Série PCD1/PCD2
Table des matières

0 Table des matières
0.1 Historique du document... 0-5
0.2 Marques déposées .. 0-6

1 Table des matières graphique
1.1 PCD1.M110/M120/M130/M125/M135 ... 1-1
1.2 PCD2.M110/M120/M150 .. 1-2
1.3 PCD2.M170 ... 1-3
1.4 PCD2.M480 ... 1-4

2 Guide
2.1 Introduction ... 2-1
2.2 Planification d'une application avec des composants PCD1/2/3 .. 2-2
2.3 Câblage ... 2-4
2.3.1 Passe-câbles ... 2-4

3 Unités centrales et boîtiers d'extension des Saia PCD® classiques
3.1 Présentation ... 3-1
3.1.1 Outphased Saia PCD®s .. 3-1
3.1.2 Le serveur web des Saia PCD® ... 3-1
3.2 Caractéristiques techniques générales .. 3-2
3.3 Ressources système .. 3-4
3.3.1 Blocs de programme ... 3-4
3.3.2 Calcul des types de nombres .. 3-4
3.3.3 Ressources .. 3-5
3.3.4 Structure des programmes de la famille Saia PCD® Classic 3-6
3.4 Panorama des unités centrales ... 3-7
3.4.1 PCD1.M1x0 ... 3-7
3.4.2 Schéma synoptique du PCD1.M1x0 .. 3-9
3.4.3 Versions du matériel et du firmware du PCD1 3-10
3.4.4 Mises à jour de la firmware du PCD1.M110, PCD1.M120 et PCD1.M130... 3-10
3.4.5 Mises à jour de la firmware du PCD1.M125 et PCD1.M135 3-11
3.4.6 PCD2.M1x0/M480 ... 3-12
3.4.7 Schéma synoptique du PCD2.Mxx0 ... 3-15
3.4.8 Version du matériel et du firmware des PCD2.M110/M120 3-16
3.4.9 Version du matériel et du firmware du PCD2.M150,
FW < V0D0 (jusqu'au début de l'année 2007) 3-17
3.4.10 Version du matériel et du firmware du PCD2.M150,
FW ≥ V0D0 (depuis le début de l'année 2007) 3-17
3.4.11 Versions du matériel et du firmware des PCD2.M170/M480 3-18
3.5 Montage .. 3-19
3.5.1 Position de montage et température ambiante 3-19
3.6 Boîtiers d'extension et câbles de bus .. 3-20
3.6.1 Extension avec des composants PCD2 3-21
3.6.2 Extension avec des composants PCD3 3-23
3.6.3 Extension avec des composants PCD4 3-24
3.7 Installation et adressage des modules d’E/S PCD2 3-25
 3.7.1 Insertion des modules d’E/S ... 3-25
 3.7.2 Désignation des adresses et des bornes .. 3-25
 3.7.3 Topologie des câbles ... 3-26
3.8 Dimensions ... 3-27
3.9 Alimentation et concept de raccordement .. 3-28
 3.9.1 Alimentation externe ... 3-28
 3.9.2 Concept de mise à terre et de raccordement 3-29
 3.9.3 Alimentation interne ... 3-31
 3.9.4 Intensité de l’alimentation interne ... 3-31
3.10 Etats de fonctionnement PCD1.M1x0 et PCD1.M1x5 3-32
3.11 Etats de fonctionnement des PCD2.M1x0/M480 3-33
3.12 Brochage du PCD1 .. 3-34
3.13 Brochage du PCD2 Emplacements de modules et borniers à vis PCD2 3-35
3.14 Extension de la mémoire utilisateur .. 3-36
 3.14.1 Bases .. 3-36
 3.14.2 Emplacement mémoire du programme utilisateur, des ressources, des textes et des DBs.. 3-37
 3.14.3 Exemples de configuration de la mémoire 3-38
 3.14.4 PCD1.M1x0 ... 3-40
 3.14.5 PCD1.M125 et PCD1.M135 ... 3-42
 3.14.6 PCD2.M110/M120/M150 ... 3-44
3.15 Possibilités de répartition de la mémoire utilisateur 3-47
3.16 Stockage des données en cas de panne de courant 3-48
3.17 Sauvegarde du programme utilisateur (carte Flash pour PCD2.M170/M480) ... 3-49
 3.17.1 Généralités ... 3-49
 3.17.2 Copie de l’application sur la carte Flash (sauvegarde) 3-50
 3.17.3 Transfert d’une application ... 3-51
 3.17.4 Sauvegarde/restauration de textes/DBs RAM pendant l’exécution 3-52
3.18 Horloge matérielle (horloge temps réel) .. 3-57
 3.18.1 Module horloge PCD2.F500 (obsoles, PCD2.M110/M120 uniquement).... 3-57
3.19 Surveillance de l’unité centrale (chien de garde) 3-58
 3.19.1 Chien de garde matériel du PCD1 ... 3-58
 3.19.2 Chien de garde matériel du PCD2 ... 3-59
 3.19.3 Chien de garde logiciel pour PCD1 et PCD2 3-61
3.20 Affichages à LED internes et petits terminaux 3-62
 3.20.1 Outphased displays and small terminals ... 3-62
 3.20.2 Afficheur à LED 7 segments PCD2.F510 (PCD2.M110/M120/M150 uniquement) ... 3-62
 3.20.3 Afficheur à LED 7 segments PCD2.F530 (PCD2.M120/M150 uniquement). 3-64
 3.20.4 Kits petit terminal PCD7.D16x .. 3-65
3.21 Entrées interruptives ... 3-66
 3.21.1 Bases .. 3-66
 3.21.2 PCD1.M120/M130 et PCD1.M125/M135 ... 3-66
 3.21.4 PCD2.M480 ... 3-67
3.22 Interrupteur Run/Stop ou Run/Halt (PCD2.M170/M480 uniquement) 3-69
3.23 Interrupteur Halt (PCD1.M125 et PCD1.M135) ... 3-70
3.23.1 Interrupteur Halt utilisé comme entrée (PCD1.M125 et PCD1.M135) 3-70
3.24 Sauvegarde des données dans EEPROM .. 3-71
3.25 Remise à zéro des sorties lors d’un STOP ou HALT (PCD2 uniquement) 3-72
3.26 Surveillance de présence/tension d’une extension (PCD2 uniquement) 3-73

