PCD2.C2000/C1000 module holders can be connected to the PCD2.M5_. This allows the user to attach a maximum of 64 I/O modules, or 1023 digital inputs/outputs.

For local expansion, the PCD2 LIO (local I/O) modules can be used.

For decentralized expansion using Profibus, the PCD3 RIO (remote I/O) modules can be used:

When selecting I/O modules, ensure that the internal 5V and +V supply is not overloaded.

The PCD2.M5_ controllers can be expanded with PCD2.C2000/C1000, PCD3.Cxx0 or PCD2.C1x0 components, making additional module sockets available:

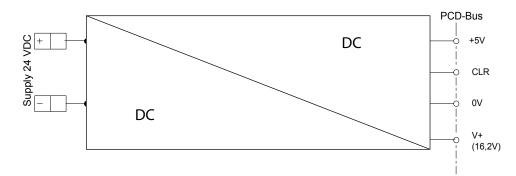
PCD2.M5_ type			
Maximum number of inputs/outputs or I/O module sockets for the system:			
Expansion with	1023 ¹⁾²⁾		
PCD2.C2000/C1000 components	64		
Expansion with	1023 ¹⁾²⁾		
PCD3.Cxx0 components	64		
Expansion with	255 ¹⁾²⁾		
PCD2.C1xx components	16		

1) Using digital I/O modules PCD2/3.E16x or A46x with 16 I/Os each

2) On all PCD2 units, address 255 is reserved for the watchdog. The I/Os reserved for the watchdog cannot be used, and no analogue and H modules can be used on the sockets with base address 240

Connection cables or plugs required

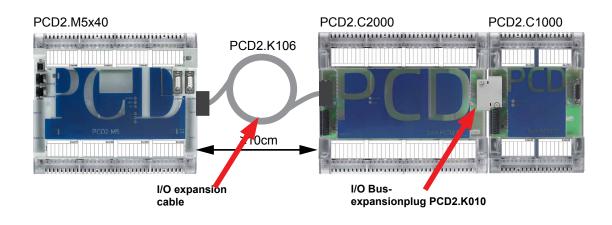
Type of expansion	PCD2.C150	PCD2.C100	PCD3.C100/.C200	PCD2.C2000/ C1000*
Max. expansion housings or module holders	1	1	14	7
Max. plug-in I/O modules	4	8	56	56
Max. additional digital I/Os	64	127	895	895
Connecting cable or	PCD2	K1x0	PCD2.K106	PCD2.K106
			PCD3.K1x6	PCD3.K1x6
Connector			PCD3.K010	PCD2.K010*
Restrictions	No	No	Max. 6 PCD3.C200	*In preparation


3.4.4 Expansion housings

The PCD2.C2000/C1000 expansion housing provides space for 8/4 additional I/O modules and can be expanded to provide up to 64 sockets. The dimensions of the housing match those of the PCD2.M5_ base unit. The sockets are numbered clockwise from the left, from 0 to 7. The expansion housings with sockets 8 to 15 etc. are also numbered clockwise. They are connected to each other and to the base unit with 26-wire expansion cables or connectors:

PCD2.K010 Connector for mounting side-by-side

Internal supply to PCD2.C2000/C1000 module holders

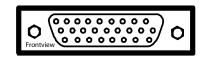

The PCD2.C2000/C1000 module holders provide the following internal supply currents to the modules plugged in or connected to them:

	power supply		power consumption
Туре			
PCD2.C2000/C1000	1,400 mA	800 mA	typically 2 W

When planning PCD2 systems, it is essential to check that the two internal supplies are not overloaded. This check is especially important when using analogue, counter and positioning modules, as these may have a very large power consumption. It is advisable to use the calculation table at <u>www.saia-support.com</u>.

LIO module holder	Module slots	Description	Ext. supply	Int. supply I at +5 V
PCD2.C2000 (PCD2.C1000)	8 (4)	for 8 (or 4) I/O modules; acts as I/O bus repeater and provides internal +5V and V+ for a segment of I/O modules	24 VDC	1,400 mA

The PCD2.LIOs are also snapped onto two 35 mm hat rails.

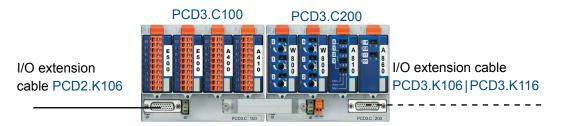

- PCD2.C2000 and PCD2.C1000 serve as a bus repeater and provide +5V and V+ internally for a segment of I/O modules.
- The order of the expansion housings is freely selectable.
- Expansion housings of the PCD3 serie (PCD3.C100, PCD3.C110 and PCD3.C200) can also be used.

Connections for PCD2.C2000 expansion housing

LEDs

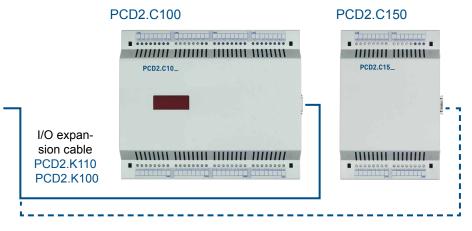
24 VDC (yellow):	 Supply present (19 V32 VDC)
Power fail (red):	Short-circuit (+5 V or V+ not present)

Expansion connection

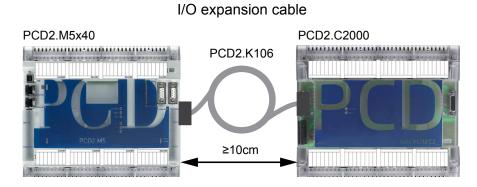


This connector can be used to connect the PCD2.C2000/C1000 expansion housing to further PCD2.C2000/C1000 units, with the PCD2.K010 connector or with connection cables. This allows up to 1023 digital I/Os to be supported.

Power supply to expansion housings


	Pin	Designation	Meaning
	29	Power fail	+5 V or V+ not present
	28	Power good	Power supply present
	27	СОМ	Shared connection
3 0 0	26	n.c.	not connected
	25	n.c.	not connected
201	24	-	GND
200 1	23	-	GND
1 00 1	22	+	+24 V
	21	+	+24 V
	20	+	+24 V

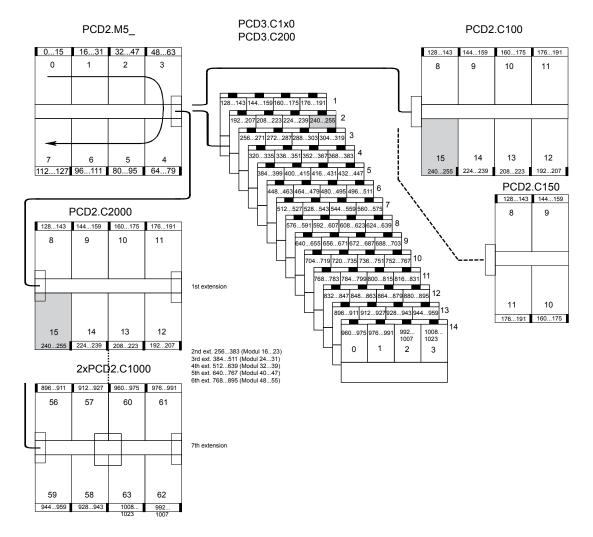
The PCD3.Cxxx expansion housing provides space for 4 additional I/O modules. The dimensions of the housing match those of the PCD3.M3xx0 base unit (see also PCD3 Manual 26/789). They are connected to each other and to the base unit with 26-wire expansion cables or connectors (see Section 3.4.3)

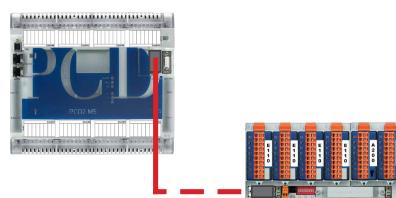

Up to 1023 central data points in PCD3.C100 /.C110 /.C200

The PCD2.C1x0 expansion housing provides space for 8 or 4 additional I/O modules and can be expanded to provide up to 16 sockets. The dimensions of the housing match those of the PCD2.Mxxx base unit. They are connected to each other and to the base unit with 26-wire expansion cables (see Section 3.4.3)

Up to 255 central data points in PCD2.C100 / .C150

Minimum distance between PCD2.M5xxx and PCD2.C2000/C1000



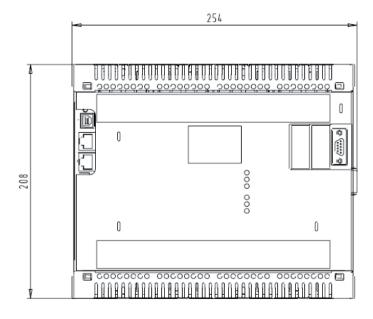

3.4.5 Addressing of module holders and modules

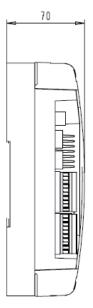
Sockets numbered clockwise from 0 to 7.

All modules of types E, A, W and H can run in any socket, except Slot 15 (grey). No modules of type W or H can be plugged in here. If the manual and emergency control modules are needed, PCD3 modules and module holders have to be used. The same applies to the realisation of RIO nodes. For these applications, refer to the PCD3 Manual 26/789

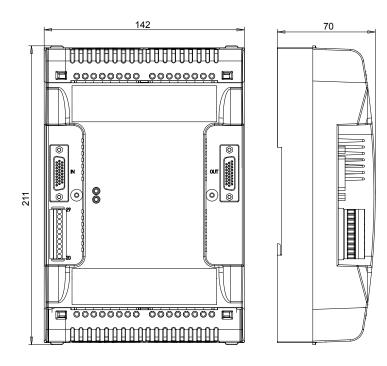
The PCD2.T8xx modems cannot be used on all slots; please refer to Manual 26/771 for these modules.

3.4.6 Decentralised expansion of RIO with PCD3 components

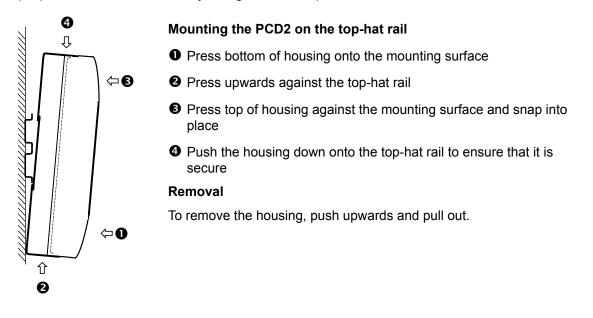

For decentralized expansion via Profibus, the PCD3 RIO (Remote I/O) modules can be used (see also manual 26/789):


PCD3.T760 Integrated Profibus DP Slave / Profi S-Net Slave connection up to max. 1.5 MBit/s
 4 plug-in I/O modules
 Integrated web server for diagnostics, support and commissioning (Connection to PC via optional PCD3.K225 connector cable)

PCD Type	Max. number of PCD3 I/Os
PCD3.RIO nodes	256 per node


3.4.7 Dimensions

PCD2.M5-,PCD2.C2000



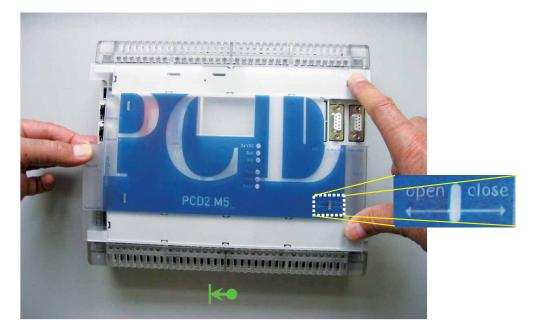
PCD2.C1000

3.5 Mounting

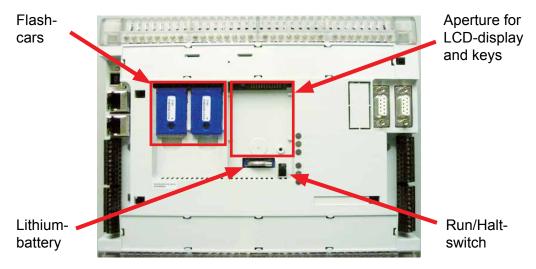
The PCD2 can be snapped onto two top-hat rails (2 x 35 mm). The PCD2 can also be screwed to any other flat surface with 4 M4 screws; the grooves provided for this purpose can be accessed by lifting off the snap-on cover.

3.5.1 Mounting position and ambient temperature

A vertical surface is normally used to mount the module carrier; the I/O connections to the modules then also run vertically. In this mounting position, the ambient temperature may be from 0 °C to 55°C. In all other positions, air convection works less well, and an ambient temperature von 40 °C should not be exceeded.

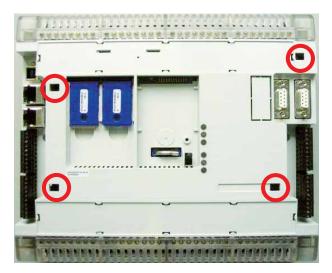

Hardware Manual for the PCD2.M5 Series | Document 26/856; Version EN12 | 2014-07-24

3.5.2 Remove cover from housing

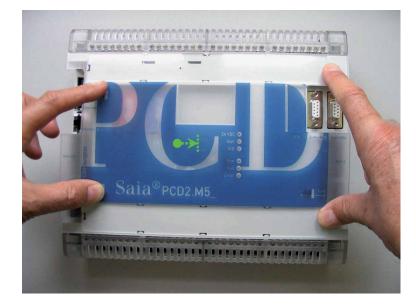


NB: Do not use earlier methods. They may cause damage.

Grip both sides of the housing with the fingers and push to the left.



After removing the cover, the plug boards for flash cards, the lithium battery, the run/ halt switch etc. are freely accessible.



3.5.3 Replace housing cover

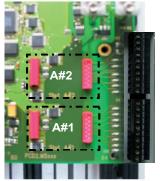
In the reverse order; position the 4 clips of the housing cover in the 4 grooves on the housing (see below),

press down with the fingers (see below) and push the housing cover to the right.

Hardware Manual for the PCD2.M5 Series Document 26/856; Version EN12 2014-07-24

3.5.4 Remove upper part of housing

To install (new or replacement) communications interfaces, the upper part of the housing has to be removed.


- Disconnect all cables (USB, Ethernet, Profibus, RS-232).
- Remove housing cover (see Section 3.5.2 Removing the housing cover)
- Pull out plug-in screw terminal blocks (X3...X6)
- Unscrew the two TORX Plus 10IP bolts (for the position of the two bolts, see below)
- Tor 10

Remove upper part of housing

Optional communication interfaces

To simplify customer installation, optional communication interfaces should be ordered together with the PCD2.M5_. Up to two PCD7.F1xx units can be plugged into Slots A#1 and A#2.

The following PCD7.F1xx communication modules can be plugged into Slots A#1 and A#2:

• PC

- X3-Port 2 2. PCD7.F1xx
- X4-Port 1 1. PCD7.F1xx
- PCD7.F110
- PCD7.F121 (PCD7.F120 must not be used)
- PCD7.F130
- PCD7.F150
- PCD7.F180

Mounting

3

X4 - Port #1

All PCD7.F1xx modules can be used here without restriction (for RS-232, use PCD7. F121 only).

(See also latest manual for the connection layout for the PCD7.F1xx)

The PCD2.T81x/.T85x internal modems must be inserted into I/O module slot #4 (bottom right), to allow them to use the TTL interface on Port#1.

X3 - Port #2

All PCD7.F1xx modules can be used here without restriction (for RS-232, use PCD7. F121 only). (See also latest manual for the connection layout for the PCD7.F1xx)

X10 - Port#8

(For Profibus DP/CAN and future communication modules; in preparation for Slot C)

3.5.5 Replace housing cover

- Position upper part of housing over the CPU
- Before pressing down, ensure that all plug-in connections are correctly positioned and connected
- Then tighten both Torx Plus bolts. Replace housing cover.

To ensure that the PCD works properly (earthing), the upper part of the housing must be screwed back on.

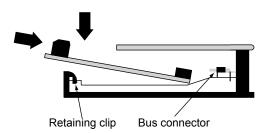
3.5.6 I/O module slots

All PCD2.Axxx/.Bxxx/.Exxx/.Gxxx/.Hxxx/.Wxxx I/O modules can be plugged into the 8 available I/O module slots. The PCD2.T81x/.T85x internal modems, which use the TTL interface, must be plugged into Slot 4 (bottom right).

The first 4 slots (addresses 0...63) are fitted with SPI interfaces for intelligent modules (e.g. PCD2.F2xxx, but not yet available).

The PCD2.M5_ has removable I/O covers. The I/O plug connectors can now be accessed without removing the plug-in terminal blocks (X3...X6), and the circuit board is thus protected.

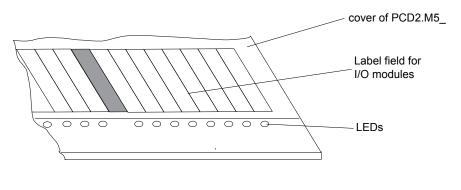
To remove the I/O cover, place the thumbs on the I/O housing cover and push the I/O cover away with the fingers.

