
26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 1 of 73

PCD2.H320

Motion Library  xx7

Programming Guide

26/778 E1



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 2 of 73

Table of Contents

1 Introduction 4

1.1 Structure of the motion control concept 4

2 Basic functions 5

2.1 Initialization 6

2.2 Home position 7

2.3 Speed Control 9

2.4 Position_Control (without breakpoint) 10

2.5 Approach previously defined position 11

2.6 Teach in 12

2.7 Read current position and status 13

2.8 Position Control with Break Point 16

2.9 Approach previously defined position with Break Point 18

2.10 Write Parameters to the Module 19

2.11 Gearing Mode 30

2.12 SetBreakpoint 32

2.13 Commisioning Tool 33

3 Datablocks and Parameters 34

3.1 Motion DB 34

3.2 InitDaten 35

3.3 Approach position tables 38

3.4 Approach position tables with breakpoint and two velocitys 39

4 Trajectory Generation 40

4.1 Trajectories, profiles, and parameters 40

4.2 Trapezoidal point-to-point profile 40

4.3 S-curve point-to-point profile 42

4.4 Velocity-contouring profile 44

4.5 Electronic-gear profile 45

4.6 Motor Mode 47

5 The Servo Loop 48

5.1 Overview 48
5.1.1 PID loop algorithm 48
5.1.2 Motor bias 49



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 3 of 73

5.1.3 Output limit 49

5.2 Closed-loop and open-loop control modes 49
5.2.1 Motor bias in open-loop mode 50

6 Parameter update and breakpoints 51

6.1 Parameter buffering 51
6.1.1 Updates 51

6.2 Breakpoints 52
6.2.1 Defining a breakpoint, Overview 52
6.2.2 Breakpoint triggers 52
6.2.3 Threshold-triggered breakpoints 53
6.2.4 Level-triggered breakpoints 53
6.2.5 Breakpoint actions 54
6.2.6 Breakpoint Examples 54

7 Status Registers 55

7.1 Overview 55
7.1.1 Event Status register 55
7.1.2 Instruction error 56
7.1.3 Activity Status register 56
7.1.4 Signal Status 57
7.1.5 Signal Sense Mask 58

8 Monitor ing Motion Performance 60

8.1 Motion Error 60
8.1.1 Automatic Stop On Motion Error 60

8.2 Tracking window 61

8.3 Motion Complete Indicator 61

8.4 In-motion indicator 62

8.5 Settled indicator 62

9 Hardware Signals 65

9.1 Travel-limit switches 65

9.2 The AxisOut pin 66

9.3 The AxisIn pin 67

10 Direct Access to the H320 Controller 68

10.1 Introduction 68

10.2 Definition in the Peripherie DB 68

10.3 Modul access 70
10.3.1 Access to the FPGA 70
10.3.2 Access to the Controller 70



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 4 of 73

1 Introduction

In Chapter 1 is a general overview of the motion Concept. Chapter 2 describes the main
function blocks for basic functions. Chapter 4 to 9 describes how to use the functions for
the H320 module.

1.1 Structure of the motion control concept

The concept comprises three parts: The first part consists of HW-independent function
and data-blocks. These describe the functions that are to be executed (initialization,
positioning, etc.). They also provide the user with a uniform, HW-independent interface.
The second part consists of HW-dependent function and data-blocks. These execute the
functions on the projected HW. These functions are not visible to the user, unless they
have to be loaded. The DB parameter represents an exception. In this DB the user must
enter the various HW parameters (such as module addresses, control parameters,
mechanical factors, etc.).
The third part is the link between the first and second parts. It consists of a DB containing
stored information on which FBs and DBs are valid for the chosen HW. (In the following
diagram it is called the MotionDB).

FB

D B

M otionD B

HW  abhängige D aten

HW - abhängige Funktionen

A llgem eine
M otion  Funktionen
HW - unabhängig

FB / FC



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 5 of 73

2 Basic functions

This chapter describes the basic functions. At present 6 functions exist for controlli ng the
axes:

FC 20 Initialization

FB 21 Homing

FC 22 Motion in velocity mode

FC 23 Positioning mode without breakpoint

FB 24 Positioning mode with table without breakpoint

FB 25 Teach in for tables without breakpoint

FC 26 Current position and status

FC 27 Positioning mode with breakpoint

FB 28 Positioning mode with table with breakpoint

FC 29 write new Parameter

FB 30 Gearing Mode

FC 31 SetBreakpoint

UDT 110 Structure of the motionDB

UDT 300 Structure of the Init DB

UDT 301 Structure of the Position table

UDT 303 Structure of the Position table with breakpoints

Each function has at least three parameters: MotionDB, Error and Enable/Start. The
“MotionDB” input is an INT value. This value corresponds to the number of the DB that
stores which FBs and DBs should be used for the relevant HW. The precise structure of
this MotionDB is described in chapter 3.

The “Error” output is one BYTE. If the function has been executed successfully, this
value is set at zero. If an error occurs during execution, this output is set at a value not
equal to zero.

Neither of these parameters is further described or li sted with the individual functions.

The same function must never be active repeatedly for one axis, as otherwise movements
will not be correctly executed.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 6 of 73

2.1 Initialization

Call block FC20:

Parameters:

Name Type I /O Description

MotionDB INT IN Number of motion DB

Start BOOL IN Initialization is started with a positive edge

Complete BOOL OUT When initialization is complete, this bit becomes high

Error BYTE OUT

0:  The initialization is executed successfully
1:  The Filter Parameters (PID- Parameters) are out of

range
5: Trace is running
B: Invalid negativ value
92: DB could not be produced because the function

compress memory is activ
A1: Error on DB Nr. The DB Nr. has to be between 1

and 1023. (Value in MotionDB at Adress 4)
B1: There is not enough memory to produce a DB
B2: There is not enough memory to produce a DB
B3: There is not enough memory to produce a DB (you

should compress the memory)

Function:

This block calls the FB specified in MotionDB at address 6. The DB number at address 0
is given as the ParameterDB. A precise description of this ParameterDB is given in
chapter 3. In the initialization routine the parameters are first checked and converted into
suitable values for the module. These modified parameters are filed in a special DB (DW
4 in the MotionDB). Finally, the H320 module is initialized.

Initialization must be called once. The functions described in the following can fulfil their
proper function only after the successful execution of the block.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 7 of 73

When a positive edge arrives at the Start input, initialization commences. The Start input
must remain at true at least until the Complete bit has been set.

Initialization cannot be executed in OB100, but must be called in OB1.

The Initialization has to be called for both axis on the module. For each axis it is
nessesary to use a different Motion DB.

2.2 Home position

Call block FB 21:

Parameters:

Name Type I /O Description

fastVelo real in Velocity of search for reference point

slowVelo real in Velocity of travel down from reference point

LS_right bool in
Right-hand limit switch input is not used,
because the H320 Module has its own limit
switch input.

LS_left
bool in

Left-hand limit switch input is not used,
because the H320 Module has its own limit
switch input.

LS_refPoint bool in

Reference point input is not used. The H320 has
its own Reference input. If the Reference Input
on the H320 becomes 0, direction is changed
and travel continues at SlowVelo speed until
the input becomes 1 again.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 8 of 73

left_side bool in

If this input is TRUE, travel takes place first to
the left. The reference point must be
approached equally from the left for it to be set.

If this input is FALSE, travel takes place first to
the right. The reference point must be
approached equally from the right for it to be
set.

Enable bool in
Axis enable. If this input is FALSE, the axis
remains immobile.

searching bool out
Searching for the reference point, the axis is in
motion.

on_ref_point bool out Reference point has been found and set.

Error byte out

0: no error
1: a position Function is activ
4: invalid parameter
6: Both limit switches are reached without
reaching the Reference switch
B: invalid negative value
C: invalid parameter change

Start_Ref_search bool in_out

On receipt of a positive edge, parameters are
adopted and homing commences. When the
reference point has been reached, this function
resets the bit.

Description:

This function is used to search for the reference point. The “left_side” input defines the first
search direction and the side from which the reference switch must be approached. When the
reference point has been reached, travel continues at the second velocity from the reference
switch. Only then is the reference point set. See Figure 1.

Ref erenz ES

f astVelo

slow Velo

v

s

Figure 1 Search for reference point

Zero offset compensation can be specified in the ParameterDB for initialization. When the
reference point is set, this zero offset compensation is also taken into account.
When both limit switches “LS_right” and “LS_left” have each been reached once, the “Error”
output is set and the axis is stopped.
In the first Version, the Index Input is not used for finding the reference point.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 9 of 73

2.3 Speed Control

Call block FC22:

Parameters:

Name Type IO Description

Velocity real in
Velocity at which the drive runs. The preceding sign
indicates direction.

Start bool in Start axis.

Enable bool in Enable axis.

Done bool out The axis moves.

Error byte out

If the axis cannot be moved, this byte is set not equal to 0.
Error = 1: a motion control function is already active.
4: invalid Parameter
B: invalid negativ value
C: invalid parameter change
D: invalid move after limit condition
E: invalid move into limit
10: motion error
12: motion error + Wrap around
20: positiv limit switch reached
22: positiv limit switch and wrap around
40: negativ limit switch
42: negativ limit switch and wrap around

Description:

This function is used to move the axis at the prescribed velocity. The preceding sign for
velocity determines the direction of motion. If the value of “Velocity” changes, the new
velocity is adopted.

If the enable signal is zeroed during motion, a fast stop will be executed at the maximum
breaking ramp.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 10 of 73

2.4 Position_Control (without breakpoint)

Call block FC23:

Parameters:

Name Type IO Description

Position real in
Position to be approached. The direction is indicated
by the preceding sign.

Velocity real in
Max. velocity at which the above position should be
approached. The preceding sign has no significance
here.

PosRelativ bool in
True: The position is relative

False: The positon is absolute

VeloRelativ bool in
True: Velocity is relative to the current one

False: Velocity is absolute

Enable bool in Enable axis.

running bool out
Message returned when axis is travelli ng to the
position

Pos_reached bool out
Message returned when the axis is located at the
position

Error byte out

1: other motion function is active
4: Invalid Parameter
6: Motion Error
B: Invalid negativ value
C: Invalid parameter change
D: Invalid move after limit condition



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 11 of 73

E: Invalid move into limit

Start bool
in_
out

On receipt of a positive edge, parameters are loaded
and effective. As soon as parameters are effective, the
function resets this bit to 0 and the axis is started.

Load bool
in_
out

On receipt of a positive edge, parameters are just
loaded. The parameters get effective with the next
update from an other function or after some
breakpoints conditions.

Description:

This function is required for positioning an axis.

The drive travels at the prescribed velocity to the specified position. During travel it i s
possible to specify a new position / velocity. As soon as the start command is set, the new
position / velocity will be adopted, regardless of whether the old position has been
reached. When the specified position has been reached, the drive stops. The message
returned indicates the status of positioning. If it has not been possible to approach the
position, one or more of the Bits in the error message is set.

2.5 Approach previously defined position

Call block FB24:

Parameters:

Name Type IO Description

Pos_X int in
Position number to be reached. A table (MotionDB address
2) contains the absolute position and the velocity at which
the position should be approached.

Enable bool in Enable axis

running bool out Message returned when motion control is running

pos_reached bool out Message returned when the axis is located on the position



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 12 of 73

Error byte out

1: other motion function is active
2: invalid instruction
4: invalid parameter
6: Motion error
B: invalid negativ value
C: invalid parameter change
D: invalid move after limit condition
E: invalid move into limit

Start bool
in_
out

On receipt of a positive edge, parameters are adopted. This
bit is reset to 0 by the function.

Description:

A table (DBNo. in the Motion DB under address 2) is used to store positions and the
appropriate velocities (entered in the table manually or via a Teach-In function). Using
the position number, the function locates the corresponding position and velocity in the
table. That position is then approached. If a positive edge is set at the “Start” input during
motion control, the new position is adopted and approached, regardless of whether the old
position has been reached.

2.6 Teach in

Call block FB25:

Parameters:

Name Type IO Descr iption

Start bool in
As long as this input is at TRUE, the axis moves at the
velocity of “TeachVelo” .

Enable bool in Enable axis. Without this enable, values cannot be saved.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 13 of 73

PosSav bool in The current position is entered in the table

Position int in
The current position will be approached again later with
this number

TeachVelo real in
The velocity at which the axis will move during the Teach-
In. The preceding sign determines the direction.

PositionVelo real in
The position saved will be approached at this speed. (The
preceding sign has no significance).

Error byte out
1: The axis cannot be moved
2: The value at input “Position” is invalid
0: No error

Description:

The “Start” input moves the axis at the velocity of “TeachVelo” . The sign preceding the
velocity produces the direction in which the axis moves. When there is a positive edge at
the “PosSav” input, the current position is entered in a table together with the velocity at
the “PositionVelo” input. If the “Enable” input is at zero, the axis is immobilized after a
fast stop. Likewise, no positions may be stored.

2.7 Read current position and status

Call block FC26:

Parameters:

Name Type IO Description

Position real out
The current position at which the axis is located at the
moment of calli ng.

StatusWord word out See Table below.
ActivityWo
rd

word out See Table below.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 14 of 73

Description:

Current position can be queried in user units with this function.

The Event Status register and the Activity register from the H320 can be read with this
function.

The following Table shows the meaning of the two registers.

Status Word

The following table shows the encoding of the data returned by this command.

Name Bit(s) Description

Motion complete 0 Set to 1 when motion is completed. SetMotionCompleteMode
determines if this bit is based on the trajectory generator position
or the encoder position.

Wrap-around 1 Set to 1 when the actual (encoder) position wraps from
maximum allowed position to minimum or vice versa

Breakpoint 1 2 Set to 1 when  breakpoint 1 is triggered

Capture received 3 Set to 1 when a position capture occurs

Motion error 4 Set to 1 when a motion error occurs

In positive limit 5 Set to 1 when the axis enters a positive limit switch condition

In negative limit 6 Set to 1 when the axis enters a negative limit switch condition

Instruction error 7 Set to 1 when instruction error occurs

reserved 8-10 Not used, may be 0 or 1.