4 Modules de communication Saia PCD® Classic
4.1 Informations générales .. 4-1
 4.1.1 Modules de communication «Outphased» ... 4-1
 4.1.2 SBCS-Net ... 4-2
4.2 Panorama des interfaces embarquées PCD1/PCD2 4-3
4.3 Panorama des modules de communication embrochables PCD1 4-4
4.4 Panorama des modules de communication embrochables PCD2 4-5
4.5 Interfaces embarquées... 4-6
 4.5.1 Connecteur PGU (PORT # 0, PCD1 et PCD2) (RS-232) pour raccordement
data de programme .. 4-6
 4.5.2 Connecteur PGU (PORT # 0, PCD1 et PCD2) (RS-232) comme interface de
data communication .. 4-7
 4.5.3 Connecteur PGU (PORT # 0, seulement PCD2.M110) (RS-485) pour
data interface de communication .. 4-8
 4.5.4 Interface de communication PORT#1 RS-485, seulement sur PCD1.M110 4-9
 4.5.5 Interface de communication PORT#6 RS-485, seulement sur PCD1.M480 4-10
 4.5.6 Port USB sur PCD2.M480 ... 4-11
 4.5.7 Profi-S-Net sur PCD2.M480 ... 4-12
4.6 Interfaces série à l’emplacement A.. 4-13
 4.6.1 RS-485/422 avec PCD7.F110, Port#1 (avec PCD1.M110 câblé) 4-13
 4.6.2 RS-232 avec PCD7.F120 (pour modem), port#1
 (avec PCD1.M110 pas existant) ... 4-15
 4.6.3 RS-232 avec PCD7.F121, Port#1 (avec PCD1.M110 pas existant) 4-16
 4.6.4 Boucle de courant avec PCD7.F130, port#1
 (avec PCD1.M110 pas existant) ... 4-17
 4.6.5 RS-485 avec PCD7.F150, port#1 (avec PCD1.M110 pas existant) 4-19
 4.6.6 MP-Bus avec PCD7.F180, port#1 (avec PCD1.M110 pas existant) 4-20
 4.6.7 Communication par modem ... 4-22
4.7 Interfaces série aux emplacements B, B1 ou B2 .. 4-23
 4.7.1 RS-485 avec PCD2.F520 (seulement PCD2) 4-23
 4.7.2 RS-422 avec PCD2.F520 .. 4-25
 4.7.3 RS-232 avec PCD2.F520/F522 ... 4-27
 4.7.4 Interface RS-232 complète avec PCD2.F522 (pour modem) 4-30
4.8 Ethernet TCP/IP ... 4-32
4.9 Profibus ... 4-33
 4.9.1 Profibus DP maître, module PCD7.F750 ... 4-34
 4.9.2 Profibus DP esclave, module PCD7.F770 ... 4-36
 4.9.4 Profibus FMS, module PCD7.F700 ... 4-38
4.10 LonWORKS® (noeuds LON configurables librement) 4-40
Table des matières