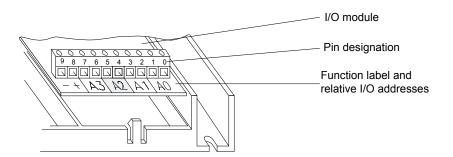

I/O covers (Slot#0 to #3 and Slot#4 to #7)

Installation and addressing of PCD2 I/O modules

3.6 Installation and addressing of PCD2 I/O modules

3.6.1 Insertion of I/O modules

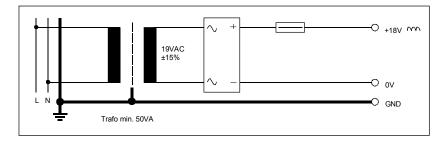

The I/O module is inserted from the side, pushed towards the middle of the unit until it reaches the end stop, and snapped into the retaining catch.



No changes (e.g. plugging/unplugging jumpers or I/O modules) should be made with the power switched on.

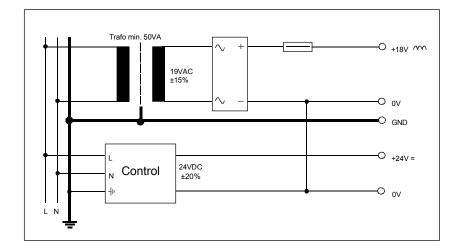
3.6.2 Address and terminal designation

All PCD2 systems are provided with a set of matching A4 templates


Removing the cover gives access to terminals, but also exposes components that are sensitive to electrostatic discharges.

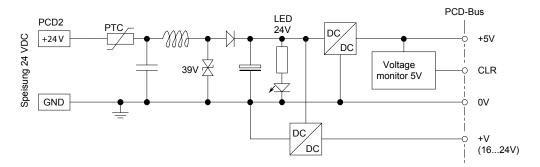
Power supply, earthing scheme, cable layout

3.7 Power supply, earthing scheme, cable layout


3.7.1 External power supply

Simple, small installations

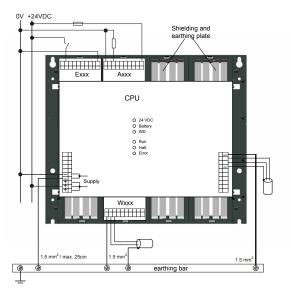
- Sensors: Electro-mechanical switches
- Actuators: Relays, lamps, small valves with < 0.5A switching current
 Suitable for Modules: PCD2.E1xx, E5xx, E6xx, A2xx, A4xx, B1xx, G4xx
 PCD2.W1xx, W2xx, W3xx, W4xx, W5xx, W6xx


Small to medium installations

- Sensors: Electro-mechanical and proximity switches, photoelectric barriers
- Actuators: Relays, lamps, displays, small valves with < 0.5A switching current
- Suitable for Modules
 PCD2.Mxxxx PCD2. E1xx, E5xx, E6xx, A2xx, A4xx, B1xx, G4xx PCD2.W1xx, W2xx, W3xx, W4xx, W5xx, W6xx PCD2. H1xx^{*}, H2xx^{*}, H3xx^{*}
- *) These modules must be connected to a smoothed 24 VDC supply

Power supply, earthing scheme, cable layout

3.7.2 Internal power supply



Capacity of internal power supply

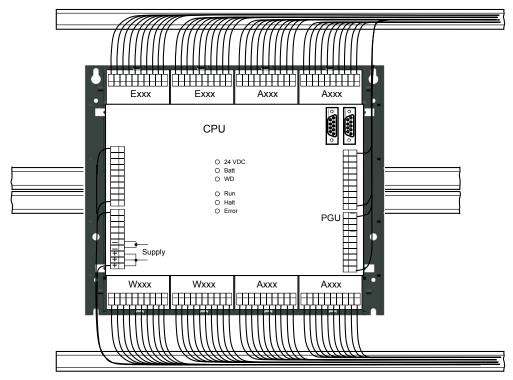
From the base units, the following currents are available for the plug-in modules:

+5 V: 1,400 mA +V (16...24V): 100 mA (the exact loads should be taken or calculated from the technical details in section 3.2, or you are advised to use the calculation table at <u>www.saia-support.com</u>).

3.7.3 Earthing concept

In the bottom part of the PCD2 module housing there is a shielding and earthing plate. Together with the shielding and earthing plate in the module holder, this constitutes the common, large-area ground for all I/O modules and for the external power supply.

When a module is plugged into the module holder, a metal tab on the module housing creates a reliable multi-point contact to the module carrier concerned.


The zero-potential (Minus pole) of the 24 V supply is connected to the Minus terminal of the supply. This should be connected to the earthing bar with the shortest possible wire (< 25 cm) of 1.5 mm^2 .

Power supply, earthing scheme, cable layout

Any shielding of analogue signals or communication cables should also be brought to the same earth potential, either via a Minus terminal or via the earthing bar. All Minus connections are linked internally. For problem-free operation, these connections should be reinforced externally with short wires of 1.5 mm².

3.7.4 Cable layout

Wiring to the I/O modules can be laid in the cable channels on both sides.

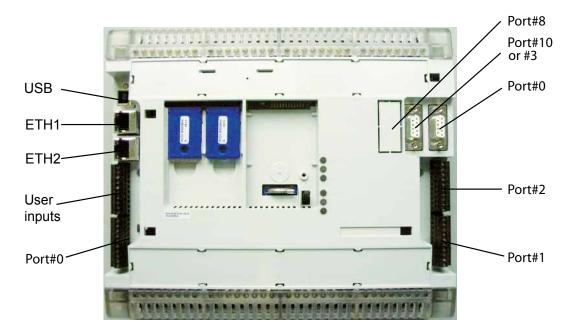
The cables to the terminals on the motherboard are run through the two side channels from the bottom or from the top.

The terminals are accessible on the motherboard without removing the cover.

Following these rules will ensure that the LEDs are visible and the bus connections remain accessible.

3.8 Operating states

The CPU can assume the following operating states:


Run, Run conditional, Run with error, Run cond. with error, Stop, Stop with error, Halt and System Diagnostics. The display uses the LEDs shown below:

CPU type		PCD2.M5_								
LED	Batt	WD	Run	Halt	Error					
Colour	Red	Yellow	Green	Red	Yellow					
Run	0		•	0	0	O LED off				
Run cond.	0		o /o	0	0	● LED on ●/o LED flashing				
Run with error	0		•	0	0					
Run cond. with error	0		o /o	0	0					
Stop	0		0	0	0					
Stop with error	0		0	0	0					
Halt	0		0	•	0					
System diagnostics	0		o /o	• /o	o /o					
Battery voltage	•		0	0	0					

Start	Self-diagnosis for approx. 1sec after switching on or after a Restart
Run	Normal processing of the user program after Start. Where a programming unit is connected via a PCD8.K11x in PGU mode (e.g. PG5 in PGU mode), the CPU automatically goes into the Stop state and not the Run state; this is for safety reasons
Run conditional	Conditional Run state. A condition has been set in the debugger (Run until), which has not yet been met
Run with error	Same as Run, but with an error message
Run cond. with error	Same as conditional Run, but with an error message
Stop	 The Stop state occurs in the following cases: Programming unit in PGU mode connected when the CPU was switched on PGU stopped by programming unit Condition for a COND.RUN has been met
Stop with error	Same as Stop, but with an error message
Halt	The Halt state occurs in the following cases: • Halt instruction processed • Serious error in user program • Hardware fault • No program loaded • no communication module on an S-Bus PGU or Gateway Master port
System diagnostics	
Reset	The RESET state has the following causes: • Supply voltage too low • Firmware not starting up

Connections to PCD2.M5

3

Connections to PCD2.M5_ 3.9

		D-Sub	RS-232/ PGU/Port#0				/PI/RS-485 #10 or #3
		pin	signal	sigr	nal		Explanation
		1	DCD	PGND			GND
	0	2	RXD	GND			0 V of 24 V supply
		3	TXD	RxD/TxD-P ¹)	/D	B (red)	Receive/transmit data positive
		4	DTR	RTS/CNTR- P			Control signal for repeater (direction control)
	0	5	GND	SGND ¹)			Date communication potential (earth to 5 V)
		6	DSR	+5V 2)			Supply voltage to P line termination resistors
		7	RTS	MPI24V			Output voltage plus 24 V
		8	CTS	RxD/TxD-P ¹)	D	A (green)	Receive/send data negative
Port#10/3	Port#0	9	n.c.	n.c.			not used

¹⁾ Mandatory signals (must be provided by the user).
 ²⁾ The signal is provided by the control system. Specially the both signals SGND and +5V are provided by the PCD, if the Profibus configuration is correct.

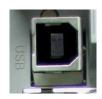
Port#10: Pins 3, 4, 5, 6 and 8 are insulated from the system. Pin 2 serves as a backlink for Pin 7. Port#0: This can be used as an alternative only, either the 10-pole terminal block or the 9-pole D-Sub socket.

Connections to PCD2.M5_

3

Termina	l blo	ck for po	ower	r supply,	watchdog, Port#0, PGU	Port #0
	Pin	S	signa	al	Explanation	+5 V
	29	RxD/ TxD-N	D	A (green)	Port#0 also as PGU; RS-485 up to 115.2kBd; usable as free	Pull up
	28	RxD/ TxD-P	/D	B (red)	user interface	Termination
	27		-			Resistor
	26		WD		\M/atabdag	150 Ohm 29
101	25		WD		Watchdog	Pull down
2 0	24		-			330 Ohm
2	23		-			
	22		+		Voltage supply	
	21		+			
	20		+			STREET ST
RS-485 termina	ator s	switch				
Switch position		Desig	natio	on	Explanation	
up		C)		without termination resistors	
down		C	2		with termination resistors	

Ethernet (PCD2.M5540 only)


For these Ethernet connections, a new 10/100 Mbits switch is used, which switches automatically between the two speeds. Both sockets can be used independently of each other.

The RJ-45 shield is AC-coupled and so fully insulated. ETH1 and

ETH2 are independently AC-coupled.

Sockets: 2 x RJ-45 positioned vertically, metal housing, 2 LEDs orange: Link and activity green: Speed 10 or 100 Mbits

USB programming port

USB 1.1 slave device

3.10 Partitioning options for user memory

In the PG5 hardware configuration, the user memory is partitioned by default into lines of code and texts/DBs, in a way that suits most applications.

In the case of a large program with few texts/DBs or a very small program with many texts/DBs, the user can partition the memory manually. In order to choose an appropriate breakdown, the following should be noted:

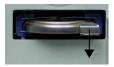
- The partitioning is into "kBytes lines of code" and "kBytes text/DBs", where the "kBytes lines of code" can only be changed in 4 kByte steps, as every line of code occupies 4 bytes
- The result of the formula (4 x "kBytes program cells") + "kBytes texts/DBs" must equal the effectively available user memory,
 e.g. 4 x 24 kBytes + 32 Kbytes = 128 Kbytes
- Each character of a text occupies 1 byte
- Each 32-bit element of a DB occupies eight bytes in the address range 0..3999, and the header of the DB takes up a further three bytes
- We recommend always using DBs with addresses ≥ 4000. These can hold more elements (16384 instead of 384), take up less space (only 4 bytes instead of 8 bytes per element, but NB, 8 bytes instead of 3 for the header) and the access time is substantially shorter.

Example of manual partitioning:

		AM Memory A		Modem Profi-S-Bus TCl		
С	ode Lines	Text/DB K Bytes	Extension K Bytes	Extension Memory B	ackup Size:	
160		128	256	None		
Tota	al User Pr	ogram Size:		User Program Back	ир Size:	
		1024K Bytes		1024K Bytes	Ŧ	
<u>S</u> et D	efaults					
<u>S</u> et D	efaults					

3.11 Data storage in case of power failure

The resources (registers, flags, timers, counters etc), and possibly the user program and the text strings/DBs, are stored in RAM. To ensure that they are not lost and that the hardware clock (where present) continues to run when there is a power failure, the PCD2s are equipped with a buffer capacitor (SuperCap) or a buffer battery:


CPU type	Buffer	Buffer time	3
PCD2.M5_	Renata CR2032 lithium battery	13 years ¹⁾	

¹⁾ Depending on the ambient temperature; the higher the temperature, the shorter the buffer time

With new controllers, the batteries are packaged with the units, and have to be inserted on commissioning. Observe the polarity of the batteries:

3.11.1 Battery changing

- Remove PCD cover
- Pull locking clip in the direction of the embossed plus sign on the housing (see arrow)
- Remove old battery
- Insert new Renata CR2032 battery in such a way that the Plus pole is in contact with the locking clip

CPUs with lithium batteries are not maintenance-free. The battery voltage is monitored by the CPU. The BATT LED lights up and XOB 2 is called (if XOB 2 is not programmed, the ERROR LED will also light up after 1 second of battery failure), where

- the battery voltage is less than 2.4 V
- the battery is flat or shows an interrupt
- the battery is missing

We recommend changing the batteries with the PCD attached to the power supply, to avoid any loss of data.

3.12 Memory space on the PCD

3.12.1 General

The PCD controllers are fitted with a user program memory and a matching user backup memory as standard. On the PCD, both types are referred to as user memory.

User Program Memory (RAM)

The user program memory consists of a RAM (Random Access Memory) and contains the program code and a text and DB memory area. It also contains the extension memory, which also holds DBs and texts (addresses \geq 4000). On a PCD2. M5_, all DBs and texts are always in RAM. The main difference between the texts and DBs in the text/DB memory segment and those in extension memory is the greater maximum size of DBs and texts.

To run an application on the PCD, it is sufficient to load only the user program memory. As this is a RAM, the program and the contents of the texts and DBs (and the other media, registers, flags etc.) may be lost if there is no power and the battery is flat or not connected.

Backup memory (Flash)

In order to prevent the loss of the program, every PCD CPU has onboard flash memory fitted as standard to back up the user program memory.

It is also possible to save DBs on this flash during runtime. This allows key values of registers and flags to be saved to the flash at runtime and reloaded later.

Even with backup to the flash card, the source files for the project must be retained, as the application is only stored in the PCD as machine code.

If it transpires when the PCD is started up that the RAM memory has been corrupted (e.g. after a power failure with a flat or missing battery), the application is automatically reloaded from the flash backup memory. The LIST command "Test" and operand "400" can be used to test this.

All hardware settings are also saved to the flash backup memory (onboard or on an equivalent flash card).

Partition of user backup memory

The user backup memory is split into two parts. The first is available for the user program backup and is always present. In the PG5 hardware configurator, this memory is referred to accordingly as "user program backup".

The second, optionally configurable part is referred to in PG5 as "extension memory backup" (data backup) and can be used to back up DBs and texts to the flash during runtime.

If part of the backup memory is used as "extension memory backup", the available "user backup memory" is reduced by twice the amount of "extension memory backup" used. In parallel with the reduction of the "user program memory backup", the user program memory is also adjusted, so the total user program memory can be copied to the backup flash.

Available user backup memory

System	RAM user program	Flash user backup	Default memory
	memory	(prg + data)	configuration
5440	1024 Kb	1024 Kb	48k prg lines,
5540			64k txt, 256k ext.

Note that in the default memory configuration, each program line requires 4 bytes.

Any flash memory module suitable for user program backup (e.g. a PCD7.R500) can be used as a flash card. Where multiple compatible modules are connected, the first module from the left will be used (Slot M1, M2).

Flash memory modules (optional)

For the PCD, there are various flash memory modules for different applications. Some of these modules are explicitly designed for a particular use (e.g. the PCD7. R500 for user program backup). However, there are other modules available for various types of storage (e.g. the PCD7.R551M04, which contains 1 MB of memory space for the user program backup and 3 MB the file system).

Most flash memory modules are simple cards (PCD7.Rxxx), which can be plugged into a PCD2.M5xxx0 in Slot M1 or M2.

Flash memory modules for the file system

Apart from the flash memories mentioned above for backing up the user program memory and DBs, there is another type of flash memory available for files. These memory modules can be used to save "PC-readable" files such as web pages, images or log files. The content of these flash memory modules can be accessed via the web server, the FTP server (for PCD2 with Ethernet interface only) and the user program.

Memory space on the PCD

3

Module	Description	for PCD2	system	User backup	File system	Socket
PCD7.R500	Flash memory modules as backup for the user program.	M5xx0		1 MB		M1 / M2
PCD7.R550M04	Flash memory modules with file system. To save files e.g. for the web server. The files can be accessed by the PCD via FTP or HTTP direct servers. The PCD can also write PC-readable files (*.csv) directly to the module.	M5xx0			4 MB	M1 / M2
PCD7.R551M04	Flash memory modules with file system and as backup for the user program. The files can be accessed by the PCD via FTP or web servers. The PCD can also write PC-readable files (*.csv) directly to the module.	M5xx0		1 MB	3 MB	M1 / M2
PCD7.R-SD256 PCD7.R-SD512	SBC SD flash memory card with 256 or 512 MB file system. This card can be read with a card reader and the appropriate software (SBC File System Explorer) installed on a PC.					

Sockets for memory modules

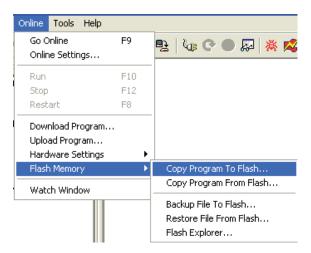
The slots shown below are intended to take memory cards.