Commutation error 11 Set to 1 when a commutation error occurs

reserved 12-13 Not used, may be 0 or 1

Breakpoint 2 14 Set to 1 when breakpoint 2 is triggered

reserved 15 Not used, may be 0 or 1

Activity Word

Each of the bits in this register continuously indicate the state of the chipset without any
action on the part of the host. There is no direct way to set or clear the state of these bits,
since they are controlled by the chip set.

The following table shows the encoding of the data returned by this command.

Name Bit
Number

Description

Phasing initialized 0 Set to 1 if phasing is initialized (MC2300 series only)



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 15 of 73

At maximum velocity 1 Set to 1 when the trajectory is at maximum velocity. This
bit is determined by the trajectory generator, not the actual
encoder position.

Tracking 2 Set to 1 when the axis is within the tracking window

Current profile mode 3-5 Contains trajectory mode encoded as follows:
bit 5           bit 4         bit 3       Profile Mode
     0                0              0       trapezoidal
     0                0              1       velocity contouring
     0                1              0       s-curve
     0                1              1       electronic gear

reserved 6 not used, may be 0 or 1

Axis settled 7 Set to 1 when the axis is settled

Motor on/off 8 Set to 1 when motor mode is on, 0 when off .

Position capture 9 Set to 1 when a value has been captured by the high speed
position capture hardware but has not yet been read. The
GetCaptureValue command must be executed before
another capture can occur.

In-motion 10 Set to 1 when the trajectory generator is executing a profile
on the axis.

In positive limit 11 Set to 1 when the positive limit switch is active

In negative limit 12 Set to 1 when the negative limit switch is active

Profile segment 13-15 Only used during S-curve profile mode. Contains value of
0 when the profile is at rest. Contains phase number 1-7
when profile is in motion.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 16 of 73

2.8 Position Control with Break Point
Call block FC27:

Parameters:

Name Type IO
Description

Position real in
Position to be approached. The direction is indicated
by the preceding sign.

Breakpoint real in At this Position the Breakpoint Flag will be set.

Velocity real in
Max. velocity at which the above position should be
approached. The preceding sign has no significance
here.

Velo_after_Breakpoin
t

real in
When the Breakpoint Flag is set, the speed of the axis
will change to this speed.

PosRelativ bool in True: The position is relative
False: The positon is absolute

VeloRelativ bool in True: Velocity is relative to the current one
False: Velocity is absolute

useBreakpoint bool in True: The Breakpoint will be loaded and the
breakpoint flag2 be set and the output OUT is set.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 17 of 73

False: Thre Breakpoint has no affect.

changeVelo bool in

True: When the breakpoint is reached, the velocity
will change to Velo_after_Breakpoint. Also the
brakpoint flag1 be set.
False: The Value Velo_afterBreakpoint has no affect.

Breakpoint_relativ bool in True: The breakpoint is relativ
False: The breakpoint is absolut

Velo2_relativ bool in True: the second Velocity is relative to the current one
False: the second Velocity is absolute

Enable bool in Enable axis.

running bool out
Message returned when axis is travelli ng to the
position

Pos_reached bool out
Message returned when the axis is located at the
position

Breakpoint_reached bool out True: the breakpoint is reached.

Error byte out

1: other motion function is active
2: invalid instruction
4: invalid parameter
6: Motion error
B: invalid negativ value
C: invalid parameter change
D: invalid move after limit condition
E: invalid move into limit

Start bool in_out
On receipt of a positive edge, parameters are loaded
and effective. As soon as parameters are effective, the
function resets this bit to 0 and the axis is started.

Description:

This function is required for positioning an axis.

The drive travels at the prescribed velocity to the specified position. During travel, it is
possible to specify a new position / velocity. As soon as the start command is set, the new
position / velocity will be adopted, regardless of whether the old position has been
reached or not. When the specified position has been reached, the drive stops. The
message returned indicates the status of positioning. If it has not been possible to
approach the position, an error message is set.

In this function it is possible to set two breakpoints. One to change the velocity at the
breakpoint, and the other to set the Output OUT.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 18 of 73

2.9 Approach previously defined position with Break Point

Call block FB28:

Parameters:

Name Type IO Description

Pos_X int in
Position number to be reached. A table (MotionDB
address 34) contains the absolute position and the
velocity at which the position should be approached.

Enable_Breakpoint bool in
True: The Breakpoint will be loaded and the
breakpoint flag2 be set. The output OUT will be set.
False: The Breakpoint has no affect.

Enable_Speed_Change bool in
True: When the breakpoint is reached, the velocity
will change to Velo_after_Breakpoint
False: The Value Velo_afterBreakpoint has no affect.

Enable bool in Enable axis

running bool out Message returned when motion control is running

pos_reached bool out
Message returned when the axis is located on the
position

Breakpoint_reached bool out True: the breakpoint is reached.

Error byte out

1: other motion function is active
2: invalid instruction
4: invalid parameter
6: Motion error
B: invalid negativ value
C: invalid parameter change
D: invalid move after limit condition



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 19 of 73

E: invalid move into limit

Start bool
in_
out

On receipt of a positive edge, parameters are
adopted. This bit is reset to 0 by the function.

Description:

A table (DBNo. in the Motion DB under address 34) is used to store positions, the appropriate
velocities, the breakpoint and the second velocities (entered in the table manually). Using the
position number, the function locates the corresponding position, breakpoint and velocity in the
table. That position is then approached. If the breakpoint is reached, the flag Breakpoint reched
is set to True and the Velocity will change to the second Velocity. If a positive edge is set at the
“Start” input during motion control, the new position is adopted and approached, regardless of
whether the old position has been reached.

2.10 Write Parameters to the Module

Call block FC29:

Parameters:

Name Type IO Description

CMD int in Command Nummer 0 to 41. see next Table

pPTR pointer in

The pointer shows to the value.

Ex. P#M10.0. If the value is a byte then MB10 is readed. If
the value is a word then MW10 is readed. If the value is a
real or double word then MD10 is readed.

Error word out

0: No Error
1: Processor Reset
2: Invalid instruction
3: Invalid axis
4: Invalid parameter
5: Trace running



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 20 of 73

6: reserved
7: Block out of bounds
8: Trace buffer zero
9: Bad serial checksum
A: Not primary port
B: Invalid negativ value
C: Invalid parameter change
D: Invalid move after limit condition
E: Invalid move into limit
F: Wrong command Number

Description:

The function change parameters. The right use of these parameters see this
dokumentation.

CM
D
Nr

Name Type Description

0 LimitSwitch
Mode

byte SetLimitSwitchMode enables (On) or disables (Off) limit -
switch sensing for the specified axis. When the mode is
enabled, the axis will cause the corresponding limit -switch
bits in the Event Status register and Activity Status register
to be set when it enters either the positive or negative limit
switches and the axis will be immediately stopped. When it
is disabled these bits are not set, regardless of whether the
axis is in a limit switch or not.

1 AxisMode byte SetAxisMode enables (On) or disables (Off) the specified
axis. A disabled axis will not respond to profile or other
motion commands.

2 ProfilMode byte SetProfileMode sets the profile mode, selecting
Trapezoidal (0), Velocity Contouring (1), S-curve (2), or
Electronic gear (3) for the specified axis.

3 Stop byte Stop stops the specified axis. The available stop modes are
AbruptStop (1), which instantly (without any deceleration
phase) stops the axis, SmoothStop (2) which uses the
programmed deceleration value and profile shape for the
current profile mode to stop the axis, or NoStop (0) which
is generally used to turn off a previously set stop
command.

Note: After an Update a buffered stop command
(SetStopMode command) will reset to the NoStop
condition. In other words if the command SetStopMode is
followed by an Update command and then by a
GetStopMode command, the retrieved stop mode will be
NoStop.

Restr ictions SmoothStop mode is not valid in the



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 21 of 73

electronic-gearing profile.

SetStop is a buffered command. The value set using this
command will not take effect until the next Update or
MultiUpdate instruction.

4 MotorMode byte MotorMode determines the mode of motor operation; open
loop or closed loop for the specified axis. When set to On,
the axis is in closed-loop mode, and is controlled by the
output of the servo filter. On the MC2400 series and
MC2500 series, the trajectory generator controls the motor
output.

When set to Off , the axis is in open-loop mode, and is
controlled by commands placed directly into the motor
output register by the host.

5 AutoStopMode byte AutoStopMode determines the behavior of the specified
axis when a motion error occurs. When auto stop is
enabled (AutoStopMode = 1), the axis goes into open-loop
mode when a motion error occurs. When Auto-Stop is
disabled (AutoStopMode = 0), the axis is not affected by a
motion error.

6 CaptureSource byte SetCaptureSource determines which of two encoder
signals, Index (0) or Home (1), is used to trigger the high-
speed capture of the actual axis position for the specified
axis.

7 MotionComplite
Mode

byte MotionCompleteMode establishes the source for the
comparison which determines the motion-complete status
for the specified axis. When set to commanded (0) mode
the motion is considered complete when the profile
velocity reaches zero and no further motion will occur
without an additional host command.

This mode is unaffected by the actual encoder location.

When set to actual mode (1) the motion complete bit will
be set when the above condition is true AND the actual
encoder position has been within the Settle Window
(SetSettleWindow command) for the number of servo
loops specified by the SetSettleTime command. The settle
"timer" is started at zero at the end of the trajectory profile
motion so at a minimum a delay of SettleTime cycles will
occur after the trajectory profile motion is complete.

8 Update byte Update causes all buffered data parameters are copied into
the corresponding run-time registers on the specified axis.

The following instruction is buffered: ClearPositionError.

The following trajectory parameters are buffered:
Acceleration, Deceleration, GearRatio, Jerk, Position,
ProfileMode, StartVelocity, Stop, and Velocity.

The following PID filter parameters are buffered:



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 22 of 73

DerivativeTime, ntegrationLimit, Kaff , Kd, Ki, Kp, and
Kvff .

The following Motor Command parameters is buffered:
MotorCommand.

9 ClearPosition
Error

byte ClearPositionError sets the current profile's commanded
position equal to the actual position (encoder input),
thereby clearing the position error for the specified axis.
This command can be used when the axis is at rest, or
when it is moving. If it is used when the axis is moving the
host should be aware that the trajectory destination position
(used in trapezoidal and s-curve modes) is not changed by
this command.

Restr ictions ClearPositionError is a buffered command.
The new value set will not take effect until the next Update
or MultiUpdate instruction is entered.

10 Multiuptdate byte Instance         Encoding
 None              0
Axis1mask      1
Axis2mask      2

MultiUpdate causes an Update to occur on all axes whose
corresponding bit is set to 1 in the mask argument. After
this command is executed, and for those axes which are
selected using the mask, all buffered data parameters are
copied into the corresponding run-time registers.

The following instruction is buffered: ClearPositionError.

The following trajectory parameters are buffered:
Acceleration, Deceleration, GearRatio, Jerk, Position,
ProfileMode, StartVelocity, StopMode, and Velocity.

The following PID filter parameters are buffered:
DerivativeTime,  Integration Limit, Kaff , Kd, Ki, Kp, and
Kvff .

The following Motor Command parameters is buffered:
MotorCommand

11 MotorLimit real

-100.0 to
+100.0
%

SetMotorLimit sets the maximum value for the motor
output command allowed by the digital servo filter of the
specified axis. Motor command values beyond this value
will be clipped to the specified motor command limit . For
example if the motor limit was set to 1,000 and the servo
filter determined that the current motor ouput value should
be 1,100 the actual output value would be 1,000.
Conversely if the output value were -1,100 then it would be
clipped to -1,000. This command is useful for protecting
ampli fiers, motors, or system mechanisms when it is
known that a motor command exceeding a certain value
will cause damage.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 23 of 73

Restr ictions This command only affects the motor ouput
when in closed loop mode. When the chipset is in open
loop mode this command has no affect.

12 MotorBias real

-100.0 to
+100.0
%

SetMotorBias sets the bias voltage of the digital servo filter
for the specified axis.

13 KP int

0 to

215 -1

SetKp sets the proportional gain of the digital servo filter
for the specified axis.

Restr ictions SetKp is a buffered command. The value set
using this command will not take effect until the next
Update or MultiUpdate instruction.

14 KI int

0 to

215 -1

SetKi sets the integral gain of the digital servo filter for the
specified axis.

Restr ictions This is a buffered command. The value set
using this command will not take effect until the next
Update or MultiUpdate instruction.

15 KD int

0 to

215 -1

SetKd sets the derivative gain of the digital servo filter for
the specified axis.

Restr ictions SetKd is a buffered command. The value set
using this command will not take effect until the next
Update or MultiUpdate instruction.

16 Kvff int

0 to

215 -1

SetKvff sets the velocity feedforward gain of the digital
servo filter for the specified axis.

Restr ictions SetKvff is a buffered command. The value set
using this command will not take effect until the next
Update or MultiUpdate instruction.

17 InterruptMaske word Motion complete               0001h
Wrap-around                     0002h
Breakpoint 1                      0004h
Capture received               0008h
Motion error                      0010h
In positive limit                 0020h
In negative limit                0040h
Instruction error                0080h
Commutation error           0800h
Breakpoint 2                     4000h

SetInterruptMask determines which bits in the Event Status
register of the specified axis will cause a host interrupt. For
each interrupt mask bit that is set to 1, the corresponding
Event Status register bit will cause an interrupt when that
status register bit goes active (is set to 1). Interrupt mask
bits set to 0 will not generate interrupts.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 24 of 73

Example: The interrupt mask value 28h will generate an
interrupt when either the "in positive limit " bit or the
"capture received" bit of the event status register goes
active (set to 1).