4.11 Connection module for MP-Bus PCD2.T500 .. 4-42
 4.11.1 Signaux de communication .. 4-42
 4.11.2 Les commandes et signalisations du PCD2.T500 4-42
 4.11.3 Raccordement et câblage .. 4-43
 4.11.4 Possibilités d'alimentation ... 4-44
 4.11.5 Possibilités de configuration du PCD2.T500 ... 4-45
 4.11.6 Temps de transmission sur le bus MP .. 4-46
 4.11.7 Calcul des longueurs de ligne ... 4-46
 4.11.8 Longueur maxi sous 24 VCA ... 4-47
 4.11.9 Longueur maxi sous 24 Vcc ... 4-47
 4.11.10 Longueur maxi sous 24 VCA (in situ) .. 4-48

5 Modules d'entrées/sorties (E/S)

6 Système de câblage et adaptateurs
 6.1 Câbles de raccordement rapide (avec connecteur côté Saia PCD®) 6-1

7 Entretien
 7.1 Changement de pile sur les UCs PCD1.M130 et PCD2.Mxxx 7-1
 7.2 Mise à jour du firmware ... 7-3
 7.2.1 Mise à jour du firmware des PCD2.M110/M120 7-3
 7.2.2 Mise à jour du firmware du PCD2.M150 ... 7-3
 7.2.3 Mise à jour du firmware des PCD2.M170/M480 7-4

A Annexe
 A.1 Icônes .. A-1
 A.2 Définition des interfaces séries ... A-2
 A.2.1 RS-232 ... A-2
 A.2.3 TTY/boucle de courant ... A-4
 A.3 Protocoles sur les ports séries ... A-5
 A.3.1 Protocoles pris en charge par le firmware .. A-5
 A.3.2 Protocoles implémentés dans le programme utilisateur A-5
 A.4 Codes de commande ... A-6
 A.5 Adresses ... A-11
Historique du document

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changements</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-02-03</td>
<td>FR12</td>
<td>-</td>
<td>Révision complète</td>
</tr>
<tr>
<td>2005-06-17</td>
<td>FR13</td>
<td>Chap. 5 - Erreur corrigée dans la raccordement PCD2.A465</td>
<td></td>
</tr>
<tr>
<td>2008-07-22</td>
<td>FR15</td>
<td>Chap. 5 - Nouveau module PCD2.W525
Chap. 5 - «Définition des signaux d’entrée» révisé</td>
<td></td>
</tr>
<tr>
<td>2008-12-17</td>
<td>FR16</td>
<td>Chap. 3.4 - PCD2.M150 nouvelle mise à jour de FW
Chap. 5.7 - Schéma de raccordement PCD2.W2x0 corrigé
Chap. 5.12.1 - Valeurs numériques / analogiques PCD2.W2x0 corrigées
Chap. 6 - Nouveau guide en son propre manuel 26/792
Chap. 7.1 - Nouvelle indication pour le changement de pile</td>
<td></td>
</tr>
<tr>
<td>2009-12-15</td>
<td>FR17</td>
<td>tous - Convertir en CS4 et corrigées des erreurs</td>
<td></td>
</tr>
<tr>
<td>2010-02-15</td>
<td>FR18</td>
<td>Chap. 3 - Nouvelles chap. 3.12/3.13</td>
<td></td>
</tr>
<tr>
<td>2011-01-05</td>
<td>FR19</td>
<td>Chap. 4 - PCD7.F121 pour tous les types autres UC que les PCD1.M110</td>
<td></td>
</tr>
<tr>
<td>2011-06-01</td>
<td>FR20</td>
<td>Chap. 3 - 5 - Alimentation extérieures et 24V des modules, PGND
Chap. 4.1.2 - Utilisation SBC S-Bus
Chap. 3-19 - Correction erreurs de surveillance HW.</td>
<td></td>
</tr>
<tr>
<td>2011-11-23</td>
<td>FR21</td>
<td>Chap. 3 - Température minimum de stockage de –20 °C ➞ –25 °C
- Révision</td>
<td></td>
</tr>
<tr>
<td>2012-03-29</td>
<td>FR22</td>
<td>Chap. 4 - Câblage interne PCD2.K111
Chap. 5 - Changer le logo</td>
<td></td>
</tr>
<tr>
<td>2013-04-23</td>
<td>FR23</td>
<td>Chap. 5.2.3 - Erreur connections PCD2.E165/E166</td>
<td></td>
</tr>
<tr>
<td>2014-07-22</td>
<td>FR22</td>
<td>Chap. 4 tous
Chap. 5 - Le chapitre a été confié à la manuel 27/600</td>
<td></td>
</tr>
</tbody>
</table>
0.2 **Marques déposées**