3.12.2 Program backup and restore on backup flash

The user program memory (user program, text/DB memory and extension memory), including the hardware settings, can be copied from a PCD either to the onboard flash or to an appropriate memory module. The procedure for backup/restore to/from a flash card is identical to that for backup/restore using the onboard flash.

If a flash card is plugged into the PCD and a backup is run, this module is automatically written to and the backup is also created on the onboard flash (provided sufficient memory space is available).

With a restore with a memory module plugged in, the content of the flash module is restored and then (where possible) copied to the onboard flash.



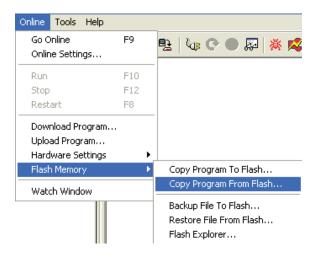
Where multiple flash modules suitable for backing up the user program memory are installed on the PCD, the first from the left will be read/written to (sequence: M1, M2).

In order to copy to the backup flash, the control must be in a STOP state. Where necessary, a reminder message will appear. The copying process may take up to 30 seconds. During the "Copy Program to Flash..." operation, the Run/Halt LED on the PCD flashes alternately red and green, and the Run and Halt LEDs also flash alternately.

Program backup to backup flash

The user program memory can be loaded into flash using PG5. The relevant function can be found on the "Online" menu within the PG5 project manager or the online configurator.

Program restore from backup flash


• Automatic restore

If no valid user program is loaded when the CPU is switched on, the CPU operating system checks whether there is a valid program in the onboard flash; <u>if so</u>, it is automatically loaded and executed.

 \vec{l} An automatic restore is also executed if a flat battery, or none at all, is detected on a PCD2.M5xx0.

• Manual restore with PG5

PG5 can be used to write a valid program including configuration to the CPU from the onboard flash. This function can be found on the "Online" menu within the PG5 project manager or the online configurator:

• Manual restore without PG5

If the "run/halt" switch is pressed for more than 3 seconds (while the PCD is in a "Run" state), the user program will be loaded from the onboard flash.

During the "Copy Program from Flash..." operation, the Run/Halt LED on the PCD flashes alternately red and green, and the Run and Halt LEDs also flash alternately.

3.12.3 Transferring an application with flash card

With the flash card, it is possible to transfer an application from a PCD2.M5_ to another controller of the same type:

- On the source controller, copy the application to the flash card as described in the preceding sections
- Remove the supply to the source controller, and unplug the flash card
- Send off the flash card where applicable
- Insert the flash card into the target controller (which should be switched off)
- Switch on controller.
- Press "Run/Halt" switch for more than 3 seconds; the LEDs will flash while the program is being copied from the flash card (control switches to "Halt" state)
- Restart the control with the "Run/Halt" switch

If the configuration does not match the options available on the controller (e.g. IP configuration on a controller without IP), the controller will switch to "Halt" state and an entry will be written to history.

Loading the user program from the flash card will overwrite the user program backup on the onboard flash, provided there is sufficient space for the program on the backup flash.

3.12.4 Backup program after download option

i

In PG5, there is an option which copies the whole user program (HW configuration, code, Text/DB and extension memory) to flash after the program download. This can be found on the "Download Program..." screen:

Download Program [PCD2_M5540]					
Program File Name: D:\PG5 Projects 1_4\ProjectExample\PC	CD2_M5540\PCD2_M5540.pcd	<u>D</u> ownload			
Destination CPU: PCD2.M5540, on COM1 (PGU)	>	Cancel			
Download	Selected Segments	Channed Dirates			
	🔽 Cod <u>e</u> Segment	Changed Blocks			
C Changed Blocks	☑ext/DB Segment (Text/DBs < 4000)	Options			
🗖 Download in <u>B</u> un	Extension Memory (Text/DBs >= 4000)				
© Selected Segments	🔽 Do <u>w</u> nloadable Files				
Eirst-time Initialisation Data Only					
	🔽 First-time Initialisation Data				
	Copy User Program to Flash	Help			

i

It is also possible to activate this option by default. To do this, the corresponding option should be enabled in the PG5 project manager in the "Tools" menu \rightarrow "Options...":

Options	×
General Build Download Directories	
Download program only if changed	
Download only the changed blocks	
Verify all PCD memory writes	
✓ Run the program after successful download	
🗖 Go online after successful download	
Backup user program to Flash after download Warn if CPU contains program with different name	
OK Cancel Help	

3

3.12.5 Backup/restore of RAM texts/DBs at run-time

As described above, the application can be copied to the flash card after downloading. In order to store process data gathered during operation, there is a facility to copy texts or DBs from extension memory (address \geq 4000) to the flash card, or conversely, to copy the last state written to the flash card back in the text/DB in extension memory.

The memory space required to back up the DBs (extension memory backup) must be configured in the "Memory" tab in hardware settings.

Memory tab

Hardware Settings [Stn_12]	
PCD Memory Password S-Bus Serial	Modem Profi-S-Bus TCP/IP Gateway
☐ <u>M</u> anual RAM Memory Allocation ———	- Flash Backup Memory
Code K LinesText/DB K BytesExtension K Bytes17612864Total User Program Size:896K Bytes	Extension Memory Backup Size: 64K Bytes None 64K Bytes 128K Bytes 192K Bytes
<u>S</u> et Defaults	256K Bytes

On the Memory tab, the Extension Memory Backup Size can be set. This memory size represents the memory space for the "Copy program to flash" function. On the left-hand side, the currently available memory space for the user program is displayed.

If the "extension memory backup size" is increased, the "user program backup size" will be automatically reduced (by twice the configured "extension memory backup size")

For storing texts/DBs on the flash card, restoring, deleting and running diagnostics, there are four SYSRD/SYSWR instructions provided, as described in detail below; these can be invoked **at a suitable place** in the user program. These instructions must be used with great care, to prevent any damage to the unit or the flash card.

Storing a text/DB on the flash card with SYSWR K 3000 Storing a text/DB on the onboard flash with SYSWR K 3100

Instruction:	SYSWR	K 3x00 ¹⁾	
		K number	; address of the texts/DBs as ; K constant or in a register, ; existing text/DB ; addresses in the range >= 4000 ; may be used
	1) Alternatively, the value 3x00 can be passed in a register.		
Battery status after execution:			
	low:	the text/DB has been saved, and the flash card is ready for new SYSWR instructions	
	high:	the last instruction was not processed to completion; before further SYSWR K 3x0x instructions, a SYSRD K 3x0x must be executed to check the readiness of the flash card	

When using the instruction SYSWR K 3x00, note the following:

- After any change of memory configuration, a "backup user program to flash" must be run, to ensure that the "backup DB to flash" will work (partitioning the flash).
- The flash card can be written to a maximum of 100,000 times, so it is not permissible to invoke the instruction in a cyclical manner or at short intervals.
- It is strongly recommended to execute a SYSRD K 3x00 before this instruction, to test whether the flash card is available and ready.
- The processing time for the instruction may be up to 100 ms. At that point, there is no guarantee that all of the text/DB has been written (the process will continue in background). For this reason, the instruction must not be invoked in XOB 0 (XOB for a power failure) or during time-critical processes.
- If errors occur during processing, XOB 13 will be called where it is present, or the error LED will be set
- When starting the PCD after a loss of RAM memory, the state of the texts/DBs after the last download is restored, even where the SYSWR K 3x00 instruction has been used to store newer versions.
- Within the maximum number of write cycles, a text/DB can be stored any number of times, without the flash card becoming over-full.

Restoring a text/DB from the flash card with SYSWR K 3001 Restoring a text/DB from the onboard flash with SYSWR K 3101

Instruction:	SYSWR	K 3x01 ¹⁾	
		K number	; address of the texts/DBs as ; K constant or in a ; register, existing text/DB ; addresses in the range >= 4000 mAy be used
	1) Alternatively, the value 3x01 can be passed in a register.		
Battery status a	after executi	on:	
	low:	the text/DB has been restored and the process is complete, so further SYSWR K 3x0x instructions can be executed immediately	
	high:	before further	ction was not processed to completion; SYSWR K 300x instructions, a SYSRD be executed to check the readiness of the

When using the instruction SYSWR K 3x01, note the following:

- It is strongly recommended to execute a SYSRD K 3x00 before this instruction, to test whether the flash card is available and ready.
- If errors occur during processing, e.g. because no flash card is plugged in, XOB 13 will be called where it is present, or the error LED will be set

Memory space on the PCD

Deleting stored texts/DBs from the flash card with SYSWR K 3002 Deleting stored texts/DBs from the onboard flash with SYSWR K 3102

Instruction:	SYSWR	K 3x02 ¹⁾	
		K 0	; Dummy parameter, required to
			; maintain the structure of the SYSWR
			; instruction
	1) Alternatively	, the value 3x02 can	be passed in a register.
Battery status at	fter executio	n:	
	low:	the text/DB has been deleted and the process is complete, so further SYSWR K 3x0x instructions can be executed immediately	
	high:	before further	ction was not processed to completion; SYSWR K 3x0x instructions, a SYSRD be executed to check the readiness of the

When using the instruction SYSWR K 3x02, note the following:

- The deletion only affects text/DBs previously stored with SYSWR K 3x00. The contents of the extension memory stored after a download are retained
- It is strongly recommended to execute a SYSRD K 3x00 before this instruction, to test whether the flash card is available and ready.
- The processing time for the instruction may be several 100 ms. For this reason, it must not be invoked in XOB 0 (XOB for a power failure) or during time-critical processes.
- If errors occur during processing, e.g. because no flash card is plugged in, XOB 13 will be called where it is present, or the error LED will be set

Diagnostics of flash card with SYSRD K 3000 Diagnostics of onboard flash with SYSRD K 3100

Instruction:	SYSRD	K 3x00 ¹⁾	
		R_Diag	; Diagnostics register
	1) Alternatively, the value 3x00 can be passed in a register.		
Battery status after execution (only where memory space available for "backup DB to flash" function):			
	low:	The flash card is ready, and SYSWR 3x0x instructions can be executed	
	high:		is not available or not ready; the diagnostic e retrieved and the process retried later

When using the instruction SYSWR K 3x00, note the following:

• The battery is only set as described above where there is memory space available for the "backup DB to flash" function (i.e is correctly configured). For this reason, the diagnostics register should also be checked. A decimal value of 0 means that the flash can be used.

Specifica	Specification of diagnostic register			
Bit-no.	Description	Cause, where bit high		
0 (LSB)	No backup possible			
1	Header not configured	No application on the flash card		
2	No SYSWR access to flash card	The corresponding option has not been activated in the hardware configuration (reserved for text/DB etc.)		
3	DB/text not present	In the last instruction, an incorrect DB/text number was used as a parameter		
4	DB/text format invalid	The length of the DB or the text has been changed		
5	Restored	Text/DB on the flash card has been restored, as an error occurred		
6	Memory full	Too many texts/DBs, no more free memory space available		
7	Already in progress	The last SYSWR 3x0x instruction was not yet completed when the next was started		
831	Spare			

3

3.13 Memory module PCD2.R6000 for flash cards (FCs)

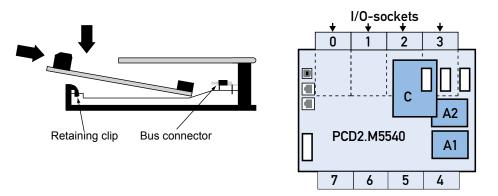
3.13.1 System overview

The PCD2.R6000 is an I/O module for industrial Secure Digital (SD) flash card applications, for which it can be inserted into I/O slots 0...3 on a PCD2.Mxxxx. The SD cards can be removed with the power on.

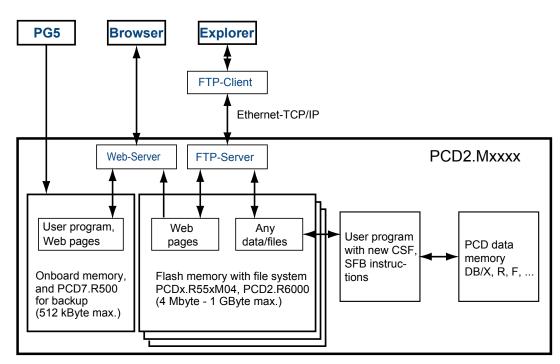
The SD cards can be accessed in 3 different ways:

- Via Ethernet TCP/IP with FTP server
- With a browser via PCD web server
- With the PCD program, using a file system library

3.13.2 Technical data


PCD2.R6000 module	
Power consumption without SD flash card	15 mA
Max. power consumption incl. SD flash card	100 mA
Display	5 LEDs
Operating mode setting	BCD switch
Card holder and detection switch	With label clip
Required properties of SD flashcard (as test	ed by SBC)
Capacity supported	128, 256, 512 MB, 1 GB
Technology	Single-level cell
Service life	600,000 or more programming/deletion
	cycles
Data retention	5 years or more
Operating temperature	-25°C+85°C or better
MTBF	1,000,000 hours or better

3.13.3 Operation


The PCD2.R6000 can only be inserted into I/O slot 0...3 (0, 16, 32, 48) on a PCD2.Mxxxx. The firmware detects these modules at start-up and installs the necessary drivers. Do not insert or remove the modules with the power on. Up to 4 PCD2.R6000 units can be used in a PCD2 system.

Insertion of I/O modules

The I/O modules are inserted from the side, pushed towards the middle of the unit until they reach the end stop and snap into the retaining catch.

Data access

FTP server and file system access can only be achieved with the plug-in flash memory module. Access via FTP server is only possible via the Ethernet TCP/IP interface.

Based on the predefined requirements, SBC uses its own file system. The SBC file system is embedded in a FAT (PC compatible file system) framework, to make the restricted processes when used in a commercial SD card reader/writer visible with

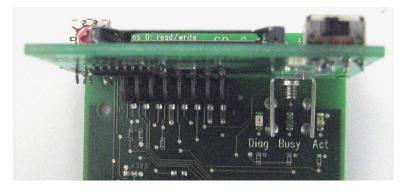
3

standard PC tools. The SBC file system is called SAIANTFS.FFS.

Individual files within SAIANTFS.FFS can be accessed with a software tool for PCs provided by SBC.

As 10% of the SD card capacity is reserved for the FAT, this extraction PC tool can be copied there. This allows data stored in the SBC file system to be accessed quickly on any PC with a standard SD card reader. The SBC PC tool can also make copies of SAIANTFS.FFS on any drive. Any remaining FAT storage space can be used to save documentation or for other purposes.

The PCD2.R6000 can be used for PCD2 program backup in the same way as the PCD7.R500. The PCD2 program backup is written to the file backup.sei in a specified area and identified as a hidden read-only file in the FAT.



Apart from the SAIANTFS.FFS and backup.sei files, files in the FAT area cannot be accessed when the SD card is inserted into the PCD2. During formatting, a file is written to the FAT area containing the properties of the SD card. Data access is faster with a commercial SD card reader/writer than with a PCD2.

3.13.4 Displays and switches

The memory module is fitted with 3 LEDs:

LED	Meaning
Diag	The diagnostic LED is turned on when the SD card is not "visible" (eg SD card is not formatted with FT16, poor "boot sector", or poorly plugged in). Once the SD card is inserted properly, it can take 5 seconds until the LED goes out
Busy	Do not remove module when this LED is on.
Act	Works as with a hard disk drive; flashes when data being processed

Setting of operating modes with the BCD switch:

On the module is a 10-position BCD switch which can be set with a #0 screwdriver.

BCD position	Meaning
0	normal read/write**
1	Spare
2	Spare
3	Spare
4	Spare
5	format*/**
6	Spare
7	Spare
8	Spare
9	normal read only

Starts after insertion; remove, then plug in again

If the card itself is not write-protected (switch or software)

- There must be a PC FAT file system (FAT16) on the card in order for the SD card to be formatted with the SBC file system
- First, all FAT files are deleted, then the SBC file system is installed when the card is inserted and the BCD switch set to 5
- If the BCD switch is set to 0, the SBC file system (SAIANTFS.FFS) is installed if it is not already present and the card is empty, i.e. if a new card is installed, it does not have to be formatted with position 5.
- Not all flash cards have a "write-protect" switch
- The card is inserted into a so-called push-push socket (push to insert and remove)
- Do not remove card when the "Busy" LED is on.

3.13.5 Flash card

The SD flash card is not part of the PCD2.R6000 and has to be ordered separately.

The SD card must be of good quality (industry-standard, as tested by SBC). Other flash cards can also be used, but they will not be supported and are excluded from any warranty.

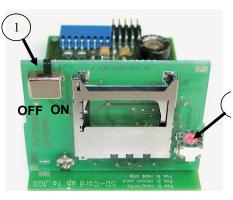
To increase service life, the flash cards should not be more than 80% filled for pure read applications. For read/write applications, no more than 50% of the memory space should be used.

On the PCD2, a non-standard file system (SBC FS) is used. This means that the flash cards have to be formatted before being used for the first time. This happens automatically when a new FAT 16 flash card is inserted into the PCD2.R6000.