18 MotorCommand real

-100.0 to
+100.0
%

SetMotorCommand loads the motor-command buffer
register of the specified axis.

Restr ictions SetMotorCommand is valid only when the
motor is “off ” .  SetMotorCommand is a buffered
command. The value set using this command will not take
effect until the next Update or MultiUpdate instruction.

19 Kaff int

0 to

215 -1

SetKaff sets the acceleration feedforward gain of the digital
servo filter for the specified axis.

Restr ictions SetKaff is a buffered command. The value set
using this command will not take effect until the next
Update or MultiUpdate instruction.

20 DerivativeTime real

>= 0.0

SetDerivativeTime sets the sampling time, in number of
servo cycles, for the servo filter to use in calculating the
derivative term for the specified axis.

Restr ictions This command is NOT buffered. The new
sampling time value will t ake effect immediately after the
command is sent to the chipset. This command does not
affect the overall cycle time of the chipset, only the
derivative sampling time. The overall cycle time of the
chipset is set using the command SetSampleTime.

21 Kout real
0.0
to
+100.0
%

SetKout sets the output scale factor of the digital servo
filter for the specified axis. The default value is 100.0 %

Restr ictions This command is NOT buffered. It will t ake
affect immediately after it is sent.

22 SignalSense word Encoder A                       0001h
Encoder B                       0002h
Encoder Index                 0004h
Encoder Home                0008h
Positive limit                   0010h
Negative limit                  0020h
AxisIn                              0040h
AxisOut                            0400h

SetSignalSense establishes the sense of the signals
connected to the Signal Sense register by using a bitwise
mask that corresponds to the bits of the Signal Status
register, for the specified axis.

For each sense bit that is 0, the input is active low, or not
inverted.

For each sense bit that is 1, the input is active high, or
inverted.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 25 of 73

23 Tracking
Window

real
>= 0.0

SetTrackingWindow sets boundaries for the actual position
of the specified axis. If the axis crosses the window
boundary in either direction, the Tracking indicator (bit 2
of the activity Status register) is set to 0. When the axis
returns to within the window, the tracking indicator is set
to 1.

24 SettleTime real
>= 0.0

SetSettleTime sets the time, in number of cycles, that the
specified axis must remain within the settle window before
the axis-settled indicator (in the activity status register) is
set.

25 GearMaster word SetGearMaster establishes the slave (axis) and master
(masterAxis) axes for the electronic-gearing profile, and
sets the source, Actual or Commanded, of the master axis
position data to be used.

The masterAxis determines what axis will drive the slave
axis. Both the slave and the master axes must be enabled
(SetAxisMode command). The source determines whether
the master axis' commanded position as determined by the
trajectory generator will be used to drive the slave axis, or
whether the master axis' encoder position will be used to
drive the slave.

Restr ictions For electronic gear mode to operate properly
the master axis must be enabled.

master Axis:    Axis1                0
                        Axis2                 1
source              Actual                0
                        Commanded       1

26 SettleWindow real
>= 0.0

SetSettleWindow sets the position range within which the
specified axis must remain for the duration specified by
SetSettleTime before the axis-settled indicator (in the
activity status register) is set.

27 Breakpoint1 word

sourceAxis    Axis1                  0
                      Axis2                  1
action           (none)                  0
                     Update                 1
                     AbruptStop          2
                     SmoothStop         3
                     MotorOff             4
trigger          (none)                                                0
                     PositiveCommandedPosition            1
                     NegativeCommandedPosition           2
                     PositiveActualPosition                      3
                     NegativeActualPosition                     4



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 26 of 73

                     CommandedPositionCrossed            5
                     ActualPositionCrossed                      6
                     Time                                                  7
                     EventStatus                                       8
                     ActivityStatus                                   9
                     Signal                                               Ah
SetBreakpoint establishes a breakpoint for the specified
axis to be triggered by a condition or event on sourceAxis,
which may be the same as or different from axis.
Up to two concurrent breakpoints can be set for each axis.
The six Position breakpoints and the Time breakpoint are
threshold-triggered; the breakpoint occurs when the
indicated value reaches or crosses a threshold. The Status
breakpoints are level-triggered; the breakpoint occurs when
a specific bit or combination of bits in the indicated status
register changes state. Thresholds and bit specifications are
both set by the SetBreakpointValue instruction.
action determines what the Navigator does when the
breakpoint occurs, as follows:
Action                             Resultant command sequence
none                                 no action
Update                             Update axis
AbruptStop                      SetStop axis, AbruptStop Update
                                         axis
SmoothStop                     SetStop axis, SmoothStop Update
                                         axis
MotorOff                         SetMotorMode axis, Off Update
                                        axis
axis is the axis for which the breakpoint has been set.

Two completely separate breakpoints are supported, each
of which may have its own breakpoint type and
comparison value. The breakpoint field specifies which
breakpoint the SetBreakpoint and GetBreakpoint
commands will address.
Restr ictions Before setting a new breakpoint condition
(SetBreakpoint command) ALWAYS load the comparison
value first (SetBreakpointValue command). This is because
as soon as the breakpoint condition is set the chipset will
start using the breakpoint value register, and if it is not yet
defined the breakpoint will not behave as expected.

28 Breakpoint2 word see Breakpoint 1

29 AxisOutSource word

axis                   Axis1              0
                         Axis2              1
sourceAxis        Axis1             0
                         Axis2              1
bit see below 0 to 15



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 27 of 73

register             (none)             0
                         EventStatus     1
                         ActivityStatus  2
                         SignalStatus     3
SetAxisOutSource maps the specified bit of the specified
status register of axisn to the AxisOut pin for the specified
axis. The state of the AxisOut pin will t hereafter track the
state of bit. If register is absent (encoding of 0), bit is
ignored, and the specified AxisOut pin is, in effect, turned
off (inactive).

The table below shows the source for combinations of bit
and register.

30 ResetEvent
Status

ResetEventStatus clears (sets to 0) , for the specified axis,
each bit in the Event Status Register that has a value of 0 in
the mask sent with this command. All other Event Status
register bits (bits which have a mask value of 1) are
unaffected.
Motion complete                    0001h
Wrap-around                           0002h
Breakpoint 1                            0004h
Capture received                     0008h
Motion error                            0010h
In positive limit                       0020h
In negative limit                      0040h
Instruction error                      0080h
Commutation error                  0800h
Breakpoint 2                            4000h

31 Position real in
User
units

SetPosition specifies the trajectory destination of the
specified axis. It is used in the Trapezoidal and S-curve
profile modes.

Restr ictions SetPosition is a buffered command. The value
set using this command will not take effect until the next
Update or MultiUpdate instruction.

32 Velocity real in
User
units

SetVelocity loads the Maximum Velocity buffer register
for the specified axis.

Restr ictions SetVelocity may not be issued while an axis



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 28 of 73

is in motion with the S-curve profile.

SetVelocity is not valid in Electronic Gearing profile
mode.

The velocity must not be < 0 except in the Velocity-
Contouring profile mode.

SetVelocity is a buffered command. The value set using
this command will not take effect until the next Update or
MultiUpdate instruction.

33 Jerk real in
User
units

SetJerk loads the jerk register in the parameter buffer for
the specified axis.

SetJerk is a buffered command. The value set using this
command will not take effect until the next Update or
MultiUpdate instruction.

This command is used only with the S-curve profile mode.
It is not used with the trapezoidal, velocity contouring, or
electronic gear profile modes.

34 GearRation real SetGearRatio sets the ratio between the master and slave
axes for the electronic gearing profile for the current axis.
Positive ratios cause the slave to move in the same
direction as the master, negative ratios in the opposite
direction.

Restr ictions This is a buffered command. The new value
set will not take effect until the next Update or
MultiUpdate instruction is entered.

35 Actual Positions real in
User
units

SetActualPosition loads the actual position register
(encoder position) for the specified axis. At the same time,
the current commanded position is replaced by the loaded
value minus the current actual position error. This prevents
a servo "bump" when the new axis position is established.
The destination position (see SetPosition) is also modified
by this amount so that no trajectory motion will occur
when the update instruction is issued. In effect, this
instruction establishes a new reference position from which
subsequent positions can be calculated. It is commonly
used to set a known reference position after a homing
procedure.

36 Acceleration real in
User
units

SetAcceleration loads the maximum acceleration buffer
register for the specified axis. This command is used with
the Trapezoidal, Velocity Contouring, and S-curve
profili ng modes.

Restr ictions SetAcceleration may not be issued while an
axis is in motion with the S-curve profile.

SetAcceleration is not valid in Electronic Gearing profile
mode.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 29 of 73

SetAcceleration is a buffered command. The value set
using this command will not take effect until the next
Update or MultiUpdate instruction.

37 Deceleration real in
User
units

SetDeceleration loads the maximum deceleration buffer
register for the specified axis. This command sets the
magnitude of the deceleration register, which always has a
negative sign.

Restr ictions This is a buffered command. The new value
set will not take effect until the next Update or
MultiUpdate instruction is entered.

These commands are used with the Trapezoidal, S-curve,
and Velocity contouring profile modes. They are not used
with the electronic gearing profile mode.

Note: If deceleration is set to zero, then the value specified
for acceleration (SetAcceleration) will automatically be
used to set the magnitude of deceleration.

38 Integration
Limit

real
length *
time

SetIntegrationLimit loads the integration-limit register of
the digital servo filter for the specified axis.

Restr ictions This is a buffered command. The value set
using this command will not take effect until the next
Update or MultiUpdate instruction.

39 PositionError
Limit

real in
User
units

SetPositionErrorLimit sets the absolute value of the
maximum position error allowable by the chipset for the
specified axis. If the position error exceeds this limit , a
motion error occurs. Such a motion error may or may not
cause the axis to stop moving depending on the value set
using the SetAutoStopMode command.

40 Breakpoint
Value1

dword PositiveCommandedPosition                signed 32 bit
NegativeCommandedPosition               signed 32 bit
PositiveActualPosition                           signed 32 bit
NegativeActualPosition                          signed 32 bit
CommandedPositionCrossed                  signed 32 bit
ActualPositionCrossed                            signed 32 bit
Time                                                        unsigned 32 bit
EventStatus                                              2 word mask*
ActivityStatus                                          2 word mask*
SignalStatus                                             2 word mask*� � � � � � � � � � � � � 	 
 � � � � � 	 
 � � � 	 
 � 	 � � 	 � � � � � � � � �
	�
���������� 	�� �����
SetBreakpointValue sets the breakpoint comparison value
for the specified axis.

For the position and time breakpoints this is a threshold
comparison value.

For level-triggered breakpoints, the high-order part of
value is the selection mask, and the low-order word is the
sense mask. For each selection bit that is set to 1, the



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 30 of 73

corresponding bit of the specified status register is
conditioned to cause a breakpoint when it changes state.
The sense-mask bit determines which state causes the
break. If it is 1, the corresponding status-register bit will
cause a break when it is set to 1. If it is 0, the status-register
bit will cause a break when it is set to 0.

For example assume it is desired that the breakpoint type
will be set to "EventStatus" and that a breakpoint should be
recognized whenever the motion complete bit (bit 0 of
event status register) is set to 1, and the commutation error
bit (bit 11 of event status register) is set to 0. In this
situation the high and low words for value would be high
word: 0x801 (hex) and low word: 1.

Restr ictions Before setting a new breakpoint condition
(SetBreakpoint command) ALWAYS load the comparison
value first (SetBreakpointValue command). This is because
as soon as the breakpoint condition is set the chipset will
start using the breakpoint value register, and if it is not yet
defined the breakpoint will not behave as expected.

41 Breakpoint
Value2

see BreakpointValue1

Description:

With this function it is possible to write all possible parameters. All parameters are in User units
and the function callculate it in Modul units.

For setting breakpoint parameters there exists other Functions which do it more easyly. (FC27,
FB28, FC31).

2.11 Gearing Mode
Call block FB30:



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 31 of 73

Parameters:

Name Type IO
Description

MasterAxis int in MotionDB Number of the Master Axis

SlaveAxis int in MotionDB Number of the Slave Axis

Gearing real in ratio Master / Slave Impulse

Source byte in 0:      Actual Position
1:      Commanded Position

Load bool in
Load the Value in the Module. The Values are not
activ until a update instruction followed. (By a this
module or by a breakpoint or an other function).

Update bool in Update the loaded parameter.

Error byte out

0                       No error
1                       Processor Reset
2                       Invalid instruction
3                       Invalid axis
4                       Invalid parameter
5                       Trace running
6                       reserved
7                       Block out of bounds
8                       Trace buffer zero
9                       Bad serial checksum
Ah                    Not primary port
Bh                    Invalid negative value
Ch                    Invalid parameter change
Dh                    Invalid move after limit condition
Eh                    Invalid move into limit

Description:

In this profile, the host specifies three parameters. The first is the 'master' axis number which is
the axis that will be the source of position information used to drive the 'slave' axis, which is the
axis in gear mode. The second is the gear source, which is either actual (the encoder position of
the master axis) or commanded (the commanded position of the master axis). The third is the
gear ratio, which specifies the direction and ratio of master gear counts to slave counts.

A positive gear ratio value means that when the master axis actual or commanded position is
increasing the slave commanded position will also increase. A negative gear ratio value has the
opposite effect; increasing master position will result in decreasing slave axis commanded
position.