Saia PCD® et Saia PG5® sont des marques déposées de Saia-Burgess Controls AG.

Les modifications techniques dépendent de l'état de la technologie.

Publié en Suisse.
Table des matières graphique

La table des matières graphique sélectionne quelques points forts du manuel « Matériel de la gamme PCD1/PCD2 » et vous permet d’accéder au chapitre correspondant en cliquant sur le composant/connecteur. L’accès rapide depuis la table des matières doit encore être étendu à tous les chapitres.

1.1 PCD1.M110/M120/M130/M125/M135
1.2 **PCD2.M110/M120/M150**
1.3 PCD2.M170
1.4 PCD2.M480
Guide

2.1 Introduction

Ce manuel traite des aspects techniques des composants PCD1 et PCD2. Les termes suivants sont fréquemment utilisés :

- **UC**
 Unité centrale : le cœur du Saia PCD®

- **E/S déportées**
 Entrées/sorties déportées (RIO ou Remote I/O en anglais) :
 Entrées et sorties qui sont reliées à l'UC via un bus de terrain tel que Profibus

- **E/S locales**
 Entrées/sorties locales (LIO ou Local I/O en anglais) :
 Celles-ci sont reliées à l'UC ou à une E/S déportée via le bus d'E/S (c.à.d. à l'aide de câbles aussi courts que possible)

- **Modules**
 Modules d'E/S montés sur un châssis coordonné au système PCD1/2.

- **Supports de module UC, E/S déportées ou E/S locales** qui peuvent accueillir des modules

L'objectif du chapitre Guide est de présenter les bases de la planification et de l’installation de systèmes de contrôle constitués de composants PCD1/2. Il traite des thèmes suivants :

- **Planification d’une application**

- **Câblage**

Les particularités du matériel, des logiciels, de la configuration, de la maintenance et du débogage sont décrites dans des chapitres séparés.
2.2 **Planification d'une application avec des composants PCD1/2/3**

Les aspects suivants sont à prendre en compte lors de la planification d'une application PCD1/2/2.

- Le courant de charge interne fourni aux modules d'E/S par l'alimentation +5 V et V+ ne doit pas dépasser le courant d'alimentation émis par les unités centrales.
- Le type d’unité centrale détermine le nombre maximal de modules.
- La longueur totale du bus d'E/S est limitée pour des raisons techniques: plus elle est courte, mieux c'est.

Nous vous recommandons de suivre la procédure suivante pour planifier une application :

1. Sélectionnez les modules d'E/S, selon vos exigences.
2. Vérifiez que le nombre de modules est autorisé :

<table>
<thead>
<tr>
<th>Type de PCD</th>
<th>Nombre max de modules d'E/S</th>
<th>Nombre max.¹) d'E/S TOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UC PCD1/PCD2</td>
<td>Extension PCD2</td>
</tr>
<tr>
<td>PCD1</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>PCD2.M120/150</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

¹) modules PCD2 et modules PCD3 de 16 E/S chacun

Les valeurs entre parenthèses doivent être déduites du nombre maximum d’E/S TOR en raison du relais du chien de garde.