Flash card handling

The card is inserted into a so-called push-push socket (push to insert and remove). It can be removed without switching off the PCD2.

3


Inserting the flash card

Move slider on the PCD2.R6000 to the OFF position

When inserting the flash card, press until you feel some resistance; you may hear a soft click. Ease off the pressure until the card is at the same height as the slot.

Move slider ① on the PCD2.R6000 to the ON position

The SD card is formatted with the SBC file system (regardless of the setting of the BCD switch⁽²⁾)

3

Removing the flash card

Move slider 1 on the PCD2.R6000 to the OFF position

Wait until the "Busy" LED is off. If the "Busy" LED is off, push the card into the module housing until you feel some resistance. Ease off the pressure until the card slides out.

Reformatting the flash card

Move slider ① on the PCD2.R6000 to the OFF position Wait until the "Busy" LED is off. Turn BCD switch ② to position 5 Move slider ① on the PCD2.R6000 to the ON position Wait until the "Busy" LED is off. Remove and re-insert SD card **NB: This procedure deletes all stored data.**

3.13.6 User program backup to the flash card

It is possible to back up the user program (see section 3.12.1) to the flash card in the PCD2.R6000.

The memory locations for the user program (to back up and restore) are queried in the following order:

1. M1 Slot

- 2. M2 Slot
- 3. I/O Slot 0...3
- 4. Onboard flash memory (where present)

I/O bus functions

Some states are detected by the user program.

I/O bus offset	Write	Read	Meaning
+0		BCD switch setting Bit 0 (Isb)	Position (non-inverted) of BCD
+1	do not use	BCD switch setting Bit 1	switch
+2	do not use	BCD switch setting Bit 2	
+3	do not use	BCD switch setting Bit 3 (msb)	
+4	do not use		
+5	do not use		
+6	do not use	0 = Card present	1 = card removed
+7	do not use	SD write-protect switch	1 = SD blocked/removed 0 = MMC or SD released

3.13.7 Order details

Order code	Description	Weight
PCD2.R6000	Base module for SD flash memory cards, for I/O	60 g
	slot 03 (flash card not included)	
PCD7.R-SD256	SD flash memory card 256 MB	2 g
PCD7.R-SD512	SD flash memory card 512 MB	2 g
PCD7.R-SD1024	SD flash memory card 1,024 MB	2 g

3.14 Hardware clock (Real Time Clock)

The PCD2.M5_ CPUs are fitted with a hardware clock on the motherboard:

The presence of a hardware clock is an absolute requirement where the HeaVAC library clock timers are used.

3.15 Hardware watchdog

PCD2.M5_ CPUs are fitted with a hardware watchdog as standard. A relay at I/O address 255 can be triggered; this remains activated as long as the status of O 255 changes periodically at least every 200 ms. Within PG5, FBoxes are provided for this purpose.

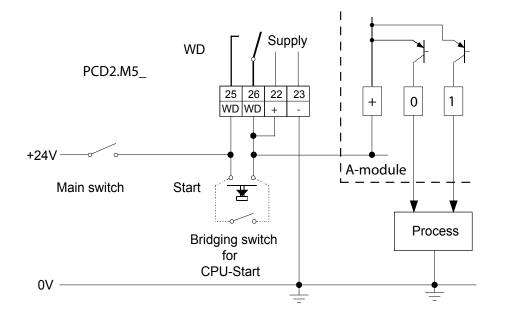
If for any reason the program component with the watchdog FBox is no longer being processed at sufficiently short intervals, the watchdog relay will drop out and the amber watchdog LED will go out. Please read the online help for these FBoxes for more details.

The same function can also be implemented with IL (AWL) instructions. This variant works **independently of the cycle time** of the user program.

Example:

COB	0		; or 1 15
	0		
STL	WD_F1a	ag	;Invert help flag
OUT	WD_F1a	ag	
OUT	0 255		;Set output 255 to flashing
	:	:	
	:	:	
ECOB			

With the code shown in the example, the watchdog also drops out in the case of loops caused by the programmer. With regard to the cycle time of the user program, please note:


• With cycle times over 200 ms, the code sequence must be repeated several times in the user program, to prevent the watchdog dropping out in normal operation.

As address 255 is in the normal I/O range, there are restrictions on the permissible I/O modules in certain sockets:

CPU type	Restrictions
PCD2.M5_	 No analogue, counter and motion control modules on the socket with base address 240 (apart from PCD3.W3x5 and PCD3.W6x5, which are not affected by the watchdog) autout 255 connect he wood for divide V(0 modules)
	PCD3.W6x5, which are not affected by the watchdog 2) output 255 cannot be used for digital I/O modules

Watchdog - connection diagram

i

¹⁾ Switching capacity of the watchdog contact: 1 A, 48 VAC/DC

The status of the watchdog relay can be read via I 8107 "1" = Watchdog relay on.

3.16 Software watchdog

The hardware watchdog provides maximum security. However, for non-critical applications, a software watchdog may be sufficient, whereby the processor monitors itself and the CPU is restarted in the event of a malfunction or a loop.

The core of the software watchdog is the instruction SYSWR K 1000. When this is first issued, the software watchdog function is activated. This instruction must then be issued at least every 200 ms, or the watchdog will trigger and restart the controller.

Instruction:	SYSWR	K 1000	; Software watchdog instruction		
		R/K x	; Parameters as per table below ; K constant or value in ; register		
	x = 0	The software wa	software watchdog is deactivated		
	x = 1		The software watchdog is activated; if the instruction is not repeated within 200 ms, there will be a cold start		
	x = 2	repeated within	The software watchdog is activated; if the instruction is not repeated within 200 ms, XOB 0 will be called and then there will be a cold start		
		XOB 0 calls are entered in the PCD history as follows:			
		"XOB 0 WDOG	START"	where XOB 0 has been invoked by the software watchdog	
		"XOB 0 START	EXEC"	where XOB 0 has been invoked because of a supply fault	

3.17 User inputs and outputs

3.17.1 Basics

Because of the input filters and the effect of the cycle time, the digital input modules are not suitable for immediate reaction to events or for rapid counting processes.

When a positive edge is detected at the user input, an associated XOB is called (e.g. XOB 20). The code in this XOB defines how the unit should react to the event. The code in the XOB called from the user input must be kept as brief as possible to allow enough time between the interrupts to process the rest of the user program.

Many FBoxes are intended for cyclic invocation and so not suitable for use in XOBs, or only in a limited way.

Exception: the FBoxes in the Graftec family (standard library) are well suited

3.17.2 PCD2.M5_ 24 VDC interrupt inputs

The interrupt inputs (also called user inputs) are located on the motherboard and can be connected via a 10-pole, plug-in terminal block (X6 - terminals 30 to 39). Source operation is always used.

Pin	Inputs	XOB called in case of a positive edge	Direct input query	Outputs	Direct output query
39	IX0	XOB 20	I 8100		
38	IX1	XOB 21	I 8101		
37	IX2	XOB 22	I 8102		
36	IX3	XOB 23	I 8103		
35	IX4*				
34	IX5*				
33				out0	O 8104
32				out1	O 8105

3-53

3

Operation:

When there is a positive edge at input **IX0**, **XOB 20** is called. The response time until XOB 20 is called is a maximum of 1 ms (input frequency max. 1 kHz where pulse/ pause each 50 %, total of 4 frequencies max. 1 kHz). Regardless of whether the XOB is programmed, input 8100 is set (the same applies to IXn; see table above).

3.17.3 PCD2.M5_ user outputs

Sorry, this sub-chapter is in preparation. Please see german manual

3.18 Operating mode switch (Run/Halt)

3.18.1 Run/halt push button

The operating mode can be changed while in use or at start-up:

At start-up:

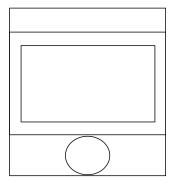
• If the Run/Halt push button is pressed during start-up and then released again during one of the sequences described below, the following actions may be triggered:

LED sequence	Action
Orange	none
Green, flashing	Goes into "Boot" state and waits for f/w down-
(1 Hz)	load
Red, flashing fast (4 Hz);	The system starts in the same way as with a
from FW > V01.08.45	flat Super CAP or missing battery, i.e. me-
	dia (flash, registers etc.), user program and
	hardware settings are erased. The clock is set
	to 00:00:00 01.01.1990. The backup on the
	onboard flash is not deleted.
Red, flashing slowly (2 Hz)	The PLC does not start up and goes into
	"Stop" mode.
Red/green flashing (2 Hz)	Stored data deleted, i.e. media (flash, regis-
	ters etc.), user program, hardware settings
	and the backup on the onboard flash are
	erased. However, where an external flash
	card is used, the program is not copied to the
	onboard flash.

In operation:

- If the button is pressed in run mode for more than ½ second and less than 3 seconds, the controller changes to halt mode and vice versa.
- If the push button is pressed for longer than 3 seconds, the last user program saved will be loaded from flash memory.

3.18.2 Run/halt switch


On the PCD2.M5_, it is also possible to influence the operating state with the switch accessible on the front of the unit under the blue cover.

If the controller is switched to halt mode, this will cause a change from run to halt; when it is switched to run, a cold start will be executed.

To release the switch, check the options in the PG5 hardware settings (see section 8.1.2).

3.19 E-display with PCD7.D3100E nano-browser

3.19.1 Technical data

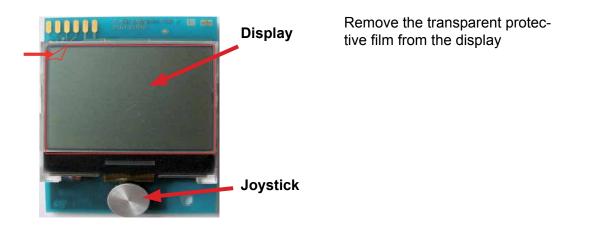
Dimensions (mm) Overall: 67 x 47 mm

Electrical data

Current consumption:	50mA at +5V with backlighting
	10mA at +5V without backlighting

Display details

4-stage grey dot matrix liquid crystal display128 x 88 pixels with 0.25 x 0.25mm pixel sizeDisplay size: 25 x 35 mm


3.19.2 Installing the display

The eDisplay is an electronic device, and must be handled according to ESD (electrostatic discharge) guidelines.

Remove cover of PCD2.M5_ housing (see section 3.5.2) Remove the transparent protective film from the back of the cover

Insert the display into the aperture and push up to the stop. Fix with the screw provided (3 x 6 Torx plus).

Cleaning advice

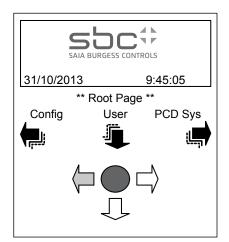
Do not use abrasive cleaners and/or cleaning implements that could damage or scratch the surface of the display. To clean any residues off the surface of the display, we advise the following procedure:

- Apply kerosene or ethyl alcohol with a clean soft cloth
- Then clean with fresh water and rub with a clean soft cloth

Finally, replace the cover of the PCD2.M5_ housing (see section 3.5.3).

3.19.3 Function and use of Joystick

Joystick to navigate within the menu


Pressing the up, down, left and right keys allows:

- movement and selection of different menu options
- modification of numeric values

Pressing on the centre generates an ENTER command

Moving between different menu options

Example: Pressing twice to the left moves from "PCD sys" to "Config".

Changing a numeric value

Select a field with a numeric value using the joystick and then press ENTER.

Example:

- Select value: move joystick up or down to increase or decrease value (0 1 2 3 4 5 6 7 8 9 + -)
- Press left to select the left-hand digit. The perform the same operation as for the previous digit
- When you reach the right value, press ENTER
- Change applied

Changing an alphanumeric character

Select a field with editable numeric value or alphanumeric character (small letter only) with the navigation switch then press ENTER.

Example:

Changing the html user start page.

- Change one (or several) character(s)

Select the user start html field then pressing enter. Move the cursor left and right with the navigation switch to select the character that you want to change, then move the navigation switch up and down to select the new character.

- Add one character at first position

Select the user start html field then pressing enter, the first character is selected. Move the cursor with navigation switch left and select the character that you want to add then press enter.

→'start.html' becomes 'astart.html'

- In order to delete a character at "end" position he can just make a space sign "out" of the character you want to delete. -> 'start.html' becomes 'start.htm ' -> 'start.htm')

- You cannot delete a character at "first" position. Re-write the name. Example: ' es-tart.html'

- You cannot delete the space character at left. Rewrite 'estart.html'

Available characters

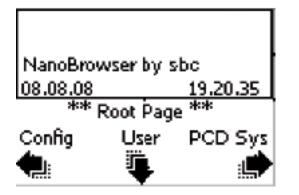
/available numbers and characters in edit mode: const char digitFloatList[] = {'0','1','2','3','4','5','6','7','8','9', `.', `-', `+', ``};

//for string editing mode

char signList[] = { 'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x',' y','z','

'-'_"0','1','2','3','4','5','6','7','8','9' · '};

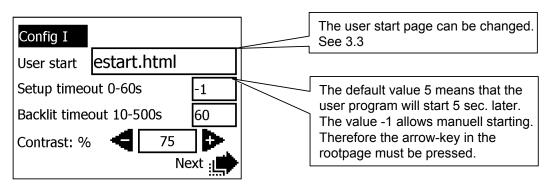
Character Editing does work for PPO with STRING format


PCD texts can be editable with the eDisplay, only if the texts are in "small letters" (and with STRING format).

3.19.4 Structure of the setup menu

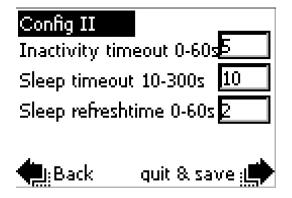
The setup menu was created with the web-editor. The setup menu project is included in the PCD2 firmware.

Root Page


The root page is the first page which is displayed after "switch on" the PCD

Menu point	Description	see topic
Config	go to the configuration pages	4.2 & 4.3
PCD Syst	go to the PCD system pages	4.4 4.6
User	go to the user program	8

3


Configuration page 1

Menu point	Description	min	max	Default	comment
User start	Start page of the	2*	16*	estart.html	Editable
page	user program				* = text length
Setup timeout*	Time in seconds to wait in root page before loading user project.	-10	60	5	When -1, the user project is started manually (time = ∞) by clicking on the USER arrow button
Backlit timeout	Time in seconds to wait till backlight is switched off.	10	500	60	0 is prohibited
Contrast	Contrast of the dis- play in %	25	100	75	By steps of 25 (25 - 50 - 75 and 100)

* Setup timeout: This timeout can be increased up to 60 sec (value is 60) and up to "∞ " (value is -1). Using the intermediate values 0 to 2 is injudicious because we have not enough reaction time to stay in the setup menu.

Configuration page 2

PCD system page 1

I
PCD2.M5xxx
В 0
1.09.xx
08/05
Next 🜧

PCD type	Reference of the PCD2.M5	Read only
HW version	Hardware version of the PCD2	Read only
FW version	Firmware version of the PCD2	Read only
Prod. date	Production date of the PCD2 (year & week)	Read only
Back	Back to the root menu	Read only
Next	Go to the PCD system page 2	Read only

PCD system page 2

PCD System 3	II			
PCD Status:	RUN			
Serial Nr:	012DCD41			
Program name:CPU1				
S-Bus Address	:B2			
🜪 Back	Next 💼			

PCD Status	Status of the PCD2: RUN / HALT	Read only
Serial Nr.	Serial Number of the PCD2	Read only
Program name:	Name of the PG5 Program (can be cut at end)	Read only
S-bus Address	S-bus address of the PCD2	Read/ write
Back	Back the PCD system page 1	
Next	Go the PCD system page 3	

Hardware Manual for the PCD2.M5 Series Document 26/856; Version EN12 2014-07-24

PCD system page 3

PCD System	III TCP / IP
Address:	192.168.12.220
SubnetMask	: 255.255.255.0
Router:	192.168.12.220
	: 0051C287EC5F

IP Address	TCP/IP address of the PCD2	Read/ write
SubnetMask	Subnet Mask address	Read/ write
Router	Router address	Read/ write
Mac address	Mac address of the PCD2	Read only
Back	Back the PCD system page 2	
To root page	Go the root page	

3.19.5 PG5 Device configuration for eDisplay

With the PG5 SP 2.0.150 you can configure the setup menu of the "eDisplay". This is available in combination with PCD2.M5xxx firmware version \geq 1.14.11

In the Device configurator: Select the display module PCD7.D3100E

ielector
⊕- Memory Modules PCD7 for PCD2/3
⊕ Communications Modules PCD2 for PCD1/2
⊕- Communications Modules PCD7 for PCD1/2/3
⊐- Display Modules PCD7 for PCD2
PCD7.D3100E, LCD Display With Nano-Browser

Onboard Communications				
Location	Туре	Description		
Display	PCD7.D3100E	LCD eDisplay, 4-stage grey per dot, 128x88 pixels.		