The slave Axis is in Gearing Mode until a position or velocity Function is called.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 32 of 73

2.12 SetBreakpoint
Call block FC 31:

Parameters:

Name Type IO
Description

BreakpointNumber int in 0: Breakpoint 1
1: Breakpoint 2

Source_Axis int in 0: Axis 1
1: Axis 2

Action int in

(none)                  0
Update                 1
AbruptStop          2
SmoothStop         3
MotorOff             4

Trigger int in

(none)                                                0
PositiveCommandedPosition            1
NegativeCommandedPosition           2
PositiveActualPosition                      3
NegativeActualPosition                     4
CommandedPositionCrossed            5
ActualPositionCrossed                      6
Time                                                  7
EventStatus                                       8
ActivityStatus                                   9
Signal                                               Ah

Compare_Value dword in

If the compare Value is a Position or Time, this value
is in User units. The function calculates it in Module
unit. If the Compare_value is a Register the value is a
double word mask. See section below.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 33 of 73

Error byte out

0                       No error
1                       Processor Reset
2                       Invalid instruction
3                       Invalid axis
4                       Invalid parameter
5                       Trace running
6                       reserved
7                       Block out of bounds
8                       Trace buffer zero
9                       Bad serial checksum
Ah                    Not primary port
Bh                    Invalid negative value
Ch                    Invalid parameter change
Dh                    Invalid move after limit condition
Eh                    Invalid move into limit

2.13 Commisioning Tool
Call block FC32:

Description:

If the commisioning Tool is in use, this FC 32 is to call once in each cycle. For each H320
Module this FC32 is to call with the motion DB Number from the first axis.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 34 of 73

3 Datablocks and Parameters

The following chapter describes the parameter Datablocks for the H320 module. For a
precise functional description of modules, consult the relevant HW descriptions.

For all necessary DBs, there are UDTs that exist to generate these blocks.
DBs required internally (with which the user has nothing to do) are generated
automatically if they are not already present.

3.1 Motion DB

The Motion DB serves to inform Standard Interfaces which HW functions must be called
and where they can obtain the data.
If FBs 150 – 155 do not have to be renamed and if the data-block range from DB 300 -
317 has been reserved for these functions, the Motion DB can be generated from
UDT110 and the specified values can be adopted. For both axis an individual Motion DB
must be generated. If more than one H320 module is used, an individual Motion DB must
be generated for each module and each axis. Likewise, a new DB range must be reserved
for each axis and entered accordingly in the Motion DB.

The Motion DB is structured as follows:

The first three values indicate the numbers of the following datablocks:
- InitData is a DB in which the user stores all data required for initialization. The

precise structure can be consulted in the appropriate description.
- In the second DB, positions to be approached are entered.
- Interne Daten is the DB required for overall motion control. This DB is generated

automatically upon initialization.
- In the DB at adress 34, are positions to be approached with the breakpoints



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 35 of 73

- In the DB at adress 40, are values for the commisioning tool. This DB is generatet
automatical by the commisioning tool function.

The other 6 values are the HW-specific functions called by the functions presented in
chapter 2. These FBs must be copied to the corresponding project. The user has nothing
further to do with these functions.

3.2 InitDaten
The user stores the H320 module’s HW data in this data-block. The data are read during
initialization and the module is initialized. This block can be generated with the help of
UDT300. The structure of this DB appears as follows:

Parameters have the following meanings:
- BaseInput / BaseOutput: Input and output address of the H320 module. These

addresses correspond to the values set with the SAIA HW configurator. These values
are for both axis the same

- Axis Number: The number of  the Axis on the module for whitch thes values are valid
- Sample per Unit: Number of positive and negative edges of incremental shaft encoder

per user unit. How to determine this figure is described in the HW documentation.
- Time Factor: Velocity and acceleration are calculated according to this setting.

For example: Enter 400.0 against “Sample per Unit” and 60 against “TimeFact” . At
velocity 1, the module adjusts the velocity so that 400 pulses are emitted per minute.

- KP is the proportional gain of the digital servo filter for the specified axis.
- KI is the integral gain of the digital servo filter for the specified axis.
- KD is the derivative gain of the digital servo filter for the specified axis.
- Kvff is the velocity feedforward gain of the digital servo filter for the specified axis.
- Kaff is the acceleration feedforward gain of the digital servo filter for the specified

axis.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 36 of 73

- DerivativeTime: the sampling time for the servo filter to use in calculating the
derivative term for the specified axis.

- Kout: the output scale factor of the digital servo filter for the specified axis. The
default value of Kout is 100.0%.

- MotorBias: the bias voltage of the digital servo filter for the specified axis.
- Integration Limit: the integration-limit register of the digital servo filter for the

specified axis.
- MotorLimit: the maximum value for the motor output command allowed by the

digital servo filter of the specified axis. Motor command values beyond this value
will be clipped to the specified motor command limit . For example if the motor limit
was set to 1,000 and the servo filter determined that the current motor ouput value
should be 1,100 the actual output value would be 1,000. Conversely if the output
value were -1,100 then it would be clipped to -1,000. This command is useful for
protecting ampli fiers, motors, or system mechanisms when it is known that a motor
command exceeding a certain value will cause damage.

- SettleWindow: the position range within which the specified axis must remain for the
duration specified by SetSettleTime before the axis-settled indicator (in the activity
status register) is set.

- SettleTime: the time, in number of cycles, that the specified axis must remain within
the settle window before the axis-settled indicator (in the activity status register) is
set.

- TrackingWindow: boundaries for the actual position of the specified axis. If the axis
crosses the window boundary in either direction, the Tracking indicator (bit 2 of the
activity Status register) is set to 0. When the  axis returns to within the window, the
tracking indicator is set to 1.

- PositionErrorLimit: the absolute value of the maximum position error allowable by
the chipset for the specified axis. If the position error exceeds this limit , a motion
error occurs. Such a motion error may or may not cause the axis to stop moving
depending on the value set using the SetAutoStopMode command.

- StopOnPositionError: determines the behavior of the specified axis when a motion
error occurs. When auto stop is enabled (SetAutoStopMode Enable), the axis goes
into open-loop mode when a motion error occurs. When Auto-Stop is disabled
(SetAutoStopMode Disable), the axis is not affected by a motion error.

- MotionCompliteMode: establishes the source for the comparison which determines
the motion-complete status for the specified axis. When set to commanded (0) mode
the motion is considered complete when the profile velocity reaches zero and no
further motion will occur without an additional host command. This mode is
unaffected by the actual encoder location. When set to actual mode (1) the motion
complete bit will be set when the above condition is true AND the actual encoder
position has been within the Settle Window (SetSettleWindow command) for the
number of servo loops specified by the SetSettleTime command. The settle "timer" is
started at zero at the end of the trajectory profile motion so at a minimum a delay of
SettleTime cycles will occur after the trajectory profile motion is complete.

- LimitSwitchMode: enables (On) or disables (Off) limit -switch sensing for the
specified axis. When the mode is enabled, the axis will cause the corresponding limit -
switch bits in the Event Status register and Activity Status register to be set when it
enters either the positive or negative limit switches and the axis will be immediately
stopped. When it is disabled these bits are not set, regardless of whether the axis is in
a limit switch or not.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 37 of 73

- Capture Source: determines which of two encoder signals, Index or Home, is used to
trigger the high-speed capture of the actual axis position for the specified axis.

- SignalSense: establishes the sense of the signals connected to the Signal Sense
register by using a bitwise mask that corresponds to the bits of the Signal Status
register, for the specified axis. For each sense bit that is 0, the input is active low, or
not inverted.  For each sense bit that is 1, the input is active high, or inverted.
mask Encoder A 0001h
Encoder B 0002h
Encoder Index 0004h
Encoder Home 0008h
Positive limit 0010h
Negative limit 0020h
AxisIn 0040h
AxisOut 0400h

- Acceleration: Maximum acceleration of the axis. The unit is the result of Sample per
Unit and TimeFact.

- Deceleration: the maximum acceleration buffer register for the specified axis. This
command is used with the Trapezoidal, Velocity Contouring, and S-curve profili ng
modes.

- Jerk: loads the jerk register in the parameter buffer for the specified axis.
- Offset: If the zero point of the installation is not at the reference switch, this

difference can be entered as an offset. The unit is derived from Sample per Unit.
- ProfilMode: sets the profile mode, selecting Trapezoidal (0), Velocity Contouring (1),

S-curve (2), or Electronic gear  (3) for the specified axis.
- MotorMode: determines the mode of motor operation; open loop or closed loop for

the specified axis. When set to On, the axis is in closed-loop mode, and is controlled
by the output of the servo filter. When set to Off, the axis is in open-loop mode, and is
controlled by commands placed directly into the motor output register by the host.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 38 of 73

3.3 Approach position tables

The positions in the table DB “PosTabDB” (DB301) can be entered via a Teach-In or
manually. This DB must be created manually (with the help of UDT301). The structure
of “PosTabDB” appears as follows:

If more positions are required, the list can be enlarged according to the same pattern. The
total number of entries must in this case be supplemented manually.
Entries are read by the function FB24 “PosTabAnfahren” and entered with FB25
“TeachIn” . These two functions check that the access number is lower than the total
number of entries.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 39 of 73

3.4 Approach position tables with breakpoint and two velocitys
The positions in the table DB “PosTabDB” (DB303) can be entered manually. This DB
must be created manually (with the help of UDT303). The structure of “PosTabDB”
appears as follows:

If more positions are required, the list can be enlarged according to the same pattern. The
total number of entries must in this case be supplemented manually.
Entries are read by the function FB28 “PosTabAnfahren” . These function check that the
access number is lower than the total number of entries.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 40 of 73

4 Trajectory Generation

4.1 Trajectories, profiles, and parameters
The trajectory generator performs calculations to determine the instantaneous position, velocity
and acceleration of each axis at any given moment in time. These values are called the
commanded values. During a motion profile, some or all of these parameters will change
continuously. Once the move is complete these parameters will stay at the same value until a
new move is started.

Throughout this manual various command mnemonics will be shown to clarify chipset usage or
provide specific examples. See the previous sections for more information on host commands,
nomenclature, and syntax.

The specific profile that is created by the Navigator depends on several factors including the
presently selected profile mode, the presently selected profile parameters, and other system
conditions such as whether a motion stop has been requested. Four trajectory profile modes are
supported: S-curve point to point, Trapezoidal point to point, Velocity contouring and Electronic
gearing. The operation of these profile modes will be explained in detail i n subsequent sections.
The commands used to select the profile mode are FC's for Motion in velocity Mode, FC for
Motion in position Mode and FC for Gearing Mode. In the Initial DB (Datenbyte 80 Profil
Mode) it is possible to choose the profile for the positioning Mode (S-curve or Trapezoidal).

The profile mode may be programmed independently for each axis. For example axis #1 may be
in trapezoidal mode while axis #2 is in S-curve point to point.

With one exception, Navigator motion processors can switch from one profile to another while
an axis is in motion. The exception: when switching to the S-curve point-to-point profile from
any other profile, the axis must be at rest.

4.2 Trapezoidal point-to-point profile
For this profile, the host specifies an initial acceleration and deceleration (InitialDB DBd64 and
DBD 68), a velocity, and a destination position. The profile gets its name from the resulting
curve: the axis accelerates linearly (at the programmed acceleration value) until it reaches the
programmed velocity. It continues in motion at that velocity, then decelerates linearly (using the
deceleration value) until it stops at the specified position.

Simple trapezoidal point-to-point profil 1



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 41 of 73

If deceleration must begin before the axis reaches the programmed velocity, the profile will have
no constant velocity portion, and the trapezoid becomes a triangle.

The slopes of the acceleration and deceleration segments may be symmetric (if acceleration
equals deceleration) or asymmetric (if acceleration is not equal to deceleration).

The acceleration parameter is always used at the start of the move. Thereafter, the acceleration
value will be used when the absolute velocity is increasing, and deceleration will be used when
the absolute velocity is decreasing. If no motion parameters are changed during the motion then
the acceleration value will be used until the maximum velocity is reached, and the deceleration
value will be used when ramping down to zero. When the direction is reversed, the deceleration
parameter is used for acceleration to the target velocity.

Complex trapezoidal profile, showing parameter changes

It is acceptable to change any of the profile parameters while the axis is moving in this profile
mode. The profile generator will always attempt to remain within the legal bounds of motion
specified by the parameters. If, during the motion, the destination position is changed in such a
way that an overshoot is unavoidable, the profile generator will decelerate until stopped, then
reverse direction to move to the specified position. Note that since the direction of
acceleration/deceleration is fixed at the start of the move, the deceleration value will be used
when ramping up velocity for the final move to the destination position. This is shown in Figure
abouve.

If a deceleration value of 0 (zero) is programmed (or no value is programmed leaving the
chipset's default value of zero), then the value specified for acceleration will automatically be
used to set the magnitude of deceleration.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 42 of 73

4.3 S-curve point-to-point profile
The following table summarizes the host specified profile parameters for the S-Curve point to
point profile mode:

Position Set with Positioning FC's

Velocity Set with Positioning FC's

Acceleration Set during Initialisation or with the Change Parameter FC

Deceleration Set during Initialisation or with the Change Parameter FC

Jerk Set during Initialisation or with the Change Parameter FC

Caution: In S-curve profile mode, the same value must be used for both acceleration and
deceleration. Asymmetr ic profiles are not allowed.

The S-curve point-to-point profile adds a limit to the rate of change of acceleration to the basic
trapezoidal curve. A new parameter (jerk) is added which specifies the maximum change in
acceleration in a single cycle.

In this profile mode, the acceleration gradually increases from 0 to the programmed acceleration
value, then the acceleration decreases at the same rate until it reaches 0 again at the programmed
velocity. The same sequence in reverse brings the axis to a stop at the programmed destination
position.

S-curve profile

Figure above shows a typical S-curve profile. In Segment I, the S-curve profile drives the axis at
the specified jerk � ��� until the maximum acceleration � ��� is reached. The axis continues to
accelerate linearly (jerk = 0) through Segment II. The profile then applies the negative value of
the jerk to reduce acceleration to 0 during Segment II I. The axis is now at maximum velocity



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 43 of 73

� � ), at which it continues through Segment IV. The profile will t hen decelerate in a manner
similar to the acceleration stage, using the jerk value first to reach the maximum deceleration
(D), and then to bring the axis to a halt at the destination.