Si vous souhaitez agrandir les unités centrales PCD2 à l’aide d’E/S locales ou d’E/S déportées, veuillez vous reporter aux instructions de planification du manuel du PCD3.

Si le nombre de modules est autorisé, veuillez passer à l’étape 3, sinon, sélectionnez une autre unité centrale.

3. **Le cas échéant, sélectionnez le boîtier d’extension PCD2** :

- PCD2.C100 avec 8 emplacements de module
- PCD2.C150 avec 4 emplacements de module
- PCD2.K100 câble d’extension 26 fils pour raccordement d’automates de base PCD2 en montage vertical.
- PCD2.K110 câble d’extension 26 fils pour raccordement d’automates de base PCD2 en montage horizontal.
- PCD2.K120 câble d’extension 26 fils pour applications spéciales d’une longueur de 2 m.
- PCD2.K106 câble d’extension 26 fils pour raccordement d’unités centrales PCD2 avec des supports de modules PCD3.
Planification d’une application avec des composants PCD1/2/3

4 Si des modules PCD2.Wxxx et PCD2.Hxxx sont utilisés, calculez le courant de charge d’après l’alimentation interne +5 V et V+ (utilisez les valeurs les plus mauvaises ou les plus élevées).

5 Vérifiez que le courant d’alimentation max. de l’unité centrale est suffisant, ce qui, en règle générale, devrait être le cas. Dans le pire des cas, préférez les extensions PCD3.

6 Mesurez la consommation en alimentation 24 V. Utilisez les estimations du chapitre « Matériel ».
 Ces estimations peuvent être consultées au chapitre 3.8.5 « Consommation de courant des modules d’entrées/sorties PCD2/PCD3 ».

Tenez compte du fait que, dans la plus part des applications, les sorties appliquent la plus forte charge sur l’alimentation 24 V. Prenons l’exemple de 16 sorties avec un courant de charge de 0,5 A chacune. Si toutes les sorties sont connectées, la charge représente déjà 8 A.
2.3 Câblage

2.3.1 Passe-câbles

- Les lignes d'alimentation 230 V et les lignes de signaux doivent être placées dans des câbles séparés d'au moins 10 cm. Il est préconisé de veiller à ce que les lignes électriques et les lignes de signaux soient séparées physiquement dans l'armoire électrique.

- Les lignes de signaux numériques/lignes de bus et lignes de signaux analogiques/lignes de capteurs doivent être placées dans des câbles séparés.

- Il est recommandé d'utiliser des câbles blindés pour les lignes de signaux analogiques.

- Le blindage doit être relié à la terre à l'entrée ou à la sortie de l'armoire électrique. Les blindages doivent être aussi courts que possible et avec une section aussi grande que possible. Le point de mise en terre central doit être > 10 mm². Il doit être relié au conducteur de protection PE par la voie la plus courte.

- En règle générale, le blindage n'est raccroché qu'à un côté de l'armoire électrique, sauf si une liaison équipotentielle est nettement moins résistante que le blindage.

- Des inductances installées dans une même armoire électrique, par ex. des bobines-contracteurs, doivent être fournies avec des suppressions appropriées (RC).

- Les composants de l'armoire électrique ayant une forte intensité de champ, par ex. les transformateurs ou les convertisseurs de fréquence, doivent être blindés avec des plaques de partition possédant un bon point de mise à la masse.

Protection contre les surtensions pour les longues distances et les lignes extérieures

- Si des lignes sont placées en dehors du bâtiment ou sur des distances plus importantes, des mesures de protection contre les surtensions appropriées doivent être prévues. Dans le cas de lignes de bus, ces mesures sont tout particulièrement nécessaires.

- Si les lignes sont placées en extérieur, le blindage doit pouvoir supporter le courant et être relié à la terre aux deux extrémités.

- Les parasurtensions doivent être installées à l'entrée de l'armoire électrique.
3 Unités centrales et boîtiers d’extension des Saia PCD® classiques

Nota : les UC de la Série xx7 sont décrites dans le manuel n° 26/757.