Then adapt the default values

Properties	
Display : PCD7.D3100E, LCD D	isplay With Nano-Browser
Power Consumption	
Power Consumption 5V [mA]	50
🗆 eDisplay Configuration	
Start Page	estart.html
Setup Timeout [s]	5
Backlight Timeout [s]	60
Contrast [%]	75
Auto Escape Time [s]	5
Sleep Mode Time [s]	120
Sleep Erneuerungs Time [s]	2

Explanations and mini/max values: see the topics 4.2 and 4.3

3.19.6 USER project

What you must know to create a user project (recommendation)

User project start name

The default html user project start name is 'estart.html' – to change the html name see topic 3.3. Character Editing does work for PPO with STRING format

Maximum of PPOs, containers, painters ... per project and per view

	nber
Max PPO per project	100
Max Container per project	16
Max HTML Tag per project	1000
Max PPO per view	30
Max Container per view	16
Max HTML Tag per view	1000
Max Painter per view	20

See also /Web Editor/ SaiaDefaultSpiderHWProfile.shp

Fonts

Don't use any fonts. Please refer to the topic 5.3. In the project configuration, select Tahoma regular 8,10 or 12 as default font.

Project Configurations				×
Project - Teq Configurations	Project - Applet Advanced	Project - Build Advanced	Project - Advance	ed
Teq Configurations Width : 128 Height : 88 Background Color			Pixels Pixels	
Forground Color				
	Font			
Outline Width: For	ıt			?×
Outline Style: F	ont:	Font style: 9	dize:	
background TEQ	Tahoma	Regular Italic	8 🔺 🗠	Incel
csy files (undate)	O Times New Roman Trebuchet MS Tunga TURWIN8×15 (ESA 8 Verdana	Bold Italic	10 11 12 14 16 •	

Set focus macro

Cause of the system of navigation (no touch screen), one but only one "EventP_Set-Focus_onGainFocus" macro is necessary in each teq view. You advice to put this macro under a Jump action to another page.

Web-editor Build advanced

Always, have a look to the Web-editor Build advanced before compiling !!

Ρ	Project Configurations	
	Project - Teg Configurations Project - Applet Advanced Project - Build Advance	ad l
	Floject - Led Coulingarations Floject - Applet Auvanceu Floject - Baild Advance	~ I
	Build configurations	
	Make Memory Foot Print Check	
	✓ Force Teq Files saving as 5_13 format (in ["\Html"] folder)	
	Generate Saia Converted runtime files (in ["\Html"] folder)	
	Convert project's Gif to Bmp	
	Generate Font files	
	Generate/Update Scalable html files	
	Generate/Update language csv files	
	🔽 Generate html file	

Jump to the setup menu

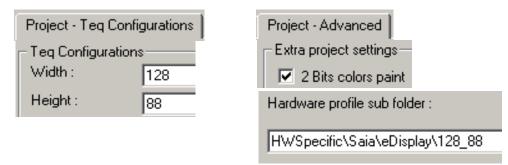
 \rightarrow Access to the setup menu without switch off the PCD. Recommendation:

Add a button with an "URL jump" to the "saiaedsetup.html"

🔽 URL Jump	URL	SAIAEDSETUP.html		
	Frame	_self		

Known restriction

- Edit boxes do not support grey interior color but only black or white


3.19.7 Web-Editor

Web-Editor Version

At least Version 5.14.23 or higher is necessary to start with the eDisplay with Firmware 51. Reduced eDisplay functionality is available with delivered license key.

Specific Project Settings for eDisplay

This software version integrates new functionalities which are essential for the good implementation of a project for the eDisplay

Default Fonts, Fonts and Font generator

Default Fonts:

The two default fonts and size are:

- Tahoma regular 8
- Tahoma regular 12

These fonts can be used in all cases, for PPOs, Containers, Strings or html tags.

Font generator

The use of other character sets and font sizes is possible with the font generator, which has been incorporated in this version. The relevant .fnt files are created automatically during the Web-Editor's «build».

Project configuration:

🔽 Generate Spider Font files 🛛

Painters	Format	Tahoma	Tahoma	Add	Add	Add	Add
		regular 8	regular 12	font 1	font 2	font 3	font 4
Button + Static text	String	х	x				
	PPO	х	x				
	Container	х	x				
	Html Tag	х	x	Х	Х	х	х
Edit-box	PPO	х	x				
	Container	х	x				
Multi-line label	String	Х	x				
	Html Tag	х	x	х	х	х	х
Macros							
Table control		х	x				
Drop down PPO		х	x				
Drop down html tag		х	х	х	х	х	х

Fonts

Values are not displayed if edit boxes use other fonts than default Tahoma fonts 8 or 12.For example Arial 10,11,14,16 etc do not display values.

Exception regarding Edit Box fonts: You can select other fonts than Tahoma 8 and 10, provided that the selected fonts be already used as fonts for STATICTEXT (HTML TAG format)

Gif to Bmp converter

The eDisplay displays only monochrome pictures (icons) in bmp format.

This software version contains a GIF to BMP format convertor, enabling you to display bmp pictures without having to use a special editor for conversion.

Project configuration:

Convert project's Gif to Bmp

The Web-Editor project will have to be compiled, remembering to select the options: « Generate Spider Font files » and/or « Convert project's Gif to Bmp »

Creation of .fnt and .bmp files then takes place automatically.

Macros valid for eDisplay

Macro names	Status	Listed in Webedi- tor 5.14. 27
EventP_SetFocus_onGainFocus_5_13_05.esm	Indispensable macro for each .teq view (see topic 5.1.4)	yes
eD_EventP_URLJump_isEqual_5_14_03.esm	Ok	yes
eD_ButonURLJump_onMouseDown_5_14_03.esm	Ok	yes
eD_EventP_ViewJump_onTimeout_5_14_03.esm	Ok	yes
eD_EventP_ViewJump_isEqual_5_14_03.esm	Ok	yes
eD_EventP_Logout_onTimeout_5_14_03.esm	Ok	yes
eD_EventP_writeSrc2Dst_onLost_5_14_03.esm	Ok	yes
eD_EventP_writeSrc2Dst_onRepaint_5_14_03.esm	Ok	yes
eD_EventP_writeSrc2Dst_onGain_5_14_03.esm	Ok	yes
eD_EventP_writeSrc2Dst_isEqual_5_14_03.esm	Ok	yes
eD_PasswordDialog_UserLevel_5_14_26.esm	Ok	yes
eD_DropDownList_5_14_03.esm	Ok	yes
eD_DropDownList_5_13_40.esm	Ok	yes
eD_TableControl_EditablePPO_Page- Jump_5_13_17.esm	Ok	yes
eD_EventP_URLJump_onTimeout_5_14_03.esm	Don't use it	yes
eD_Blinker_5_14_03.esm	Ok !! @BLINKO contain- er variable does not blink with 1 sec/1 sec. for the period of 1 sec but with faster frequency.	yes

- All this macros are part of the Web Editor package under: HWSpecific/Saia/eDis-play/128_88/MacroLib

3.19.8 Browse the eDisplay pages on the PC

Browse the setup menu pages on the PC

The setup menu pages (x6) are part and parcel of the PCD2 firmware. As any web pages, you can browse the setup menu pages on a PC. Actually the setup menu was compiled with Web-editor 5_14_27, the imaster file is IMasterSaia5_14_27.jar

What's the drill? Copy the IMasterSaia5_14_27.jar into the flash module PCD7. R550xxx.

Browse setup menu html files in 3 different sizes:

Scale 1:1 \rightarrow http:// IPaddress/saiaedsetup.html Scale 3:1 \rightarrow http:// IPaddress/saiaedsetupx3.html Scale 5:1 \rightarrow http:// IPaddress/saiaedsetupVGA.html (the scale 5:1 allows to display the setup pages in ~ VGA size \rightarrow 640 x 440 pixels)

 \rightarrow To use this feature, the file *IMASTERSAIA5_14_27.JAR* needs to be copied on the flash module PCD7.R550.

Browse the User project pages on the PC

As any web pages, you can browse your user project on a PC.

- IMASTERSAIAx xx xx.JAR is necessary!

Use the same IMasterSaia5_14_27.jar version number as your web-editor version. If you compile your user project with the Web-editor 5.14.27. you need the IMaster-Saia5_14_27.jar to browse the project on the PC.

If you compile your user project with a new Web-editor 5.nn.nn version, you need the IMasterSaia5_nn_nn.jar to browse the project on the PC.

What's the drill? Copy the IMasterSaia_5_14_27.jar or other into the flash module PCD7.R550xxx. (The IMasterSaia5_x,xx.jar version must always be corresponding to the web-editor version)

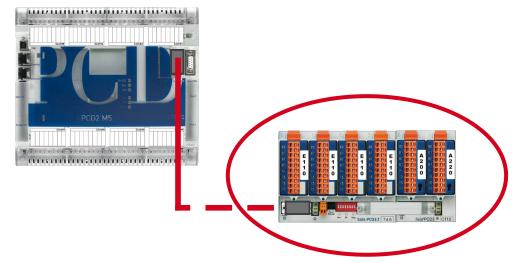
Use the scalable function of the Web Editor to create scalable html files. We suggest to use the scale x3 or x5 in order to increase the teq pages with the same ration as the the setup menu pages (see chapter 7.1)

	estartvga.html ; [5.000000]	-
scalable html :	estartx3.html ; [3.000000]	
		$\mathbf{\nabla}$

Error Message:

Out of memory heap 2:

- Info Ininet regarding Heap 2:


Heap2 (1040 Bytes) is in case of NanoBrowser only used for Container variables. Container variables have a fixed value length but variable name lengths. The editor does not make a byte calculation but there is a limit given in the SpiderH-WProfile.shp Hardware profile. There is no number of macro limitations.

Look the SpiderHWProfile.txt under the directory "web editor". This is automatically generated by the web editor during compiling !!!!

PCD3.T76x head stations

4 **RIO (remote input/output) head stations**

PCD3.RIOs (remote I/Os) are used to capture decentralized I/O signals. PCD3.RIOs can communicate via Profibus-DP with any master PCD; this may be via the integrated Profi-S I/O on the PCD2.M5xx0.

A detailed description can be found in section 4 of the PCD3 Manual 26/789.

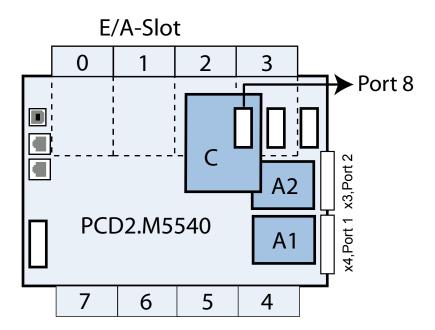
5 PCD2.M5xx0 Communication interfaces

Using the SBC S-Bus

The proprietary SBC S-Bus has been designed essentially for communication with the engineering and debugging tools, and for connecting the management level/process control systems.

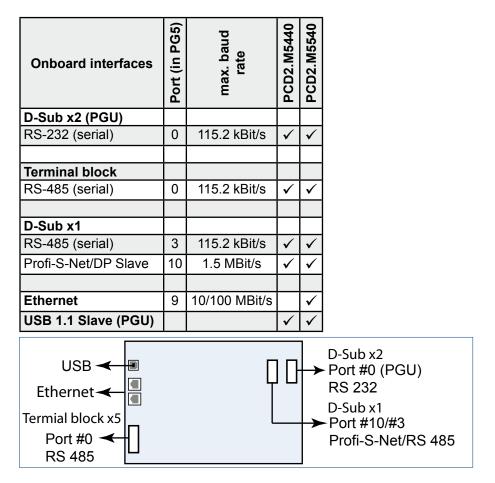
It is neither suitable nor approved for the connection of field devices from diverse manufacturers. An open, vendor-neutral fieldbus will be more effective in achieving this end.

SBC S-Net, the networking concept from Saia-Burgess Controls AG, is based on the RS-485, Profibus and Ethernet open standards. Ethernet covers layers 1 and 2 of the ISO/OSI layer model. Based on layer 2, a variety of different protocols and applications can be run in parallel on the same network.


Layer 2 (Field Data Link-FDL) from Profibus also allows parallel running of different application protocols such as DP, FMS and others. The use of this facility allows Profi S-Net to be used to create a "Private Control Network (PCN)". This makes all SBC units into active network components.

Profibus Layer 2 (FDL) is integrated into the operating system of the PCD2.M5_ CPUs, giving these units a Profi S-Net connection with transmission speeds up to 1.5 Mbp/s.

The devices support Profibus DP and S-Net on the same port. This allows Profibusbased networks to be constructed cheaply and flexibly.



The PCD2.M5_ type controls have a Saia PCD[®] COSinus operating system with which higher transfer speeds (SBC S-Bus up to 115 kBit/s) can be achieved; however, lower baud rates (300 and 600 Baud/sec.) are no longer supported.

Overview of plug-in interface modules

5.1 Onboard interfaces

5.2 Plug-in communication interfaces

Base unit with sockets for plug-in communication modules		Summary of plug-in communication modules						
			S	Seria	al		CAN	Profibus
	Socket	PCD7.F110	PCD7.F1211)	PCD7.F130	PCD7.F150	PCD7.F180	PCD7.F7400	PCD7.F7500
PCD2.M5_ E/A-Slot	A1	Port 1				-	-	
0 1 2 3 Port 8	A2		F	Port	2		-	-
PCD2.M5540 A1	с	-	-	-	-	-	Po	rt 8

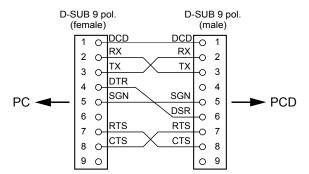
1) Suitable for modem connection, as 6 control lines provided

5.3 Onboard interfaces

5.3.1 PGU connector (PORT#0) (RS-232) for connecting programming devices

The PGU interface (Port#0) is connected to a 9-pole D-Sub connector (female). The interface is used to connect the programming device when the unit is commissioned.

The interface is of type RS-232c.


The pin configuration and associated signals are:

Pin	Designation	Meaning	
1	DCD	Data carrier detected	A device is signalling to the computer that it has detected data on the line
2	RXD	Receive data	Line for reception of data
3	TXD	Transmit data	Line for outgoing (sent) data
4	DTR	Data Terminal Ready	Data Terminal Ready
5	SGN	Signal ground	Signal ground. The signal voltages are measured against this line
6	DSR	PGU connected	PGU detection. A connected device is signalling to the computer that is it ready for use when there is a logical "1" on this line
7	RTS	Request to send	When this line is set to a logical "1", the device is ready to send data
8	CTS	Clear to send	When this line is set to a logical "1", the device can receive data
9	+5 V		

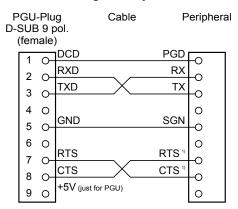
The PGU protocol is provided for operation with a programming device. The use of the PCD8.P800 service unit is supported from firmware version \$301 for all PCD2 controllers.

PCD8.K111 connecting cable

(P8 and S-Bus protocol, suitable for all PCD2 units)

5

Onboard interfaces

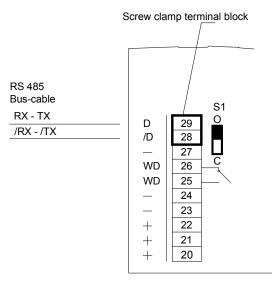

5.3.2 PGU connection (PORT#0) (RS-232) as communication interface

When commissioning/programming are complete, the port can be used for other purposes.

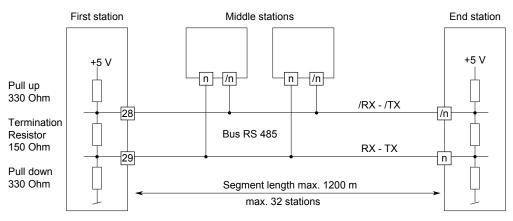
Option 1: Configuration with desired protocol (S-Bus PGU configuration)

Option 2: Assignment (SASI) in the user program (the port must not be configured as an S-Bus PGU port)

- If another programming device is connected during operation instead of the peripheral device, the unit will switch over automatically to PGU mode (pin 6 logical "1" (DSR); in PGU mode: DSR PING = "1").
- Before using the port to connect another peripheral device, Port
 0 must be reconfigured by means of an SASI instruction.



¹⁾ When communicating with terminals, check whether some connections are equipped with bridges or need to be set with the "SOCL" command to "1" or "0". It is generally recommended to use a handshake (RTS/CTS).


Onboard interfaces

5.3.3 PGU connection (PORT#0) (RS-485) as communication interface

If Port 0 is not used via the PGU connection (with the programming device or as an RS-232 interface), it can be used via terminals 28 and 29 for an S-Bus or MC4 connection.

Choice of termination resistors

At the first and last stations, switch S1 must be set to "C" (closed). At all other stations, switch S1 must be left in position set to "O" (factory setting).

5.3.4 USB port as PGU interface

The USB port can only be used as a PGU interface. This leaves the PGU connector free for other communication links (RS-232).

In order to use the USB interface, PG5 version 1.4.200 or later must be installed.