An S-curve profile might not contain all of the segments shown in the next two Figures. For
example, if the maximum acceleration cannot be reached before the "halfway" point to or from
the velocity, the profile would not contain a Segment II or a Segment VI. Such a profile is shown
in next Figure.

S-curve that doesn't reach maximum acceleration

Similarly, if the position is specified such that velocity is not reached, there will be no Segment
IV, as shown in next Figure. (There may also be no Segment II or Segment VI, depending on
where the profile is "truncated.").

S-curve with no maximum-velocity segment



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 44 of 73

Caution: Unlike the trapezoidal profile mode, the S-curve profile mode does not support
changes to any of the profile parameters while the axis is in motion.

An axis may not be switched into S-curve profile mode while the axis is in motion. It is however
legal to switch from S- curve mode to any other profile mode while in motion.

4.4 Velocity-contouring profile
The following table summarizes the host specified profile parameters for the velocity contouring
profile mode:

Velocity Set with Positioning FC's

Acceleration Set during Initialisation or with the Change Parameter FC

Deceleration Set during Initialisation or with the Change Parameter FC

Unlike the trapezoidal and S-curve profile modes where the destination position determines the
direction of initial travel, in the velocity contouring profile mode the sign of the velocity
parameter determines the initial direction of motion. Therefore the velocity value that is sent to
the chipset can have positive values (for positive direction motion) or negative values (for
negative direction motion).

In this profile, no destination position is specified. The motion is controlled entirely by changing
the acceleration, velocity, and deceleration parameters while the profile is being executed.

In velocity contour ing profile mode axis motion is not bounded by a destination. I t is the
host’ s responsibili ty to provide acceleration, deceleration, and velocity values which result
in safe motion within acceptable position limits.

The trajectory is executed by continuously accelerating the axis at the specified rate until the
velocity is reached. The axis starts decelerating when a new velocity is specified which has a
smaller value (in magnitude) than the present velocity, or has a sign that is opposite to the
present direction of travel.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 45 of 73

Velocity-contouring profile

A simple velocity-contouring profile looks just like a simple trapezoidal point-to-point profile.

Figure above ill ustrates a more complicated profile, in which both the velocity and the direction
of motion change twice.

4.5 Electronic-gear profile
In this profile, the host specifies three parameters. The first is the 'master' axis number which is
the axis that will be the source of position information used to drive the 'slave' axis, which is the
axis in gear mode. The second is the gear source, which is either actual (the encoder position of
the master axis) or commanded (the commanded position of the master axis). The third is the
gear ratio, which specifies the direction and ratio of master gear counts to slave counts.

Figure below shows the arrangement of encoders and motor drives in a typical electronic gearing
application.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 46 of 73

Axes set up for electronic-gear profile

A positive gear ratio value means that when the master axis actual or commanded position is
increasing the slave commanded position will also increase. A negative gear ratio value has the
opposite effect; increasing master position will result in decreasing slave axis commanded
position.

For example, let us assume the slave axis is axis #0 (axes are counted 0, 1) and the master axis
are set to axis #1. Also assume the source will be 'actual' with a gear ratio of -1/2. Then for each
positive encoder count of axis 1, axis 0 commanded position will decrease in value by 1/2 count,
and for each negative encoder count of axis 1, axis 0 commanded position will i ncrease in value
by 1/2 count.

The electronic gear profile requires both two axes to be enabled.

If the master axis source is set to 'actual', this axis need not have a physical motor attached to it.
Frequently, it is used only for its encoder input, for example from a directly driven (open-loop)
motor, or a manual control. It is possible, however, to drive a motor on the master axis by
enabling the axis and applying a profile mode other than electronic gear to the axis. The effect of
this arrangement is that both master and slave can be driven by the same profile, even though the
slave can drive at a different ratio and in a different direction if desired. The master axis will
operate the same whether or not it happens to be the master for some other geared axis. The
'optional' components shown in Figure above ill ustrate this arrangement. Such a configuration
can be used to perform useful functions such as linear interpolation of two axes.

The gear-ratio parameter may be changed while the axis is in motion, but care should be
taken to select ratios so that safe motion is maintained.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 47 of 73

4.6 Motor Mode
The Module chipsets support a programmable motor mode that can enable and disable the profile
generator, and can set the chipsets to open loop mode or closed loop mode.

If the motor mode is set to on then the trajectory generator is active. If the motor mode is set to
off then the profile generator is disabled. In addition, if the motor mode is set off then the chipset
enters open loop mode which means the servo filter is disabled and the motor command (the
current output level requested by the chipset) is determined manually by the host using the
change parameter (  "!�#�!%$ &'!%(�(�)+* d). If the motor mode is set on then the motor command is
determined by the servo loop.

The most common use of the motor mode in anything other than the standard "on" state is after a
motion error. In the case of a motion error (and if auto stop is enabled) then the chipset will set
the motor mode off automatically, thereby placing it in a safe state where no further motion can
occur until the host explicitly restores the motor mode to the on condition. For more information
on motion errors see section 7.1.

It may also be useful to set the motor mode to off for purposes of ampli fier calibration.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 48 of 73

5 The Servo Loop

5.1 Overview
A servo loop is used as part of the basic method of determining the motor command output. The
function of the servo loop is to match as closely as possible the commanded position, which
comes from the trajectory generator, and the actual motor position.

To accomplish this the profile generator commanded value is combined with the actual encoder
position to create a position error, which is then passed through a digital PID-type servo filter.
The scaled result of the filter calculation is the motor command, which is output to the motor
ampli fier.

5.1.1 PID loop algor ithm
The servo filter used is a proportional-integral-derivative (PID) algorithm, with velocity and
acceleration feed-forward terms and an output scale factor. An integration limit provides an
upper bound for the accumulated error. An optional bias value can be added to the filter
calculation to produce the final motor output command. A limiti ng value for the filter output
provides additional constraint.

The PID + Vff+Aff formula, including the scale factor and bias terms, is as follows:

( ) BiasKCmdAccelKCmdVelKEjKEEKEKOutput out

n

J
AffvffiKKdnPn +×



 ++×+−+= ∑

=
−

0
)1( )()(

where:

Ilim is the Integration Limit

En are the accumulated error terms

K I is the Integral Gain

Kd is the Derivative Gain

Kp is the Proportional Gain

Kaff is the Acceleration feed-forward

Kvff is the Velocity feed-forward

Bias is the DC motor offset

Kout is the scale factor for the output command.

All filter parameters, the motor output command limit , and the motor bias are programmable, so
that the filter may be fine-tuned to any application.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 49 of 73

The structure of the digital filter is shown in Figure below.

5.1.2 Motor bias
When an axis is subject to a net external force in one direction (such as a vertical axis pulled
downward by gravity), the servo filter can compensate for it by adding a constant DC bias to the
filter output.

5.1.3 Output limit
The motor output limit prevents the filter output from exceeding a boundary magnitude in either
direction. If the filter produces a value greater than the limit , the motor command takes the
limiti ng value.

The motor limit applies only in closed-loop mode. It does not affect the motor command value
set by the host in open-loop mode (see next section for more information on open and closed
loop operations).

5.2 Closed-loop and open-loop control modes
In a previous section motor mode is discussed. For all Navigator chipsets setting the motor
offhas the effect of disabling the trajectory generator. In addition however, turning the motor off,
or having the motor be turned off automatically by the chipset via a motion error, places the
chipset into what is known as 'open loop' mode. In open loop mode the servo filter does not
operate and the motor command output value is set manually by the host changing the
 "!�#�!%$ &,!%("(�)+* d value. With the motor 'on' the chipset is in 'closed loop' mode and the motor



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 50 of 73

command value is controlled automatically by the servo filter. Figure below shows the control
flow for open and closed loop operation.

Closed-loop mode is the normal operating mode. Open-loop mode is typically used when one or
more axes require torque control only, or when the ampli fier must be calibrated.

Limit switches do not function in open-loop mode.

5.2.1 Motor bias in open-loop mode
The motor bias applies at all times when operating in closed-loop mode. If the axis is switched to
open-loop mode, the bias value continues to be output to the motor, to prevent the axis from
suddenly lurching in the direction of the external force. Once the host issues a new motor
command, however, its value supersedes the bias output, which no longer has any effect. As
soon as the axis returns to closed-loop mode, the previous bias value is reinstated.

I f the specified bias value does not properly compensate for the external force, the axis may
move suddenly in one direction or another after a MotorMode Off instruction. I t is the
responsibili ty of the user to select a motor bias value that will maintain safe motion.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 51 of 73

6 Parameter update and breakpoints

6.1 Parameter buffering-%. / 0 1 2�3546. / . 798 : 8 / 3�7;263 :�<�8=3 4�8 > 0 ? 0 8 @A: 1A: B68=> B 0 4�3 8 :5? 1 /�. C'. D 0 3E: 1A<68=> 1 C6: / 1 F F 8 @A> 1 / / 8 > : F G H6I C'3 1 7;8=> . 3 8 350 :
J9K L+M�N+O N P Q R N OAS T6K S�K=P N S�U6V�W�K R K J;N S N R PES K X N+N V V N Y S�K S�S T6N=N Z K Y S5P K J;N=S Q J;N+S U'V K Y Q [ Q S K S N+W R N Y Q P N=P L \6Y T6R U \ Q ] N OJ9U S Q U \�^
_5`=a b c c�` d e�e f6g a�h i i c d `�j g i k�c�h d h l;k e k d a�h m6n;a k o k d h i ` e f6k d�e p c�k a�`6j�c6h d h l;k e k d a�a b q f;h a�a k d o `+c�h d h l9k e k d a
r s t5u v r w t w+x y�z v;z {6tE| {6x }�~ t z6�6~ x y �+r�� ��� � t s t w;~ | {6t �9t � ��{6t ~ t5� ��� � t s t w=| v �=�9r y�w6~�r s t5u v r w t w+x y6z v;r y9r s t rEv6��z {6t� �6� ��� � ��� �6� ��� � � ���6�6��� � � � � ��� ���%� � � � � ��� �6� ��� � ���6� ��� � � � �5� ��� � ���%� ��� � � � ��� �6� �6��� ��� ���A� �5� �9�%�6� � � �%� � � � � � � ����%�6�   ¡ ¢E£   ¤6¥ ¢ ¥�¡ ¦�¢5§ ¤�¨ ¨ ¢ © ¢ �+© ¢ ª « ¥ ¡ ¢ © ¥�¡ ¬+§�¢E£ ¬ � « ¢ �=¡ ¬=¡ ¦6¢�  £ ¡ « ­6¢5© ¢ ª « ¥ ¡ ¢ © ¥ ® ¡ ¦6¢ © ¢ § ¯%£   ¤�¥ « ° ª+¡ ¦6¢�£ ¦ « ��¥ ¢ ¡�¡ ¬;  £ ¡�¬ °¡ ¦6¢5°6¢ ±²��  ©   ³9¢ ¡ ¢ © ¥ ´
µ�¶ ·+¸ ¹ º »=¼6½ ¸;¾ ¿EÀ ¶ Á,Á6Â ¸9Ã Ä6¸Aµ�Å"Æ Ç'º È�ÉÊÂ ¸ Ã�¶ È ½ ÀAÃ Ä6¸9½ ¶6º ÉÊ¿ ½ º Ë Ì�µ�Á È6Í Ã ¾ ¶ ÈÊ½ ¶ º É6Â�Î º ½ Á6¸ Â%¾ ÈÊÏ Á Ã�Ã Ä6¸ À9ÐE¾ ½ ½�È6¶6ÃÑ�Ò Ó Ô Õ9Ò5Ö Ó × Ø Ù Ò%Ú × Ö Û Ò5Ò Ü Ü Ò Ó × Ý�Þ ß6× Ø à Ö ß=á�â�ã Ö × Ò�Ø ä�å Ø Ù Ò ß�æ
ç+Ü × Ò èE× é Ø äEê�Þ ß�Ó × Ø Ô ßëØ äEÓ Ô Õ=â6à Ò × Ò ãA× é�Ò%Ñ Þ6Ü Ü Ò è Ò ã9è Ò å Ø ä × Ò è ä�Ü Ô èE× é6Ò ä Ò%â6Ö è Ö Õ;Ò × Ò è äEÖ è Ò%à Ô6Ö ã Ò ã9Ø ß�× Ôë× é6Ò=Ó é Ø â�ä Ò ×�Ñ Þ6×
ì í6î"ì ï ð ñ î ò ì ó ï ô"õ î ö�î ï ð ì ó ïÊ÷;ó6ø ù ú î"û ì ü ú úAó ý6î ï ð ì î û²ó öÿþEí�ð ì î � î ï ì í6î�ý6ï î � ü ó ù6û²ì ï ð ñ î ò ì ó ï ô"ý ï ó�� ü ú î�÷;ó ø î"ð ö6ø
��� � � ��� 	 � � 
��
� � � ������� ������� ��� ������� � 	 ����� � � � 
 ��! � �
	 ���"	 � � # � � 	 � � �"� � ��$ ! � ��� ��� �"� � 	 � � � � �"%��"� ��� ��& � ��	 �
	 � � ��� ' � ! � � ��� ��� 	 ����
 ��� � ! $ ! � ����� � � ��� 	 � � 
(� � � � � ��! ��	 � 	 ����	 � � # � � 	 � � ��& � ��� � � 	 � � )�� � ��
 ! ��&*	 ���
	 � � # � � 	 � � ��& � ��� � � 	 � �
	 � 
 	 � � 	�	 ���+� � � & � � � � � �*� � 	 ! � ���

6.1.1 Updates
There are three different ways that an Update can occur. They are listed below:

1) Update command - The simplest way is to give an Update command. This causes the
parameters for the programmed axis to be updated immediately. In the motion Functions the
Update command occur when the start flag is set.