When the PCD is first connected to a PC via the USB interface, the PC operating system automatically installs the appropriate USB driver

To establish a connection with a PCD via USB, the following settings must be entered in the online settings for the PG5 project:

Online Settings [Master_CPU_PCD2_M480]	×
Channel	ОК
Name: S-Bus USB	Cancel
S-Bus USB	
Connection	[
<u>C</u> PU Number: 0	Help
S-Bus Station: 254 🗖 Auto 🔽 PGU	
Number of retries: 3	
1	

Activating the PGU option ensures that the PCD connected directly to the PC can be reached, regardless of the S-Bus address that has been configured.

5.3.5 D-Sub x1 S-Net/MPI

The PCD2.M5_ is equipped with a Profi S-Net interface as standard. This can be used both for programming and for communication with other CPUs (that support Profi S-Bus) and/or SBC RIOs.

Technical details:

Transmission rates: up to 1.5 MBit/s Number of stations: up to 124 stations in segments of 32 stations each Protocols: Profi S-Bus, Profi S-IO, DP Slave, HTTP in preparation (multi-protocol operation on the same interface)

Connection diagram

		S-Net/MPI/RS-485 Port 10 or 3					
	D-Sub pin	signal	Explanation				
	1	PGND	GND				
	2	GND	0 V of 24 V supply				
	3	RxD/TxD-P1) B (red)	Receive/transmit data positive				
	4	RTS/CNTR-P	Control signal for repeater (direction control)				
	5	SGND ¹)	Date communication potential (earth to 5 V)				
Port 10 Port 0 or 3	6	+5V 1)	Supply voltage to P line termination resistors				
	7	MPI24V	Output voltage plus 24 V				
	8	RxD/TxD-N1) A (green)	Receive/send data negative				
	9	not used					

¹⁾ Mandatory signals (must be provided by the user). Specially the both signals SGND and +5V are provided by the PCD, if the Profibus configuration is correct.

Port 10: Pins 3, 4, 5, 6 and 8 are insulated from the system. Pin 2 serves as a backlink for Pin 7.

For details of the configuration and programming of Profi S-Net functions, please consult the specialised manuals.

5

Serial interfaces - Slots A1 and A2

5.4 Plug-in interface modules - Slots A1 and A2


5.4.1 RS-485/422 with PCD7.F110, Port#1 & Port#2

Connection for RS-485

PCD7.F110:

RS-422 with RTS/CTS or RS-485 electrically connected, with line termination resistors capable of activation, for Slots A1, A2.

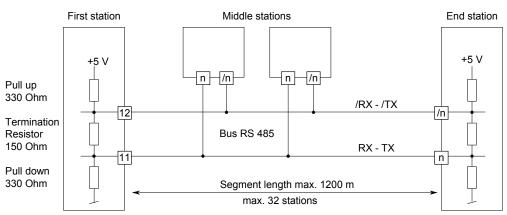
 Screw terminal blocks sockets A1 and A2

 Bus-Cable

 10,(0) PGND

 Bus RS 485

 11,(1) RX - TX


 Bus RS 485

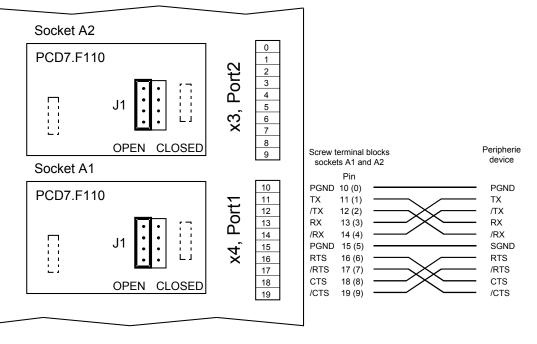
 RX - TX

 12,(2) /RX - /TX

other terminals not used

Choice of termination resistors

Not all manufacturers use the same connection configuration, so the data lines may need to be crossed

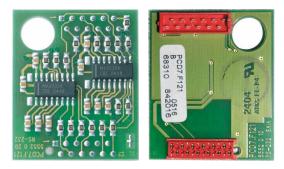


At the first and last stations, jumper J1 must be set to the "CLOSED" position.

At all other stations, jumper J1 must be set to "OPEN" (factory setting). The jumper is on the connection side of the module.

For details, see manual 26/740 "Installation components for RS-485 networks"

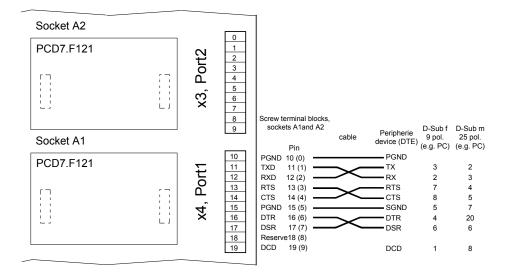
Connection for RS-422

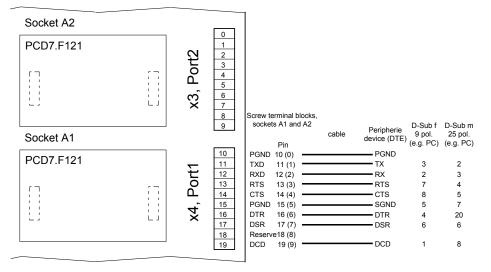


i

For RS-422, each pair of receive lines is terminated with a 150 Ω line termination resistor. Jumper J1 must be left in the "OPEN" position (factory setting). The jumper is on the connection side of the module.

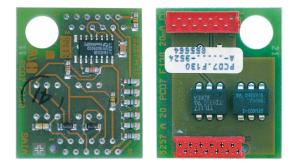
Serial interfaces - Slots A1 and A2


5.4.2 RS-232 with PCD7.F121, Port#1 & Port#2

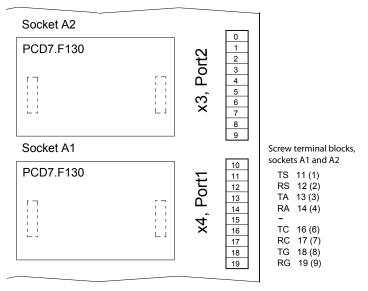

PCD7.F121:

RS-232 with RTS/CTS, DTR/DSR, DCD, suitable for modem connection, for Slots A1, A2

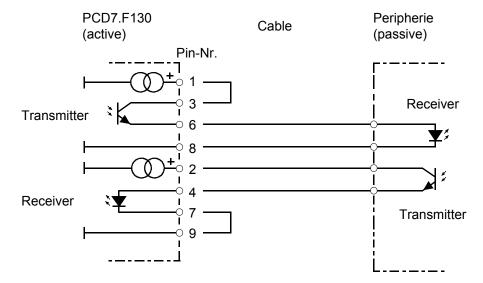
The module can be used at up to 115,200 Baud.



RS-232 interface, for external modem (DCE)

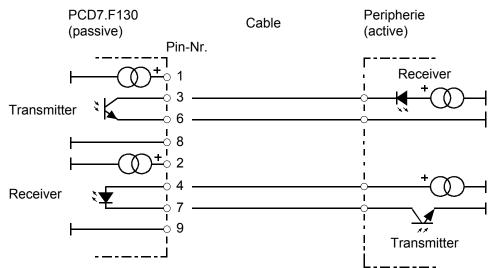

Serial interfaces - Slots A1 and A2

5.4.3 Current loop with PCD7.F130, Port#1 & Port#2

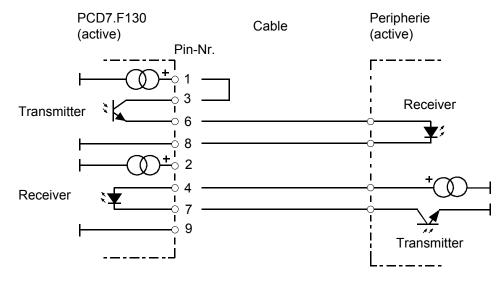


PCD7.F130: TTY/current loop 20 mA (active or passive), for Slots A1, A2.

Connections



PCD active

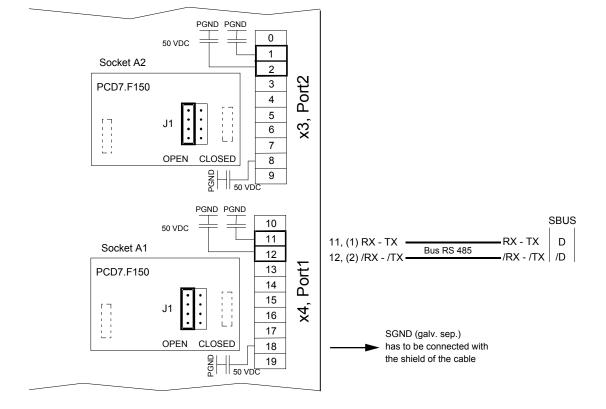

Hardware Manual for the PCD2.M5 Series Document 26/856; Version EN12 2014-07-24

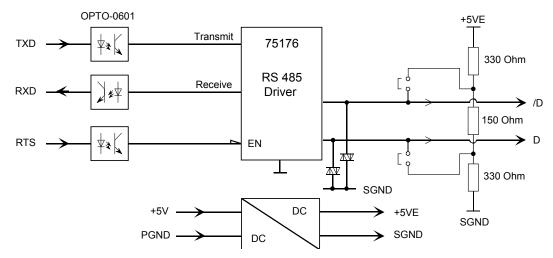
Serial interfaces - Slots A1 and A2

PCD passive

PCD and peripheral transmitters active

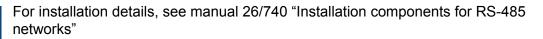
Serial interfaces - Slots A1 and A2


5.4.4 RS-485 with PCD7.F150, Port#1 & Port#2


PCD7.F150:

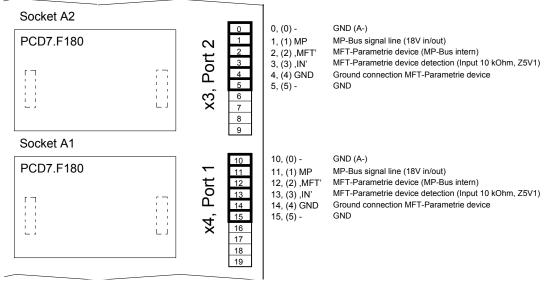
Connection for RS-485 with electrical isolation

The electrical isolation is achieved with 3 optocouplers and a DC/DC transducer. The data signals are protected against surges by a suppressor diode (10 V). The line termination resistors can be connected/disconnected with a jumper.


Block diagram:

Not all manufacturers use the same connection configuration, so the data lines may need to be crossed

The potential difference between PGND and the data lines Rx-Tx, /Rx-/Tx (and SGND) is limited to 50 V by a suppressor capacitor.


Serial interfaces - Slots A1 and A2

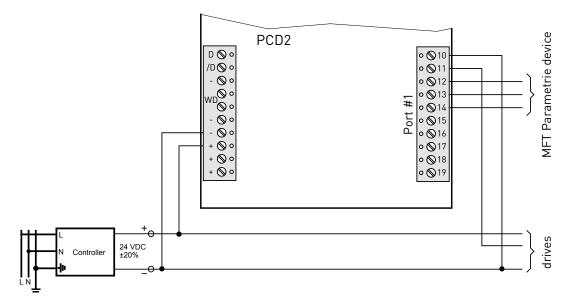
5.4.5 MP-Bus with PCD7.F180, Port#1 & Port#2

PCD7.F180: Connection module to MP-Bus The user can connect an MP-Bus line with 8 drives and sensors.

Connections

i

There are the following parameterization devices of BELIMO[®]: Manual Control Unit MFT-H With its own power sup


nit MFT-H MFT-P

With its own power supply/batteries With the adapter ZIP-RS-232

Supply option

PC-Tool

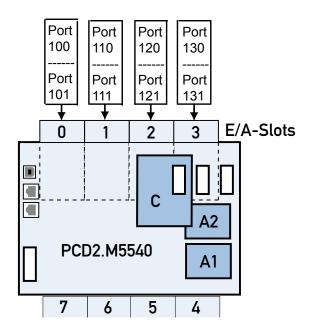
Common supply for control and drive

5.5 Serial interfaces on I/O module slots 0 - 3

5.5.1 General remarks on the PCD2.F2xxx

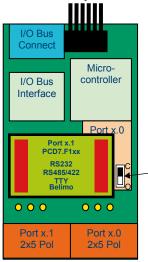
System properties of PCD2.F2xxx modules:

The following points must be observed when using the PCD2.F2xxx interface modules:


- For each PCD system, up to 4 PCD2.F2xxx modules (8 interfaces) can be used on slots 0...3.
- The PCD2.M5_ system has a powerful processor which handles the application as well as the serial interfaces. Processing of the interface modules requires the appropriate CPU capacity. To determine the maximum communication capacity per PCD2.M5_ system, note the following:
- The communication volume is determined by the peripheral devices connected. This will be the case, for example, where a PCD2 is used as an S-Bus slave station. If a PCD2 controller is bombarded with heavy telegram traffic at high baud rates, less CPU capacity will be left to handle the actual application. The following rules apply here: the use of 8 interfaces at 9.6 kbps takes approx. 50% of CPU capacity. Two interfaces at 57.6 kbps also take up approx. 50% of CPU capacity. Two interfaces at 115 kbps require approx. 60% of CPU capacity.
- If the PCD2 is the initiator of the communication, the communication volume, and hence the communication capacity, will be determined by the user program in the PCD2 (PCD2 used as master station). Theoretically, all interfaces can be run at the maximum baud rate of 115 kbps. However, the effective data throughput will be governed by the user program and the number of interfaces, and may be quite low. The crucial factor is that the peripheral devices connected can be run with the selected configuration and communication capacity.

5.5.2 Communication ports on the PCD2.M5_

The PCD2.F2xxx modules are designed for insertion into slots 0...3 on a PCD2.M5_. As shown in the figure below, the slots are designated as follows:


- Slot 0: Port 100 for the x.0 port on the PCD2.F2xxx module Port 101 for the x.1 port on the PCD2.F2xxx module
- Slot 1: Port 110 for the x.0 port on the PCD2.F2xxx module Port 111 for the x.1 port on the PCD2.F2xxx module
- Slot 2: Port 120 for the x.0 port on the PCD2.F2xxx module Port 121 for the x.1 port on the PCD2.F2xxx module
- Slot 3: Port 130 for the x.0 port on the PCD2.F2xxx module Port 131 for the x.1 port on the PCD2.F2xxx module

Serial interfaces on I/O module slots 0 - 3

5.5.3 Module overview

The PCD2.F2xxx communication modules are designed for the PCD2.M5_ systems. Each module has two serial ports, one fixed interface and a second that can be established by the use of a PCD7.F1xx module.

PCD2.F2100

Serial communication module with two serial interfaces

Port x.0: RS-422 / RS-485 (fixed on PCD2.F2100 module)

Port x.1: Slot for PCD7.F1xx module

PCD2.F2210

Serial communication module with two serial interfaces

Port x.0: RS-232

(fixed on PCD2.F2210 module)

Port x.1: Slot for PCD7.F1xx module

PCD2.F2810

Serial communication module with two serial interfaces

Port x.0: Belimo MP-Bus

(fixed on PCD2.F2810 module)

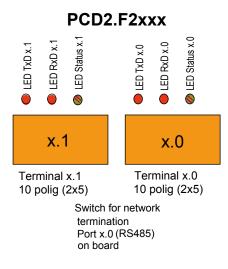
Port x.1: Slot for PCD7.F1xx module

Usable PCD7.F1xx modules (for connection to port x.1 on the PCD2.Fxxxx)

PCD7.F110 Serial interface module RS-422 / RS-485

Switch for line

(only PCD2.F2100)


termination

- PCD7.F121 Serial interface module RS-232, for modem connection
- PCD7.F130 Serial interface module, current loop 20 mA
- PCD7.F150 Serial interface module, RS-485, electrically isolated
- PCD7.F180 Serial interface module for Belimo MP bus,

for max. 8 actuators and sensors

Serial interfaces on I/O module slots 0 - 3

Connections and LEDs

Summary of connections

	RS-232				RS-422				RS-485		
0	PGND	TxD	1	0	PGND	Тх	1	0	PGND	Rx-Tx	1
2	RxD	RTS	3	2	/Tx	Rx	3	2	/Rx-/Tx		3
4	CTS	PGND	5	4	/Rx	PGND	5	4		PGND	5
6	DTR	DSR	7	6	RTS	/RTS	7	6			7
8	COM	DCD	9	8	CTS	/CTS	9	8	(SGD)		9
	TTY (CL) Belimo MP bus										

0	PGND	TS	1	0	PGND	MP	1
2	RS	TA	3	2	,MFTʻ	,IN'	3
4	RA	PGND	5	4		PGND	5
6	TC	RC	7	6			7
8	TG	RG	9	8			9

Spring terminal block (supplied)

Each serial port has its own individual 10-pole spring terminal block. The F2xx module is fitted with two spring terminal blocks, the right-hand one for Port x.0 and the left for Port x.1.