2) MultiUpdate command - The multiple axis instantaneous update, which is specified using the
MultiUpdate command, causes multiple axes to be updated simultaneously. This can be useful
when synchronized multi -axis profili ng is desired. This command takes a 1-word argument that
consists of a bit mask, with 1 bit assigned to each axis. Executing this command has the same
effect as sending a set of Update commands to each of the individual axes selected in the
MultiUpdate command mask.

3) Breakpoints - There is a very useful facili ty supported by the chipset that can be programmed
to generate an Update command automatically when a pre-programmed condition becomes true.
This feature is known as the breakpoint facili ty, and it is useful for performing operations such as
"automatically change the velocity when a particular position is reached", or "stop the axis
abruptly when a particular external signal goes active." Breakpoints are discussed in more detail
in section 6.2.

Whichever Update method is used, at the time the update occurs, all of the buffered registers and
commands will be copied to the active registers. However, depending on which calculations have
already been performed in the servo loop, these values may not be used until the next cycle.
Before the Update occurs, sending buffered commands will have no effect on the system
behavior. In addition to profile generation most servo parameter commands are buffered, and
some other commands are buffered. Following is a complete list of buffered values and
commands.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 52 of 73

6.2 Breakpoints
Breakpoints are a convenient way of programming a chipset event upon some specific condition.
Depending on the breakpoint instruction’s arguments, a breakpoint can cause an update; an
abrupt stop followed by an update; a smooth stop followed by an update; a motor-off followed
by an update (more on this function in a later section); or no action whatsoever.

Each Navigator axis has two breakpoints that may be programmed for it. So two completely
separate conditions may be monitored and acted upon. These two breakpoints are known as
breakpoint 1 and breakpoint 2.

6.2.1 Defining a breakpoint, Overview
Each breakpoint has five components: the breakpoint axis, the source axis for the triggering
event, the event itself, the action to be taken and the comparison value.

The breakpoint axis is the axis on which the specified action is to be taken. The source axis is
the axis on which the triggering event is located. It can be the same as or different than the
breakpoint axis. Any number of breakpoints may use the same axis as a source axis.

The trigger is the event that causes the breakpoint. The action is the sequence of operations
executed by the chipset when the breakpoint is triggered. After a breakpoint is triggered the
action is performed on the breakpoint axis. The comparison value is used in conjunction with the
action to define the breakpoint event. Altogether these parameters provide great flexibili ty in
setting breakpoint conditions. By combining these components, almost any event on any axis can
cause a breakpoint.

The command used to send the breakpoint axis, the trigger, the source axis and the action is
SetBreakpoint. To retrieve these same values the command GetBreakpoint is used. To set the
comparison value the command SetBreakpointValue is used. This comparison value can be
retrieved using the command GetBreakpointValue. For each of these commands the breakpoint
number (1 or 2) must be specified.

6.2.2 Breakpoint tr iggers
The Navigator motion processors support the following breakpoint trigger conditions:

Tr igger Condition Level or
Threshold

Description

GreaterOrEqual
CommandedPosition

threshold Is satisfied when the current commanded position is
equal to or greater than the programmed compare value.

LesserOrEqua
lCommandedPosition

threshold Is satisfied when the current commanded position is
equal to or less than the programmed compare value.

GreaterOrEqual
ActualPosition

threshold Is satisfied when the current actual position is equal to or
greater than the programmed compare value.

LesserOrEqual
ActualPosition

threshold Is satisfied when the current actual position is equal to or
less than the programmed compare value.

CommandedPosition
Crossed

threshold Is satisfied when the current commanded position crosses
(is equal to) the programmed compare value.

ActualPositionCrossed threshold Is satisfied when the current actual position crosses (is
equal to) the programmed compare value.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 53 of 73

Time threshold Is satisfied when the current chipset time (in number of
cycles since power-up) is equal to the programmed
compare value.

EventStatus level Is satisfied when the EventStatus register matches bit
mask and high/low pattern in programmed compare
value.

ActivityStatus level Is satisfied when the ActivityStatus register matches bit
mask and high/low pattern in programmed compare
value.

SignalStatus level Is satisfied when the SignalStatus register matches bit
mask and high/low pattern set in programmed compare
value.

none Disables any previously set breakpoint.

If "none" is selected for the breakpoint trigger then this effectively means that that breakpoint is
inactive. Only one of the above triggers can be selected at a given time. For a description of level
triggered breakpoints refer to section 6.2.4.

6.2.3 Threshold-tr iggered breakpoints
Threshold triggered breakpoints use the value set using the SetBreakpointValue command as a
single 32-bit threshold value to which a comparison is made. When the comparison is true, the
breakpoint is triggered.

For example, if it is desired that the trigger occur when the commanded position is equal to or
greater than 1,000,000, then the comparison value loaded using SetBreakpointValue would be
1,000,000, and the trigger selected would be PositiveCommandedPosition.

6.2.4 Level-tr iggered breakpoints
To set a level-triggered breakpoint, the host instruction supplies two 16-bit data words: a trigger
mask and a sense mask. These masks are set using the SetBreakpointValue instruction. The high
word of data passed with this command is the trigger mask value; the low word is the sense mask
value.

The trigger mask determines which bits of the selected status register are enabled for the
breakpoint. A 1 in any position of the trigger mask enables the corresponding status register bit
to trigger a breakpoint, a 0 in the trigger mask disables the corresponding status register bit. If
more then one bit is selected, then the breakpoint will be triggered when any selected bit enters
the specified state.

The sense mask determines which state of the corresponding status bits causes a breakpoint. Any
status bit that is in the same state (i.e. 1 or 0) as the corresponding sense bit is eligible to cause a
breakpoint (assuming of course that it has been selected by the trigger mask).

For example, if the activity status register breakpoint has been selected, and the trigger mask
contains the value 0402h and the sense mask contains the value 0002h, then the breakpoint will



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 54 of 73

be triggered when bit 1 (the ‘at max velocity’ indicator) assumes the value 1, or bit 10 (the ‘ in
motion’ indicator) assumes the value 0.

6.2.5 Breakpoint actions
Once a breakpoint has been triggered, the chipset can be programmed to perform one of the
following instruction sequences:

Action Command Sequence Executed

None No commands executed.

Update Update axis.

Abrupt Stop SetStop axis, AbruptStop Update axis

SmoothStop SetStop axis, SmoothStop Update axis

MotorOff SetMotorMode axis, Off Update axis

Regardless of the host’s action, once a breakpoint condition has been satisfied, the Event Status
bit corresponding to the breakpoint is set and the breakpoint is deactivated.

6.2.6 Breakpoint Examples
Here are a few examples to ill ustrate how breakpoints can be used.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 55 of 73

7 Status Registers

7.1 Overview
,+-�.0/ 1 2 3 4 1 5 6 7 8�6 5 3 6 9;:<7 6�= . > > 6 7�= 1 9;? 6 9 3 5 6 7�1 @ ? 6�> 5*. 2�. 7 A"1 > B�. = 5*6�C*5 -�.D?�6 5 3 6 9�6�C*1 9�1 E 3 > F+,G-�. 7 .01 7 .
H�I J�K L M I�N�H�I J K L O P Q R<L K S O N T K L N�T U�Q T+P Q H0V�K�W I�K L O K XDT M0X K T K L J�O H�K�T U�K�P I L L K H�T�N T Q T K*M�Y�T U�K�P U O Z�N K T [<N I P U�Q N�T U�K
P I L L K H�T+Q P T I�Q R<Z�M�N O T O M H�[�T U�K�P I L L K H�T+P M J J Q H�X K XDZ�M�N O T O M H�[<K T P \�] H�Q X X O T O M H�T M0T U�K N K*H�I J�K L O P Q R<L K S O N T K L N�T U�K L K
^ _ �̀a b _ `  ̀c�d a e f _ d ` g�a ` hji a ^ a k�i
_ ` l d i a ` _ i�m�b d n b"o�_ f p d h �̂̀�n f g�a d g k�f k�i
_ ` o�f _ a�f gqa b�̀Di a ^ a �̀f�r�̂ o�̂ _ a d n k s ^ _�̂ t d i uv b�̀ i  ̀i a ^ a k�i�_ ` l d i a ` _ i�n f g p ` g�d ` g�a s w n f x c d g�̀ ̂*g k x�c�̀ _
f�r�i ` o�̂ _ ^ a *̀c�d a e f _ d ` g�a ` h�r d ` s h�i
r f _�a b�̀�i o�̀ n d r d ` h0̂ t d i uy+z�{ | {�} z ~ { {�� � � � � }�~ { � � | } { ~ |(� ~ {��+� { ��}�� } � } ��| � �
� } � � � } ��� } � } ��| � � ����� � � ��� � � } � } ��| �
y+z�{Dz���| }���� ��� � { ~ ��} z�{ | {0} z ~ { {D~ { � � | } { ~ | ��� ~ } z�{�� � ��} { ��} | ����} z�{ | {0~ { � � | } { ~ | � � �0��{D��| { �q� �;� ~ { � � ��� � ��}
� ��� � � � � � �� 
� ��¡ � ¢ � ����� � � � £ £ � � � ��£0� ¤�� ����  ¥�¦ §j�  �̈ � � � £ £ � �
©�§�� �"ª�� ��«D� �j� §��D  � £ ��� ¬�  � � � ¥� 
� � £ �   � � �*£ ���  
¬ � ©*­ ¨® §��   �
� � £ �   � � �  �� � �*� ¬   �0� §��*  � ¥ � ¦ �*��¢+¡ � � �*¢ � ��� §��
̄ ° ± ² ³�́ µ�¶ · ¸ *̧¹ ¸ º » ¼ ½ ¾�¿ À Á Â+Ã�̧ º Ä�Å ¾ ¼ · Ã�Æ Ç�Ä ¼ º Ä�Å È È ½ Ç
·�Å ¾�É*Ê�¼ »
Ç�¼ » Ä ¼ ¾ » Ä�̧ · �̧» Ä�Ë ¸ +̧Ë ¸ Ì ¼ · » ¸ Ë ·G» ½*Ê�̧�½ Í�» Î Í�»�Å ·GÅGÄ�Å Ë Ï Ç�Å Ë �̧· ¼ Ì ¾�Å È À

7.1.1 Event Status registerÐ Ä�̧
Ñ+Ò�̧ ¾�»+¹ » Å » Í�·�Ë ¸ Ì ¼ · » ¸ Ë�¼ ·�Ï ¸ · ¼ Ì ¾�̧ ÏD» ½�Ë ¸ º ½ Ë ÏḐ Ò ¸ ¾�» ·�» Ä�Å »+Ï ½�¾�½ »+º ½ ¾�» ¼ ¾ Í�½ Í�· È É�º Ä�Å ¾�Ì *̧¼ ¾DÒ�Å È Í ¸ Æ�Ê Í�»(Ë Å » Ä�̧ Ë
» ¸ ¾�ÏD» ½D½�º º Í Ë�½ ¾�º 
̧Í Î�½ ¾"· ½ Ã ̧�· Î�̧ º ¼ Ó ¼ º*̧ Ò ¸ ¾�» À Ô*·�· Í�º Ä�Æ�̧ Å º Ä0½�ÓG» Ä�̧
Ê�¼ » ·�¼ ¾0» Ä�¼ ·�Ë ¸ Ì ¼ · » ¸ Ë�¼ ·�· ¸ »GÊ É » Ä�̧�º Ä ¼ Î�· ¸ »
Å ¾�Ï�º È ¸ Å Ë ¸ Ï*Ê É�» Ä�̧+Ä�½�· » À
Ð Ä�̧�Ñ+Ò ¸ ¾�» ¹ » Å » Í�·<Ë ¸ Ì ¼ · » ¸ Ë(¼ ·(Ï ¸ Ó ¼ ¾�̧ Ï
¼ ¾ » Ä�̧�» Å Ê È +̧Ê�̧ È ½ Ç
Õ

Bit Name Description

0 Motion complete Set when a trajectory profile completes. The motion being
considered complete may be based on the commanded position or
the actual encoder position. See section 7.3 for more details.

1 Position wraparound Set when the actual motor position exceeds 7FFFFFFFh (the most
positive position) and wraps to 80000000h (the most negative
position), or vice versa.

2 Breakpoint 1 Set when breakpoint #1 is triggered.

3 Capture received Set when the high-speed position capture hardware acquires a new
position value.

4 Motion error Set when the actual position differs from the commanded position
by an amount more then the specified maximum position error.

5 Positive limit Set when a positive limit switch event occurs.

6 Negative limit Set when a negative limit switch event occurs.

7 Instruction error Set when an instruction error occurs.

8-13 Reserved May contain 1 or 0.

14 Breakpoint 2 Set when breakpoint #2 is triggered.

15 Reserved May contain 0 or 1.

The command GetEventStatus (or FC 26 read Position and Status) returns the contents of the
Event Status register for the specified axis.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 56 of 73

Bits in the Event Status register are latched. Once set, they remain set until cleared by a host
instruction or a system reset. Event Status register bits may be reset to 0 by the instruction
ResetEventStatus (the motion functions are reseting some oft the Event Status register bits),
using a 16-bit mask. Register bits corresponding to 0s in the mask are reset; all other bits are
unaffected.

7.1.2 Instruction error
Bit 7 of the event status register indicates an instruction error. Such an error occurs if an
otherwise valid instruction or instruction sequence is sent when the Navigator’s current operating
state makes the instructions invalid. Instruction errors occur at the time of an update.

Should an instruction error occur the invalid parameters are ignored, and the Instruction Error
indicator of the event status register is set. While invalid parameters checked at the time of the
update are ignored, valid parameters are sent on. This can have unintended side effects
depending on the nature of the motion sequence so all i nstruction error events should be treated
very seriously.

7.1.3 Activity Status register
Like the Event Status register, the Activity Status register tracks various chipset fields. Activity
Status register bits however are not latched, they are continuously set and reset by the chipset to
indicate the states of the corresponding conditions.