Maximum wi	aximum wire gauge:		AWG 18
LEDs			
LED TxD: LED RxD: LED status:		detection _ED displays th	e status of the serial port, s working properly
Both L	EDs permaner EDs green 25% EDs green 50%	% / red 75%:	F2xxx not running F2xxx start-up procedure F2xxx running, but no communication with PCD2.M5_
Status	LED green 75	% / red 25%:	F2xxx running, Interface still not assigned by the program
Status	LED green 10	0%:	F2xxx running, Interface assigned

Technical data

Communication modes supported:

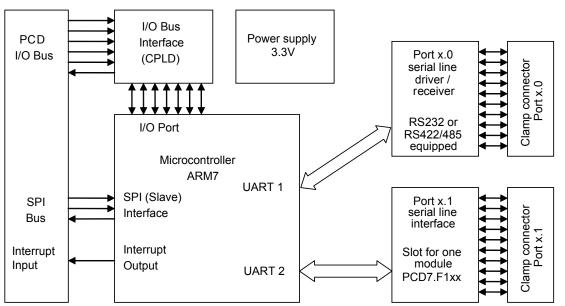
- MC0 Character mode, no automatic handshake
- MC1 Character mode with RTS/CTS handshake
- MC2 Character mode with Xon/Xoff protocol
- MC4 Character mode for RS-485 interface
- MC5 As MC4 with rapid switching between sending and receiving
- SM2 S-Bus master, data mode
- SS2 S-Bus slave, data mode
- GS2 S-Bus gateway slave, data mode
- GM S-Bus gateway master
- → Gateway always via PCD3.

Baud rates supported (bits/sec):

1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

Current cons	sumption:	+5 V bus	V+
Base module	Port x.1 config.	[l in mA]	[l in mA]
	none	110	0
	PCD7.F110	150	0
PCD2.F2100	PCD7.F121	125	0
FCD2.F2100	PCD7.F130	190	22
	PCD7.F150	240	0
	PCD7.F180	125	15
	none	90	0
	PCD7.F110	130	0
PCD2.F2210	PCD7.F121	105	0
FGDZ.FZZIU	PCD7.F130	120	22
	PCD7.F150	225	0
	PCD7.F180	105	15
	none	90	15
	PCD7.F110	130	15
PCD2.F2810	PCD7.F121	105	15
FGD2.F2010	PCD7.F130	115	15
	PCD7.F150	225	15
	PCD7.F180	105	30

Restrictions:


The PCD2.F2xxx modules for the PCD2.M5_ systems offer the possibility of implementing up to 8 additional serial interfaces. It should be noted that each additional interface adds to the load on the PCD2.M5_ CPU.

The use of these 8 ports is dependent on the type of communication, the baud rate required and the volume of data transferred. Other key factors are:

- Communication on the PCD2.M5_, such as Profi-S-Net, Ether-S-Net, USB
- Use of the web server
- Data transfer from CPU to memory
- User program in the PCD2.M5_

The exact system limits have still to be confirmed.

Serial interfaces on I/O module slots 0 - 3

Block diagram

5.5.4 Port x.0: RS-422 / RS-485 on the modul PCD2.F2100

The PCD2.F2100 module contains two different interface types on Port x.0: RS-422 with RTS/CTS and RS-485 (electrically connected). The line termination is integrated into the module and can be enabled by means of a switch on the module.

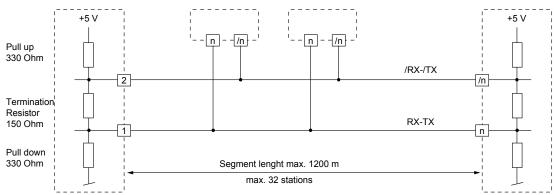
RS-422 mode

RS-422					
0	PGND	Тx	1		
2	/Tx	Rx	3		
4	/Rx	PGND	5		
6	RTS	/RTS	7		
8	CTS	/CTS	9		

5

10-pole spring terminal block

Line termination in RS-422 mode always uses 150 Ω resistor on the PCD2.F2100.


RS-485 mode

(Electrically connected RS-485 interface)

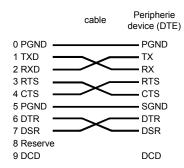
	RS-485		
0	PGND	Rx-Tx	1
2	/Rx-/Tx		3
4		PGND	5
6			7
8	(SGD)		9

10-pole spring terminal block

Connection:

5.5.5 Port x.0: RS-232 on the modul PCD2.F2210 (for modem)

The line termination for Port x.0 is integrated into the module and can be enabled by means of a switch on the module. On the base plate next to the switch are the codes 'O' for OPEN and 'C' for CLOSED.


The PCD2.F2210 module offers a complete RS-232 interface on Port x.0. This port is intended mainly for modem connections such as RTS/CTS, DTR/DSR and DCD.

RS-232 connection

	RS-232		
0	PGND	TxD	1
2	RxD	RTS	3
4	CTS	PGND	5
6	DTR	DSR	7
8	COM	DCD	9

10-pole spring terminal block

RS-232 connection to DTE:

RS-232 connection to DCE:

	cable	Modem (ETCD) DCE
0 PGND		RX RTS CTS SGND DTR

5.5.6 Port x.0: Belimo MP-Bus on module PCD2.F2810

The PCD2.F2810 module offers a complete Belimo MP-Bus interface on Port x.0. An MP-Bus with up to 8 drives and sensors can then be connected to Port x.0.

Belimo connection

Belimo MP bus				
0	PGND	MP	1	
2	,MFT՝	,INʻ	3	
4		PGND	5	
6			7	
8			9	

10-pole spring terminal block

Modem communication

5.6 Modem module for I/O module socket

PCD2.T814: analogue modem 33.6 kbps (RS-232 and TTL interface) PCD2.T851: digital modem ISDN-TA

(RS-232 and TTL interface) Recommended slots for connection using ribbon cable:

PCD2.M5_ - Slot #4 (recommended)

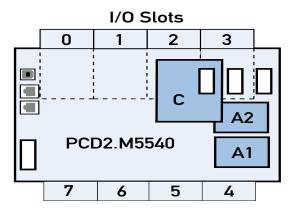
If a different socket is chosen for the internal modem, it can no longer be connected via the ribbon cable. The modem is then connected to the PCD7.F121 interface module by spring terminals. anual 26/771 "PCD2.T8xx modem modules"

An external modem can also be connected to the PCD7.F121 module.

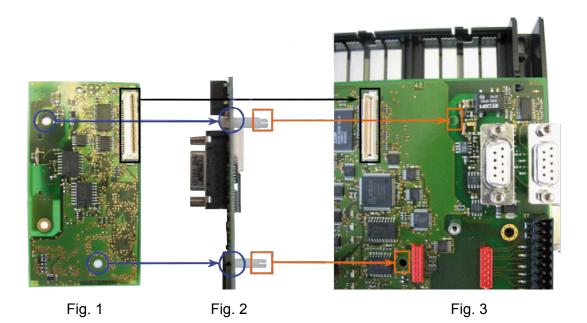
For physical reasons, PCD2.T8xx modems cannot be connected to the slots highlighted in colour:

PCD2.Mxxxx					
#0	#1	#2	#3		
#7	#6	#5	#4		
Not allowed Slot					

Two modem modules cannot be mounted side-by-side.


For installtion details, see manual 26/771 "PCD2.T8xx modem modules"

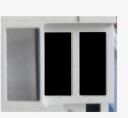
Do not use the modem modules on PCD2.C2000/C1000.


5.7 Communication on Slot C

Slot C is intended to take the interface for the CAN-Bus or for Profibus applications.

Fitting a circuit board to Slot C

- Remove housing cover (see section 3.5.3)
- Remove supply from the PCD2.M5_
- Remove any cables already plugged in (UBS, Ethernet, Profibus, RS-232)
- Remove upper part of housing (see section 3.5.4)
- Before placing a circuit board on Slot C, insert PCD7.F1xx into Slot A2 if required
- First, insert the two spacers on the back of the circuit boards (see Figs. 1 & 2). The rounded ends of the spacers must be inserted into the round holes in the PCD board
- Turn the circuit board and insert into the holes provided in the CPU board Ensure that the plug is correctly positioned in Slot C (Fig. 3)


Communication on Slot C

5

Check that the plug is inserted correctly. Fix the circuit board with the Torx T 10 screw provided sichern.

Push out pre-pressed aperture for the D-Sub socket and replace upper part of housing, section 3.5.4

Remove upper part of housing, section 3.5.4

5.7.1 CAN bus, module PCD7.F7400

The CAN bus should be connected directly to the PCD7.F7400 module.

PCD7.F7400

PCD7.F7400 to connect the CAN bus, 1 MBit/s

Pin layout, D-Sub 9 pole, CAN Port 10

Socket	С	
Connection type	D-Sub 9-pole (male)	
signal	Pin no	
	1	
CAN_Low	2	
GND	3	
	4	
	5	
	6	
CAN_High	7	
	8	
	9	

Hardware Manual for the PCD2.M5 Series Document 26/856; Version EN12 2014-07-24

5.7.2 Profibus DP Master, module PCD7.F7500

The Profibus should be connected directly to the PCD7.F7500 module.

PCD2.M5_

PCD7.F7500

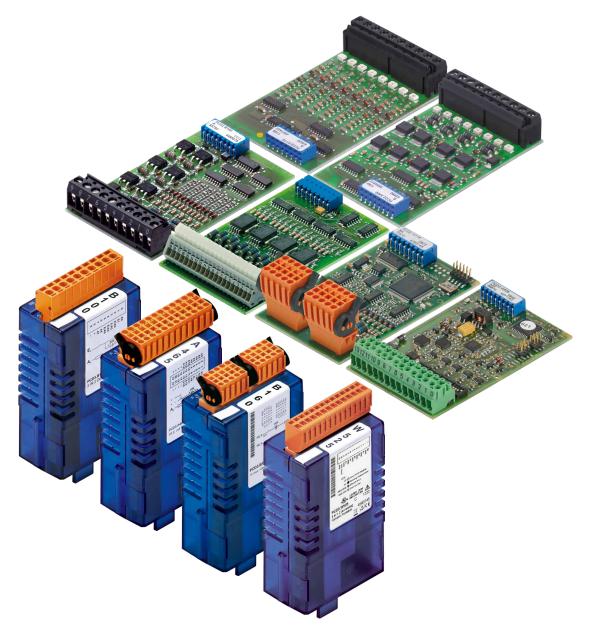
PCD7.F7500

for connection as Profibus DP Master (12 MBit/s).

D-Sub 9 pole pin allocation

Socket	C
Connection type	D-Sub 9-pole (female)
signal	Pin no
RTS/CNTR-P	4
PGND	Threaded bolts
RxD/TxD-N	8 A (green)
RxD/TxD-P	3 B (red)
DP GND	5
DP +5 V	6

Details can be found in manual 26/765 "Profibus DP".



To avoid reflections, each segment must be terminated at the line ends. According to the Profibus standard, this cannot be done on the device. The PCD7.T160 termination boxes or standard 9-pole Profibus DP D-Sub connectors are suitable for this.

Overview

6

6 Input/output (I/O) modules

All I/O-modules for the series PCD1 | PCD2 and PCD3 are described in the manual 27-600.

System cables with I/O module connections to the PCD

7 System cables and adapters

7.1 System cables with I/O module connections to the PCD

The route to easy, fast connection is via these preconfigured cables. The connector is ready mounted at the PCD end of the cable, so it just has to be plugged in to connect. At the process end there are ribbon connectors to the terminal adapters or the relay interface, or 0.5 mm² or 0.25 mm² strands, numbered and colour-coded.

All cables are described in Manual 26-792 'System cables and adapters'.

8 Configuration and programming

8.1 CPUs

This section assumes that the user is familiar with the PG5 software. If not, please refer to Manual 26/733 "PG5".

8.1.1 Configuring the PCD with PG5

Connecting the PCD to the configuration with PG5:

O Start up PG5

O Create new project:

• Click on "New..."

las New Orn Oue	ne Iools Help		
. 		II 🕾 🕼 🕈 🜒 🗰 🕰	
oct	× 1		
	G Open Project		
	Projects Directory.		
	C:VPG5 Projects		📄 📄 🔽 Şearch Subdirecto
	- Martin State State		
	Project List		
	Project List	Relative Path	Description
		Relative Path	Description

• The "New Project" dialogue is displayed

Creating and opening a new project.

The dialogue box is brought up via "File/New Project". The size of the dialogue box can be changed by dragging the bottom right corner or by dragging the frame.

CPUs

S New Project	×
Project Name:	
First Project	
Projects Directory:	
C:VPG5 Projects	>
Description:	
	×
<u> </u>	<u>~</u>
☑ <u>C</u> reate CPU	
Help	OK Cancel

Project Name

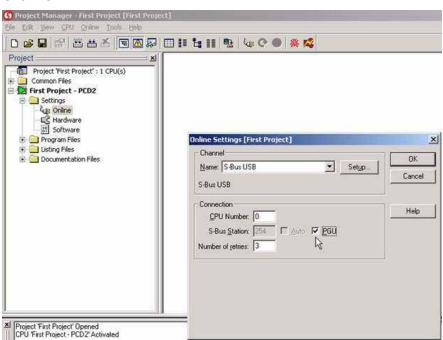
Name of the project to be created. This is used as the directory name for the project. It must not include any path or file extension.

Project Directory

Directory containing the new project. The specified project directory is set up via "Options", "Directories page". The '>' button can be used to browse for a directory.

Description

May contain up to 2000 characters of free text. The first line of text is displayed in the "Description" window in the "Open Project" dialogue box.

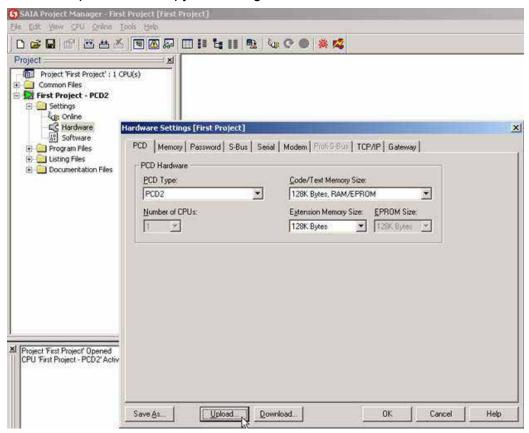

"Create CPU" box

If this box is ticked, a CPU with the same name is created automatically (the name can be changed later in CPU properties). This is useful for single CPU projects. If it is not ticked, a project will be created without any CPU. The "New CPU" command can be used to add a CPU.

- Enter project name, e.g. "First Project"
- Check "Create CPU" option
- Click "OK"

6 Go to "Online Settings" and select the following options:

- Channel name: S-Bus USB
- Tick PGU option
- Click "OK"


Onv connect the PCD to the PC via the USB cable. Ensure that the PCD is connected to the 24 VDC supply.

CPUs

8

G Go to "Hardware Settings":

• Click on "Upload...", to copy the settings from the CPU.

• Click on "Upload..."

Destination File Name:	
C:\PG5 Projects\First Project\First Project\First Project.5hw	
Upload From PCD:	Cancel
USB (S-Bus USB)	
This uploads the hardware settings from the connected PCD and updates the active CPU's Hardware Settings. The settings are not saved unless '0K' is pressed on the Hardware Settings dialog box.	Help

Click "OK"

CPUs

PCD Memory Password S-Bus Serial Modem Profi-S-Bus TCP/IP Gateway PCD Hardware PCD Code/T ext/Extension Memory Size: PCD PCD ID24K Bytes RAM ID2	Hardware Settings [CPU1]	×
PCD Type: Code/Text/Extension Memory Size: PCD2.M5540 1024K Bytes RAM Number of CPUs: 1 1 Image: Communications Modules Profi-S-Net : Channel 10 Image: Communications Modules TCP/IP : Channel 10 Image: Communications State Options Image: Communication State Reset Output Enable Run/Stop Switch Enable	PCD Memory Password S-Bus Serial Modem Profi-S-Bus TCP/IP Gateway	
Profi-S-Net : Channel 10	PCD Type: Code/Text/Extension Memory Size: PCD2.M5540 ID24K Bytes RAM	
Options Reset Output Enable Run/Stop Switch Enable	Profi-S-Net : Channel 10	
XOB 1 Enable Full RS-232 handshaking on Port 0	Options	
Save As Open Upload Download OK Cancel Help		

The connection of the PCD to the configuration with PG5 via the PC is complete. The hardware settings can now be changed and programming the application can begin.

8.1.2 "Hardware settings" option

The PCD2.M5_ CPUs do not have any "jumpers" to be set. As with earlier PCD systems, the settings are entered in PG5 on the "Hardware Settings" screen. After you have selected the desired settings, they will be loaded into the PCD2.M5_ when you click "Download...".

If "Upload..." is pressed, the current sttings for the CPU will be displayed.

Example: PCD2.M5540 settings

Options Reset Output Enable	Run/Stop Switch Enable	ort O		
Save As Open	Upload Download	ОК	Cancel	Help

Reset Output Enable

If the CPU goes into Halt mode, all outputs are set to 0.

XOB 1 Enable

Where PCD2/3.Cxxxx module holders are used, a cable break or power outage is displayed by calling XOB 1.

Run/Halt Switch Enable

\square	Run
	Halt

The Run/Halt switch is activated. On the PCD2.M5_, it is thus possible to manipulate the operating mode with the switch that is accessible on the top of the CPU

Full RS-232 handshaking on Port 0

This allows Port 0 to be used as a normal serial port or as a modem interface.