The ActivityStatus register is defined in the table below:

Bit Name Description

0 Reserved May contain 0 or 1.

1 At maximum
velocity

Set (1) when the commanded velocity is equal to the maximum
velocity specified by the host. Cleared (0) if it is not. This bit
functions only when the profile mode is trapezoidal, velocity
contouring, or S-curve. It will not function when the chipset is in
electronic gearing mode.

2 Position tracking Set (1) when the servo is keeping the axis within the Tracking
Window. Cleared (0) when it is not. See Section 6.2.

3-5 Current profile mode These bits indicate the profile mode currently in effect, which
might be different than the value set using the SetProfileMode
command if an Update command has not yet been issued. The 3
bits define the current profile mode as follows:

bit 5            bit 4               bit 3              Profile Mode
      0                 0                    0              trapezoidal
      0                 0                    1              velocity c ontouring
      0                 1                    0              S-curve
      0                 1                    1              electronic g ear.

6 Axis settled Set (1) when the axis has remained within the Settle Window for a
specified period of time. Cleared (0) if it has not. See Section 8.5.

7 Reserved May contain 0 or 1.

8 Motor mode Set (1) when the motor is "on", cleared (0) when the motor is off ."



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 57 of 73

When the motor is on this means that the chipset can perform
trajectory operations, and the chipset is in closed loop mode and
the servo loop is operating. When the motor is off this means
trajectory operations cannot be performed and the chipset is in
open loop mode and the servo loop is disabled. The
SetMotorMode command is normally used to select the mode of
the motor, however the chipset will reset the mode to 0 (turn the
motor off) if a motion error occurs.

9 Position capture Set (1) when a new position value is available to read from the
high speed capture hardware. Cleared (0) when a new value is not
yet been captured. While this bit is set, no new values will be
captured. The command GetCaptureValue retrieves a captured
position value and clears this bit, allowing additional captures to
occur.

10 In-motion indicator Set (1) when the trajectory profile commanded position is
changing. Cleared (0) when the commanded position is not
changing. The value of this bit may or may not correspond to the
value of the motion complete bit of the event status register
depending on whether the motion complete mode has been set to
commanded or actual.

11 In positive limit Set (1) when the motor is in a positive limit condition. Cleared (0)
when it is not.

12 In negative limit Set (1) when the motor is in a negative limit condition. Cleared (0)
when it is not.

13-
15

S-curve segment Indicates the S-curve segment number using values 1-7 to indicate
S-curve phases 1-7 as shown in the S-curve trajectory section of
this manual. A value of 0 in this field indicates the trajectory is
not in motion. This field is undefined for profile modes other than
S-curve, and may contain 0's or 1's.

The command GetActivityStatus returns the contents of the Activity Status register for the
specified axis. Or The Motion Function FC26 Get Position and Status give the Activity Status
back.

7.1.4 Signal Status
The signal status register provides real time signal levels for various chipset I/O pins. The
SignalStatus register is defined in the table below:

Bit Name Description

0 A encoder A encoder A signal of quadrature encoder input.

1 B encoder B signal of quadrature encoder input.

2 Index encoder Index signal of quadrature encoder input.

3 Home Home position capture input.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 58 of 73

4 Positive limit Positive limit switch input

5 Negative limit Negative limit switch input.

6 AxisIn Generic axis input signal

7-9 Reserved

10 AxisOut Programmable axis output signal.

11-
15

Reserved

The command GetSignalStatus returns the contents of the Signal Status register for the specified
axis. All Signal Status register bits are inputs except bit 10 (AxisOut).

The bits in the signal status register always represent the actual hardware levels on the
corresponding pins. A 1 in this register represents an electrically high value on the pin; a 0
indicates an electrically low level. The state of the signal sense mask affects the value read using
GetSignalStatus (see the next section for more information on the signal sense mask).

7.1.5 Signal Sense Mask
The bits in the signal status register represent the high/low state of various signal pins on the
chipset. How these signal pins are interpreted by the chipset may be controlled using a signal
sense mask. This is useful for changing the interpretation of input signals to match the signal
interpretation of the user's hardware.

The SignalSense mask register is defined in the table below:

Bit Name Interpretation

0 A encoder Set (1) to invert quadrature A input signal. Clear (0) for no
inversion.

1 B encoder Set (1) to invert quadrature B input signal. Clear (0) for no
inversion.

2 Index encoder Set (1) to invert Index signal. Clear (0) for no inversion.

3 Home Set (1) to invert home signal. Clear (0) for no inversion.

4 Positive limit Set (1) for active high interpretation of positive limit switch,
meaning positive limit occurs when signal is high. Clear (0) for
active low.

5 Negative limit Set (1) for active high interpretation of negative limit switch,
meaning negative limit occurs when signal is high. Clear (0) for
active low.

6 AxisIn Set (1) to invert AxisIn signal. Clear (0) for no inversion.

7-9 Reserved

10 AxisOut Set (1) to invert AxisOut signal. Clear (0) for no inversion.

11-15 Reserved



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 59 of 73

The command SetSignalSense sets the signal sense mask value. The command GetSignalSense
retrieves the current signal sense mask.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 60 of 73

8 Monitor ing Motion Performance

8.1 Motion Error
Under certain circumstances, the actual axis position (encoder position) may differ from the
commanded position (instantaneous output of the profile generator) by an excessive amount.
Such an excessive position error often indicates a potentially dangerous condition such as motor
or encoder failure, or excessive mechanical friction.

To detect this condition, thereby increasing safety and equipment longevity, the Navigator
chipsets include a programmable maximum position error.

The maximum position error is set using the command SetPositionErrorLimit, and read back
using the command GetPositionErrorLimit. To determine whether a motion error has occurred
the position error limit i s continuously compared against the actual position error. If the position
error limit value is exceeded, then the axis is said to have had a "motion error."

At the moment a motion error occurs, several events occur simultaneously. The Motion Error bit
of the event status word is set. If automatic stop on motion error is enabled the motor is set off,
which has the effect of disabling the trajectory generator. It has the additional effect of disabling
the servo loop and placing the chipset into open loop mode. This is the equivalent to a
SetMotorMode axis, Off command.

To recover from a motion error that results in the motor being turned off, the cause of motion
error should be determined and the problem corrected (this may require human intervention).
The host should then issue a SetMotorMode axis, On command.

After the above sequence, the axis will be at rest, with the motor on.

If automatic stop on motion error is not set then only the motion error status bit is set, the motor
is not stopped and no recovery sequence is required to continue operating the chipset.
Nevertheless, for safety reasons, the user may still want to manually shut down the motion and
explore the cause of the motion error.

8.1.1 Automatic Stop On Motion Err or
Because a motion error may indicate a serious problem it is useful to have the axis automatically
stop until the problem can be addressed and rectified. This feature is known as automatic stop on
motion error.

The command SetAutoStopMode controls the action that will be taken if a motion error occurs.
The options for this command are disable and enable.

If autostop is enabled, when a motion error occurs a SetMotorMode Off command is generated
which has the effect of instantaneously halting the trajectory generator and (for servo chipsets)
putting the chipset into open loop.

For stepping chipsets the motor will stop moving immediately (same as an abrupt stop). For
servo chipsets the trajectory will stop instantly but because motor off means open loop mode the
motor will coast to a stop not under servo control in an amount of time determined by the
velocity at the time of motion error and the inertia of the system.

For the servo chipsets, transitioning to open loop mode can be dangerous if the axis is oriented
vertically, because the axis may fall downward due to gravity if not supported by the servo
feedback. This problem can be rectified by use of the motor bias value, which is discussed in
Section 6.1.2.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 61 of 73

The motor bias is a fixed, open-loop command to the motor, which is added to the PID filter
output. Upon a motion error with automatic stop enabled, the motor bias will be output even
while the chipset is in open loop mode. Thus, with a properly set motor bias, if the axis
experiences a motion error and transitions to open loop mode, the motor bias can prevent the axis
from falli ng.

Caution: Because the motor bias value is applied 'open-loop' to the axis, care should be
taken when sett ing its value.

8.2 Tracking window
The Navigator chipsets provide a programmable tracking window that can be used to monitor
servo performance outside the context of a motion error. The tracking window functions
similarly to the motion error, in that there is a programmable position error limit within which
the axis must stay. Unlike the motion error facili ty however, if the axis moves outside of the
tracking window the axis is not stopped. The tracking window is useful when external processes
depend on the motor tracking the desired trajectory within some range. Alternatively the tracking
window can be used as an early warning for performance problems that do not yet quali fy as a
motion error.

To set the size of the tracking window (maximum allowed position error to stay within the
tracking window) the command SetTrackingWindow is used. The command
GetTrackingWindow retrieves this same value.

When the position error is less than or equal to the window value the tracking bit in the activity
status register is set. When the position error exceeds the tracking window value, the tracking bit
is cleared. See Figure The Tracking Window.

8.3 Motion Complete Indicator
In many cases it is useful to have the chipset signal that a given motion profile is complete. This
function is available in the motion complete indicator.

The motion complete indicator appears in bit 0 of the event status register. As are all bits in the
event status register, the motion complete bit is set by the chipset and cleared by the host. When
a motion has been completed, the chipset sets the motion complete bit on. The host can examine
this bit by polli ng the event status register or the host can program some automatic follow-on
function using a breakpoint, a host interrupt, or an AxisOut signal. In either case, once the host
has recognized that the motion has been completed the host should clear the motion complete bit,
enabling the bit to indicate the end of motion for the next move.

Motion complete can indicate the end of the trajectory motion in one of two ways. The first is
commanded; the motion complete indicator is set based on the profile generator registers only.
The other method is actual, meaning the motion complete indicator is based on the actual
encoder. The host instruction SetMotionCompleteMode determines which condition controls the
indicator.

When set to commanded, the motion is considered complete when the trajectory generator
registers for commanded velocity and acceleration both become zero. This normally happens at
the end of a move when the destination position has been reached. But it may also happen as the



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 62 of 73

result of a stop command (SetStop command), a change of velocity to zero, or when a limit
switch event occurs.

When set to actual, the motion is considered complete when all of the following have occurred.

• The profile generator (commanded) motion is complete.

• The difference between the actual position and the commanded position is less than or equal
to the value of the settle window. The settle window is set using the command
SetSettleWindow. This same value may be read back using the command GetSettleWindow.

• The above two conditions have been met continuously for the last N cycles, where N is the
programmed settle time. The settle time is set using the command SetSettleTime. This same
value may be read back using the command GetSettleTime.

At the end of the trajectory profile the cycle timer for the actual-based motion complete
mechanism is cleared, so there will always be at least an N cycle delay (where N is the settle
time) between the profile generator being complete and the motion complete bit being set.

Appropr iate software methods should be used with the actual motion complete mode
because it is in fact possible that the motion complete bit will never be set if the servo is not
tracking well enough to stay within the programmed position error window for the
specified sett le time.

The motion complete bit functions in the S-curve point-to-point, Trapezoidal point-to-point, and
Velocity Contouring profile modes only. It does not function when the profile mode is set to
Electronic Gearing.

8.4 In-motion indicator
The chipset can indicate whether or not the axis is moving. This function is available through the
'in-motion' indicator.

The in-motion indicator appears in bit 10 of the activity status register. The in-motion bit is
similar to the motion complete bit however there are two important differences. The first is that
(li ke all bits in the activity status register) the in-motion indicator continuously indicates its
status without interaction with the host. In other words the in-motion bit cannot be set or cleared
by the host. The other difference is that this bit always indicates the profile generator
(commanded) state of motion, not the actual encoder.

The in-motion indicator bit functions in the S-curve point-to-point, Trapezoidal point-to-point,
and Velocity Contouring profile modes only. It does not function when the profile mode is set to
electronic gearing.

8.5 Settled indicator
The chipset can also continuously indicate whether or not the axis has 'settled'.

The settled indicator appears in bit 6 of the activity status register. The settled indicator is similar
to the motion complete bit when the motion complete mode is set to actual. The differences are
that the settled indicator continuously indicates its status (cannot be set or cleared) and also that
it indicates regardless of whether or not the motion complete mode is set to actual.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 63 of 73

The axis is considered to be 'settled' when the axis is at rest (i.e. not performing a trajectory
profile) and when the actual motor position has settled in at the commanded position for the
programmed settle time.

The settle window and settle time used with the settled indicator are the same as for the motion
complete bit when set to actual. Correspondingly the same commands are used to set and read
these values: Set/GetSettleWindow, Set/GetSettleTime.

 The track ing window



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 64 of 73

 The settle window



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 65 of 73

9 Hardware Signals
There are a number of signals that appear on each axis of the Navigator chipsets, which can be
used to coordinate chipset activity with events outside the chipset. In this section we will discuss
these signals. They are the bidirectional travel limit switches, the AxisIn pin, and the AxisOut
pin. These signals appear on each axis of the chipset.

9.1 Travel-limit switches
The Navigator chipsets support motion travel limit switches that can be used to automatically
recognize an "end of travel" condition. This is an important safety feature for systems that have a
defined range of motion.

The following figure shows a schematic representation of an axis with travel-limit switches
installed, indicating the "legal" motion area and the over-travel or ill egal region.

 Directional l imit switch op eration

The positive and negative switches are connected to CP chip inputs LS1 and LS2, to detect
overtravel in the positive and negative directions, respectively.

There are two primary functions that the Navigator provides in connection with the over-travel
limit switch inputs. The host can be automatically notified that an axis has entered an over-travel
condition, allowing the host to take appropriate special action to manage the over-travel
condition.

Upon entering an over-travel condition, the trajectory generator can be automatically halted, so
that the motor does not travel further into the over travel region.

Limit switch processing may be enabled or disabled for a given axis through the command
SetLimitSwitchMode. This same register can be read using the command GetLimitSwitchMode.