If this option is enabled, it will no longer be possible to communicate with the CPU via the PGU port. This setting should only be used when the USB port or the Ethernet connection are being used for programming.

All these options are written to the "flash card" when the settings are backed up.

9 Maintenance

PCD2 components are maintenance-free, apart from the CPUs, where the battery needs to be changed occasionally.

PCD2 components do not contain any parts that can be swapped out by the user. If hardware problems arise, the components should be returned to SBC.

9.1 Changing the battery on the PCD2.M5xx0

The resources (registers, flags, timers, counters etc), and possibly the user program and the text strings/DBs, are stored in RAM. To ensure that they are not lost and that the hardware clock (where present) continues to run when there is a power failure, the PCD2s are equipped with a buffer capacitor (SuperCap) or a buffer battery:

CPU type	Buffer	Buffer time
PCD2.M5xx0	Renata CR2032 lithium battery	1-3 years ¹⁾

1) Depending on the ambient temperature; the higher the temperature, the shorter the buffer time

With new controllers, the batteries are packaged with the units, and have to be inserted on commissioning. Observe the polarity of the batteries:

• Insert CR 2032 coin cells in such a way that the Plus pole is visible

CPUs with lithium batteries are not maintenance-free. The battery voltage is monitored by the CPU. The BATT LED lights up and XOB 2 is called if

- the battery voltage is less than 2.4 V
- the battery is missing

We recommend changing the batteries with the PCD attached to the power supply, to avoid any loss of data.

A Annex

A.1 Icons

In manuals, this symbol refers the reader to further information in this manual or other manuals or technical information documents. As a rule there is no direct link to such documents.

This symbol warns the reader of the risk to components from electrostatic discharges caused by touch.

Recommendation: Before coming into contact with electrical components, you should at least touch the Minus of the system (cabinet of PGU connector). It is better to use a grounding wrist strap with its cable permanently attached to the Minus of the system.

This sign accompanies instructions that must always be followed.

Explanations beside this sign are valid only for the SBC $\mathsf{PCD}^{\texttt{B}}$ Classic series.

Explanations beside this sign are valid only for the SBC PCD® xx7 series.

A.2 Definitions of serial interfaces

A.2.1 RS-232

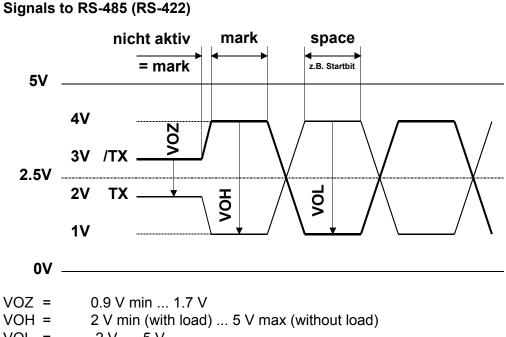
Designation of signal lines:

Data lines	TXD	Transmit data
Data intes	RXD	Receive data
	RTS	Request to send
	CTS	Clear to send
Signal and	DTR	Data terminal ready
response circuits	DSR	Data set ready
	RI	Ring indicator
	DCD	Data carrier detect

Signals to RS-232

Signal type	Logical state	Set-point	Nominal value
Data signal	0 (space)	+3 V to +15 V	+7 V
	1(mark)	-15 V to -3 V	-7 V
Control/message	0 (off)	-15 V to -3 V	-7 V
signal	1 (on)	+3 V to +15 V	+7 V

The idle state


of the data signals = "mark"

of the control and message signals = "off"

Α

Definitions of serial interfaces

A.2.2 RS-485/422

VOL = -2 V ... -5 V

In the idle state, RS-422 is in the "mark" position

RS-422:

Signal type	Logical state	Polarity
Data signal	0 (space) 1(mark)	TX positive to /TX /TX positive to TX
Control/message signal	0 (off) 1 (on)	/RTS positive to RTS RTS positive to /RTS

RS-485:

Signal type	Logical state	Polarity
Data signal	0 (space)	RX-TX positive to /RX-/TX
	1(mark)	/RX-/TX positive to RX-TX

Not all manufacturers use the same connection configuration, so the data lines may need to be crossed

To guarantee error-free operation of an RS-485 network, the network should be terminated at both ends. Cable and line termination resistors should be selected in accordance with manual 26/740 "Installation components for RS-485 networks".

Α

A.2.3 TTY/current loop

Signals to TTY/current loop

Terminal 1	TS	Transmitter Source	Sender
Terminal 3	TA	Transmitter Anode	
Terminal 6	TC	Transmitter Cathode	ochuci
Terminal 8	TG	Transmitter Ground	
Terminal 2	RS	Receiver Source	
Terminal 4	RA	Receiver Anode	Recipient
Terminal 7	RC	Receiver Cathode	
Terminal 9	RG	Receiver Ground	

Signal type	Set-point	Nominal value
Power for logic L (space)	-20 mA to + 2 mA	0 mA
Power for logic H (mark)	+12 mA to +24 mA	+20 mA
Neutral voltage to TS, RS	+16 V to +24 V	+24 V
Short circuit power on TS, RS	+18 mA to +29.6 mA	+23.2 mA

The idle state of the data signals = "mark"

By wiring to the cable connector, the user selects either an "active" or "passive" circuit.

The max. transmission rate for TTY/current loops at 20 mA is 9600 bps.

A

A.3 Order details

Туре	Description	Weight
PCD2.M5440	CPU with 1 MByte user program memory, with Run/Halt switch, Backup option with PCD7.R5xx additional memory, USB port for PG5, max. 1023 digital I/Os, 4 user inputs, 2 user outputs, Web server, RS-232, RS-485 for Profi-S-Net and RS-485 for S-Bus,	
PCD2.M5540	Data backup 13 years with lithium battery same as PCD2.M5440, with 2 Ethernet TCP/IP sockets	950 g 950 g
PCD2.C2000 PCD2.C1000	Expansion housings for 8 additional I/O modules, 24 VDC supply integrated for 4 additional I/O modules, 24 VDC supply integrated	1040 g 500 g
PCD2.K010 PCD2.K106 PCD3.K106 PCD3.K116 PCD2.K100 PCD2.K110 PCD2.K120	Connecting cable/connector to expansion housing Connector (PCD2.C2000PCD2.C2000) Connecting cable 0.7 m (PCD2.M5PCD3.C) Connecting cable 0.7 m (PCD2.C2000/.PCD3.CPCD2.C2000/.PCD3.C) Connecting cable 1.2 m (PCD2.C2000/.PCD3.CPCD2.C2000/.PCD3.C) Connecting cable 2 m (PCD2.M5PCD2.C1x0) Connecting cable 2 m (PCD2.M5PCD2.C1x0) Connecting cable 2 m (PCD2.M5PCD2.C1x0)	40 g 68 g 40 g 200 g 200 g 200 g
PCD7.R500 PCD7.R550M04 PCD7.R551M04	Additional memory Flash module, 1 MByte program backup for PCD2.Mxxx0, Slot M1, Flash module, 4 MByte with file system for PCD2.Mxxx0, Slot M1 or M2 Flash module, 1 MByte program backup + 3 MByte file system for PCD2.Mxxx0, Slot M1/M2	
PCD7.F110 PCD7.F121 PCD7.F130 PCD7.F150 PCD7.F180	Communication modules for Slot A1 and/or A2 with RS-422/RS-485 interface (electrically connected) with RS-232 interface (suitable for modem) with interface for 20 mA current loop with RS-485 interface (electrically isolated) Belimo MP-Bus (based on RS-232)	8 g 8 g 8 g 8 g 8 g
PCD2.F2100 PCD2.F2210 PCD2.F2810	Communication modules for Slots 03 RS-422/RS-485 & optional PCD7.F1xx RS-232 & optional PCD7.F1xx Belimo MP-Bus & optional PCD7.F1xx	10 g 10 g 10 g
PCD7.F7400 PCD7.F7500	Field bus connections for Slot C (in preparation) CAN interface Profibus DP connection (Master)	45 g
PCD2.T814 PCD2.T851	Modem module for I/O module slot 33.6 kbps analogue modem (RS-232 and TTL interface) ISDN-TA digital modem (RS-232 and TTL interface)	50 g 50 g
4 507 4817 0	Accessories Renata CR 2032 lithium battery (coin cell), PCD2.M5xx0	10 g
4 405 4847 0 4 405 4869 0	Plug-in terminal blocks with 10 terminals (standard) with 14 terminals (forA250)	17 g 9 g

Туре	Description	Weight
PCD2.E110 PCD2.E111	Digital input modules 24 VDC, input delay typically 8 ms (pulsed voltage possible) 24 VDC, input delay typically 0.2 ms (smoothed voltage required)	35 g 35 g
PCD2.E112 PCD2.E116 PCD2.E160	12 VDC, input delay typically 9 ms (pulsed voltage possible) 5 VDC, input delay typically 0.2 ms (smoothed voltage required) 24 VDC, input delay typically 8 ms	35 g 35 g 25 g
PCD2.E161	(pulsed voltage possible, connection via 34-pole system cable) 24 VDC, input delay typically 0.2 ms (smoothed voltage required, connection via 34-pole system cable)	25 g
PCD2.E165	24 VDC, input delay typically 8 ms (pulsed voltage possible, connection via 20-pole cage clamp terminal block)	30 g
PCD2.E166	24 VDC, input delay typically 0.2 ms (smoothed voltage required, connection via 20- pole cage clamp terminal block)	30 g
PCD2.E500 PCD2.E610	Digital input modules, electrically isolated 110240 VAC, input delay typically 10 ms (electrically isolated) 24 VDC, input delay typically 10 ms (pulsed voltage possible)	55 g 40 g
PCD2.E611 PCD2.E613	24 VDC, input delay typically 1 ms (smoothed voltage required) 48 VDC, input delay typically 10 ms (pulsed voltage possible)	40 g 40 g
PCD2.E616	5 VDC, input delay typically 1 ms (smoothed voltage required)	40 g
PCD2.A300	Digital output modules with 6 outputs, 24 VDC/2 A	45 g
PCD2.A400 PCD2.A460	with 8 outputs, 24 VDC/0.5 A connection via 34-pole system cable	40 g 30 g
PCD2.A465	connection via 24-pole spring terminal block	35 g
PCD2.A200	Digital output modules, electrically isolated with 4 make contacts 2 A/250 VAC or 2 A/50 VDC	60 g
PCD2.A210 PCD2.A220	with 4 break contacts 2 A/250 VAC or 2 A/50 VDC with 6 make contacts 2 A/250 VAC or 2 A/50 VDC	60 g 65 g
PCD2.A250 PCD2.A410	with 8 make contacts 2 A/48 VAC or 2 A/50 VDC with 8 outputs, 24 VDC/0.5 A, electrically isolated	65 g 40 g
	Combined digital input and output modules	
PCD2.B100	with 2 inputs and 2 transistor outputs, plus 4 selectable as inputs or outputs	45 g
PCD2.G400	Multi-functional input/output modules 10 digital inputs,	79 g
1 002.0400	2 analogue inputs 10 Bit, 6 analogue inputs 10 Bit Pt/Ni 1000, 8 digital outputs,	70 g
PCD2.G410	6 analogue outputs 8 Bit 16 digital inputs,	79 g
	4 analogue inputs 10 Bit, 4 relay outputs,	
	4 analogue outputs 8 Bit	

Туре	Description	Weight
PCD2.W200	Analogue input modules Resolution 12 Bit, 8 input channels 0…10 V	35 g
PCD2.W210 PCD2.W220	Resolution 12 Bit, 8 input channels 020 mA Resolution 12 Bit, 8 input channels Pt/Ni1000 (2-wire)	35 g 40 g
PCD2.W220Z02 PCD2.W220Z12	for resistance thermometer, –50…+400 °C or +200 °C Analogue input module, 8 inputs, 10 bits, NTC10 temperature sensors Analogue input module, 10 bits, 4 inputs 0…10 V and 4 inputs Pt/Ni 1000	40 g 40 g
PCD2.W300 PCD2.W310	Resolution 12 Bit, 8 input channels 010 V Resolution 12 Bit, 8 input channels 020 mA	40 g 40 g
PCD2.W340	Resolution 12 Bit, 8 input channels selectable via jumper: 010 V, 020 mA or for 2-wire resistance themometer Pt 1000 for –50+200 °C	40 g
PCD2.W350	Resolution 12 Bit, 8 input channels for 2-wire resistance thermometer Pt 100 for -50+600 °C or Ni 100 for -50+250 °C	40 g
PCD2.W360	Resolution 12 Bit, 8 input channels for 2-wire resistance thermometer Pt 1000 for –50…+150 °C, resolution < 0.1 °C	40 g
PCD2.W305	Analogue input modules, electrically isolated Resolution 12 Bit, 7 input channels 010 V	55 g
PCD2.W315	Resolution 12 Bit, 7 input channels 020 mA	55 g
PCD2.W325	Resolution 12 Bit, 7 input channels -10 V+10 V	55 g
PCD2.W400 PCD2.W410	Analogue output modules Resolution 8 Bit, simple modules: 4 channels $010 V (\ge 3 k\Omega)$ Resolution 8 Bit, universal modules: 4 channels selectable via jumpers, $010 V (\ge 3 k\Omega) 020 mA (< 500 k\Omega) ar 420 mA (< 500 k\Omega)$	35 g 45 g
PCD2.W600 PCD2.W610	$010 V (\ge 3 k\Omega) 020 mA (\le 500 k\Omega) or 420 mA (\le 500 k\Omega)$ Resolution 12 Bit, simple modules: 4 channels $010 V (\ge 3 k\Omega)$ Resolution 12 Bit, universal modules: 4 channels selectable via jumpers, $010 V$ and $-10+10 V (\ge 3 k\Omega) 020 mA (\le 500 \Omega)$, further "mid/low" jumper to select switching sequence	40 g 45 g
PCD2.W605	Analogue output modules, electrically isolated Resolution 10 Bit, simple modules: 6 channels 010 V (\geq 3 k Ω)	60 g
PCD2.W615 PCD2.W625	Resolution 10 Bit, simple modules: 4 channels 020 V (\geq 500 k Ω) Resolution 10 Bit, simple modules: 6 channels -10 V+10 V (\geq 3 k Ω)	60 g 60 g
PCD2.W500 PCD2.W510 ⁻¹)	Analogue input/output modules, electrically isolated Resolution 12 Bit, 2 input and 2 output channels for voltage signals Resolution 12 Bit, 2 input channels for current signals and 2 output channels for voltage signals	55 g 55 g
PCD2.W525	 4 analogue inputs 14 bit; 010 V, 0(4)20 mA, Pt500/1000, Ni1000 + 2 analogue outputs, 12 bit; 010 V, 0(4)20 mA Weighing modules 	60 g
PCD2.W710 ¹) PCD2.W720	Resolution 18 Bit, 1 weighing system for up to 4 weighing cells Resolution 18 Bit, 2 weighing systems for up to 6 weighing cells	40 g 45 g
PCD2.W745	Temperature modules Resolution 16 Bit, temperature module for up to 4 measurement inputs	40 g

1) Special version, supplied on request.

Hardware Manual for the PCD2.M5 Series Document 26/856; Version EN12 2014-07-24

Order details

Туре	Description	Weight
	Fast counter modules	
PCD2.H100	Counter module up to 20 kHz	40 g
PCD2.H110	General purpose counting and measuring module up to 100 kHz	42 g
	SSI encoder modules	
PCD2.H150	SSI interface module	42 g
	Motion control modules for stepper motors	
PCD2.H210	Motion control module for one stepper motor axis	42 g
	Motion control modules for servo drive	
PCD2.H310 ²)	Motion control module up to 100 kHz for servo-drives, 1 axis for 24 VDC encoder	48 g
PCD2.H311 ²)	Motion control module up to 100 kHz for servo-drives, 1 axis for 5 VDC/RS-422 encoder	48 g
PCD2.H320	Motion control module up to 125 kHz for servo-drives, 2 axes for 24 VDC encoder	66 g
PCD2.H325	Motion control module up to 125 kHz for servo-drives, 2 axis for	66 g
	5 VDC/RS-422 encoder or SSI absolute angle transmitter (Slave only)	-
PCD2.H322	Motion control module up to 250 kHz for servo-drives, 1 axis for 24 VDC encoder	66 g
PCD2.H327	Motion control module up to 250 kHz for servo-drives, 1 axis for	66 g
	5 VDC/RS-422422 encoder or SSI absolute angle transmitter (Slave only)	
2) Depending on	the encoder, the 5 VDC supply may be loaded with up to 300 mA.	

A.4 Contact

Saia-Burgess Controls AG

Bahnhofstrasse 18 3280 Murten, Switzerland

Phone...... +41 266727272 Fax....... +41 266727499

 Email support:
 support@saia-pcd.com

 Supportsite:
 www.sbc-support.com

 SBC site:
 www.saia-pcd.com

 International Representatives &
 SBC Sales Companies:

 www.saia-pcd.com/contact
 www.saia-pcd.com/contact

Postal address for returns from customers of the Swiss Sales office

Saia-Burgess Controls AG

Service Après-Vente Bahnhofstrasse 18 3280 Murten, Switzerland

A