If limit processing is enabled then the chipset will constantly monitor the limit switch input pins
looking for a limit switch event. A limit switch event occurs when a limit switch goes active
while the axis commanded position is moving in that limit switch’s direction. If the axis is not
moving, is in open-loop mode, or is moving in the opposite direction, then a limit switch event
will not occur. For example a positive limit switch will occur when the axis commanded position
is moving in the positive direction and the positive limit switch goes active. However it will not
occur if the axis commanded position is moving in the negative direction or is stationary.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 66 of 73

The "sense" of the limit switch inputs (active high or active low) can be controlled using the
SetSignalSense command.

When a limit event occurs, the chipset will generate an abrupt stop thereby halting the motion. In
addition, the bit in the event status register corresponding to the active limit switch will be set.
Finally, the appropriate bit in the activity status register will be set. Once an axis has entered a
limit switch condition the following steps should be taken to clear the limit switch event:

• Unless limit switch events can occur during normal machine operation the cause of the event
should be investigated and appropriate safety corrections made.

• The limit switch bit(s) in the event status register should be cleared by issuing the
ResetEventStatus command. No motion is possible in any direction while either of the limit
switch bits in the event status register is set.

• A move should be made in the direction opposite to the direction that caused the limit switch
event. This can be any profile move that 'backs' the axis out of the limit . If the host instead
attempts to move the axis further into the limit , a new limit event will occur and an
instruction error will be generated. (See section 7.1.2 on instruction errors for more
information).

If the limit switches are wired to separate switches it should not be possible for both limit
switches to be active at the same time. However, if this does occur (presumably due to a special
wiring arrangement) then both limit switch bits in the activity status register would be set, thus
disabling moves in either direction. In this case, the SetLimitMode command should be used to
temporarily disable limit switch processing while the motor is moved off of the switches.

NOTE: L imit switches do not function when the chipset is in 'motor off ' , also known as
'open-loop' mode.

9.2 The AxisOut pin
Each axis has a general purpose axis output pin which can be programmed to track the state of
any of the assigned bits in the Event Status, Activity Status, or Signal Status registers. The
tracked bit in one of these three registers may be in the same axis or in a different axis as the axis
of the AxisOut pin itself. This function is useful for outputting hardware signals to trigger
external peripherals.

The chipset command SetAxisOutSource may be used to configure the axis output pin. This
command takes a single word as an argument. The value of this parameter is interpreted as
follows:

Bit Name Description

0-3 Source axis Specifies the axis to be used as a source for the axis output signal.
The axis output pin will follow the specified register bit of the
source axis. Writing a zero indicates axis 1, writing a one
indicates axis 2, etc.

4-7 Bit number Indicates which bit in the selected status register will be followed
by the axis output pin. Bits are numbered from 0 to 15 where bit 0
indicates the least significant bit.

8-11 Status register Indicates which register will be used as the source for the axis



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 67 of 73

output. The encoding is as follows:

ID         Register
0            None, the axis output pin will always be inactive
1            Event status register
2           Activity status register
3           Signal status register
4-15      Reserved, do not use

12-15 reserved Reserved for future use. Should be written as zeros.

Note that the AxisOut pin may be configured to be active low or active high using the
SetSignalSense command.

It is possible to use the AxisOut pin as a software- programmed direct output bit under direct
host control. This can be done by selecting zero as the register ID code in the SetAxisOutSource
command and by adjusting the level of the resulting inactive output state to high or low as
desired using the SetSignalSense command.

9.3 The AxisIn pin
Each axis has an input pin (AxisIn) which can be used as a general purpose input, readable using
the GetSignalStatus command, as well as to trigger automatic events such as performing a
motion change (stop, start, change of velocity, etc.) upon a signal transition using breakpoints.

No special commands are required to setup up or enable the AxisIn signals.



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 68 of 73

10  Direct Access to the H320 Controller

10.1  Introduction

This document describes the configuration and the adressing Modes of the PCD2.H320 with the xx7.
With direct peripherie access it is possible to adress the H320 Module. The Module needs a peripherie
field of 64 Byte for input and 64 Byte for output data.

It is not possible to adress the H320 Modul in the Start OB (OB100, OB101).

10.2  Definition in the Peripherie DB

The definition of the H320 Modul is done in the periferie definition DB (DB1 or DB511). The H320
needs two places in the PCD. In the definition DB it needs two module entrys.

The Modul definition has the following structure:

The following table summarizes the entrys in the definition:

Modul 1:



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 69 of 73

Name Format Description

kenn word Kennung of the Moduls: 84h

PaNr int has no meening. Allways 0

InCnt int Number of Input bytes: 64

OutCnt int Number of Output bytes: 64

InBase int Basis Adresse of the Moduls in the Peripherie- Input field

OutBase int Basis Adresse of the Moduls in the Peripherie- Output field

mask byte Encoder configuration of the X- Achse:

dummy_b byte has no meening. Allways 0

dummy_w word SSI Konfiguration der X- Achse:

Modul 2:

Name Format Description

kenn word has no meening. Allways 0

PaNr int has no meening. Allways 0

InCnt int has no meening. Allways 0

OutCnt int has no meening. Allways 0

InBase int has no meening. Allways 0

OutBase int has no meening. Allways 0

mask byte Encoder Konfiguration der Y- Achse:

dummy_b byte has no meening. Allways 0

dummy_w word SSI Konfiguration der Y- Achse:

Attention:
In the actuall FW- Version thes byte Mask and the word dummy_w are not implemented. Please set this
values to zero!



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 70 of 73

10.3 Modul access
There are two types of Modul access:

1. read and write to the FPGA (this functions are not implementet)

2. read and write to the Controller on the Module

The peripherie field is devided into three parts.

1. read and write values and commands to Axis one (Address 0 to 24)

2. read and write values and commands to Axis two (Adress 25 to 49)

3. read and write values and commands in general (Adress 50 to 59)

10.3.1 Access to the FPGA
Read and write to the FPGA is in the actuall FW version not possible.

10.3.2 Access to the Controller
There are two ways to acess to the controller.

1. For nearly each command exists a direct peripherie adress (see table below).

2. It existe one peripherie Adress, to write the command Nr. to the Module and a command to wirte or
read datas from to the controller. If you use these commands pleas look and unlook the interrupts with
sfc41 and sfc42.

In the table below are all commands mapped on the peripherie adress range. The real Adress is the basis
Adress (defined in DB1 or 511) pluss the Adress Offset in the table. The value for the command has to be
in Akku 1 or wil l be in Akku 1. CMD is the Command Number for the Controller, it is only interesting as
a link to the controller documentation.

Adre
sse

Transfer

Byte

CMD Transfer

Word

CMD Transfer
Dopp elword

CMD Load

Byte

CMD Load

 Word

CMD Load
Dopp elword

CMD

0 SetLimitSwitch
Mode

80 SetMotorLimit 6 SetPostion 10 GetLimitSwitch
Mode

81 GetMotorLimit 7 GetPostion 4A

1 SetAxisMode 87 SetMotorBias 0F SetVelocity 11 GetAxisMode 88 GetMotorBias 2D GetVelocity 4B

2 SetProfilMode A0 SetKP 25 SetJerk 13 GetProfilMode A1 GetKP 50 GetJerk 58

3 SetStop D0 SetKI 26 SetGear
Ration

14 GetStop D1 GetKI 51 GetGearRatio
n

59

4 SetMotorMode DC SetKD 27 SetActual
Position

4D GetMotorMode DD GetKD 52 GetActualPosit
ion

37

5 SetAutoStop
Mode

D2 SetKvff 2B Set
Acceleration

90 GetAutoStopM
ode

D3 GetKvff 54 GetAcceleratio
n

4C

6 SetCapture
Source

D8 SetInterrupt
Maske

2F Se
tDeceleration

91 GetCaptureSou
rce

D9 SetInterruptMa
sk

56 GetDeceleratio
n

92

7 SetMotion
CompliteMode

EB SetMotor
Command

77 Set Integration
Limit

95 GetMotion
CompliteMode

EC GetMotor
Command

69 Get Integration
Limit

96

8 Update 1A SetKaff 93 SetPosition
ErrorLimit

97 GetEncoder
Source

DB GetKaff 94 GetPostion
ErrorLimit

98



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 71 of 73

9 ClearPosition
Error

47 SetDerivative
Time

9C SetBreakpoint
Value1

D6 Read HW
Inputs X

Get Derivative
Time

9D Get Breakpoint
Value1

D7

10 SetKout 9E Set Breakpoint
Value2

D6 Read SSI
Status X

GetKout 9F Get Breakpoint
Value2

D7

11 SetSignal
Sense

A2 GetSignal
Sense

A3 Get
Commanded
Positon

1D

12 SetTracking
Window

A8 GetTracking
Window

A9 Get
Commanded
Velocity

1E

13 SetSettleTime AA GetSettle Time AB GetCapture
Value

36

14 SetGear
Master

AE GetGearMaster AF GetPosition
Error

99

15 SetSettle
Window

BC GetSettle
Window

BD GetIntegral 9A

16 SetBreakpoint
1

D4 GetBreakpoint
1

D5 Get
Commanded
Acceleration

A7

17 SetBreakpoint
2

D4 GetBreakpoint
2

D5 GetActual
Velocity

AD

18 SetAxisOut
Source

ED GetAxis Out
Source

EE

19 ResetEvent
Status

34 GetEvent
Status

31

20 GetEncoder
Modulus

8D

21 GetCurrentMot
orCommand

3A

22 GetDerivative 9B

23 GetSignalStatu
s

A4

24 GetActivity A6



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 72 of 73

25 SetLimitSwitch
Mode

80 SetMotorLimit 6 SetPostion 10 GetLimitSwitch
Mode

81 GetMotorLimit 7 GetPostion 4A

26 SetAxisMode 87 SetMotorBias 0F SetVelocity 11 GetAxisMode 88 GetMotorBias 2D GetVelocity 4B

27 SetProfilMode A0 SetKP 25 SetJerk 13 GetProfilMode A1 GetKP 50 GetJerk 58

28 SetStop D0 SetKI 26 SetGearRation 14 GetStop D1 GetKI 51 GetGear
Ration

59

29 SetMotorMode DC SetKD 27 SetActual
Position

4D GetMotorMode DD GetKD 52 GetActual
Position

37

30 SetAutoStop
Mode

D2 SetKvff 2B Set
Acceleration

90 GetAutoStop
Mode

D3 GetKvff 54 Get
Acceleration

4C

31 SetCapture
Source

D8 SetInterrup
tMaske

2F Set
Deceleration

91 GetCapture
Source

D9 SetInterrupt
Mask

56 Get
Deceleration

92

32 SetMotion
CompliteMode

EB SetMotor
Command

77 SetIntegration
Limit

95 GetMotion
CompliteMode

EC GetMotor
Command

69 GetIntegration
Limit

96

33 Update 1A SetKaff 93 SetPosition
ErrorLimit

97 GetEncoder
Source

DB GetKaff 94 GetPostion
ErrorLimit

98

34 ClearPosition
Error

47 SetDerivative
Time

9C SetBreakpoint
Value1

D6 Read HW
Inputs Y

GetDerivative
Time

9D GetBreakpoint
Value1

D7

35 SetKout 9E SetBreakpoint
Value2

D6 Read SSI
Status Y

GetKout 9F GetBreakpoint
Value2

D7

36 SetSignal
Sense

A2 GetSignal
Sense

A3 Get
Commanded
Positon

1D

37 SetTracking
Window

A8 GetTracking
Window

A9 Get
Commanded
Velocity

1E

38 SetSettleTime AA GetSettleTime AB GetCapture
Value

36

39 SetGear
Master

AE GetGearMaster AF GetPosition
Error

99

40 SetSettle
Window

BC GetSettle
Window

BD GetIntegral 9A

41 SetBreakpoint
1

D4 GetBreakpoint
1

D5 Get
Commanded
Acceleration

A7

42 SetBreakpoint
2

D4 GetBreakpoint
2

D5 GetActual
Velocity

AD

43 SetAxisOut
Source

ED GetAxisOut
Source

EE

44 ResetEvent
Status

34 GetEvent
Status

31

45 GetEncoder
Modulus

8D

46 GetCurrent
Motor
Command

3A

47 GetDerivative 9B

48 GetSignal
Status

A4

49 GetActivity A6



 16. Juli 2001

26/778 E1    Copyright Saia-Burgess Controls Ltd.
H320_xx7_26_778_E1.doc Page 73 of 73

50 Reset 39 Write 16Bit Write32 Bit GetInterrupt
Axis

E1 Read 16 Bit Read 32 Bit

51 MultiUpdate 5B Write CMD *SetBufferStart C0 GetHostIOError A5 Read
Signature

*GetBuffer
Start

C1

52 ClearInterrupt AC SetSample
Time

38 *SetBuffer
Length

C2 GetModul
Status

GetSample
Time

61 *GetBuffer
Length

C3

53 SetTraceMode B0 SetTraceStart B2 *SetBuffer
WriteIndex

C4 GetTraceMode B1 GetTraceStart B3 *GetBuffer
ReadIndex

C7

54 NoOperation 0 SetTraceStop B4 *SetBuffer
ReadIndex

C6 GetTraceStatus BA GetTraceStop B5 *ReadTrace
Buffer

C9

55 SetTrace
Variable1

B6 *WriteTrace
Buffer

C8 GetTrace
Variable1

B7 GetTime 3E

56 SetTrace
Variable2

B6 GetTrace
Variable2

B7 GetTrace
Count

BB

57 SetTrace
Variable3

B6 GetTrace
Variable3

B7

58 SetTrace
Variable4

B6 GetTrace
Variable4

B7

59 SetTrace
Period

B8 GetTrace
Period

B9

60

* the Buffer ID for the tracebuffer is 0. The other Buffers can be written only with the "Write CMD" command.

Read the FPGA Data. This functions are not implementet in the actual FW Version.(V2.09)

For a detailed description of all the commands see in the "Navigator Motion Processor User Guide" and "Navigator
Motion Processor Programmer's Reference" from PMD.