3.1 Présentation

3.1.1 Outphased Saia PCD®s

<table>
<thead>
<tr>
<th>Article</th>
<th>Active</th>
<th>N'est pas recommandé pour des projets nouveaux</th>
<th>outphased (n'est plus produit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD1.M110</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD1.M120</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD1.M125</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD1.M130</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD1.M135</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD1.M135F655</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M110</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M120</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M150</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M170F655</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M480F655-2</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.2 Le serveur web des Saia PCD®

- Navigateur web pour la mise en service, la maintenance et l’affichage : L’accès au serveur web SBC fait appel à des navigateurs du commerce (Internet Explorer, Netscape Navigator…) qui constituent des outils pratiques et universels de mise en service, de maintenance et de visualisation des machines, équipements et installations. L’utilisateur peut y retrouver les pages HTML pré définies d’un dispositif ou spécifiques au système, qui lui permettent d’accéder à toutes les données relatives aux automates et aux E/S déportées. Il est également possible d’insérer dans ces pages HTML des éléments graphiques (images, schémas..) et des documents textuels (manuels d’exploitation et de dépannage) pour créer une interface utilisateur personnalisée.

- Accès générique aux interfaces et réseaux de son choix : L’accès au serveur web se fait non seulement par Ethernet TCP/IP mais
aussi par des interfaces normalisées économiques (série RS-232 et RS-485, modem...) et les réseaux Profibus, dans tout le système comme aux différents échelons du réseau. Le Web devient alors un outil économique de conduite et de supervision des applications de toute taille, même les plus modestes.

- Serveur web embarqué dans tous les automates Saia PCD®:

3.2 Caractéristiques techniques générales

Alimentation (externe et interne)

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d’alimentation</td>
<td>24 VCC ±20% lissée ou 19 VCA ±15% à redressement double alternance (18 VCC)</td>
</tr>
</tbody>
</table>
| Consommation 1) | PCD1 et PCD2 : généralement 15 W pour 64 E/S
PCD2 : généralement 20 W pour 128 E/S |
| Intensité du bus interne 5 V 2) | PCD1 : 750 mA
PCD2.M110/M120 Version matérielle < H : 1100 mA
PCD2.M110/M120 Version matérielle >= H : 1600 mA
PCD2.M150 : 1600 mA
PCD2.M170 : 1600 mA
PCD2.M480 : 2000 mA |
| Intensité du bus interne +V (16..24 V)2) | PCD1 : 100 mA
PCD2 : 200 mA |

1) Les charges connectées aux sorties sont souvent plus significatives pour mesurer l’alimentation que la dissipation d’énergie interne de l’automate.

2) Lorsque des systèmes PCD2 sont planifiés, il est nécessaire de contrôler que les deux alimentations internes ne sont pas surchargées. Ce contrôle est particulièrement important si des modules analogiques, des modules de comptage et des cartes de commande d’axes sont utilisés, car ils peuvent présenter une consommation de courant très importante.

Conditions climatiques

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Valeurs</th>
</tr>
</thead>
</table>
| Température de l’environnement d’exploitation | Montage sur une surface verticale avec des bornes agencées verticalement : 0…+55 °C
Toutes les autres positions de montage engendrent une plage de température réduite de 0 à +40 °C. |
| Température de stockage | -25 à + 85°C |
| Hygrométrie relative | 30 à 95% sans condensation |

Résistance aux vibrations

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Valeurs</th>
</tr>
</thead>
</table>
| Vibrations | selon EN/CEI61131-2
5 à 13,2 Hz, amplitude constante 1,42 mm
13,2 à 150 Hz, accélération constante (accélération simple due à la pesanteur) |

Sécurité électrique

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de protection</td>
<td>IP 20 selon EN60529</td>
</tr>
<tr>
<td>Distance dans l’air/ligne de fuite</td>
<td>selon EN61131-2 et EN50178 entre circuits électriques et châssis, et entre les circuits à séparation galvanique, correspondant à une tension de choc de catégorie II, niveau de pollution 2</td>
</tr>
<tr>
<td>Tension d’essai</td>
<td>350 V / 50 Hz CA pour une tension nominale 24 VCC</td>
</tr>
</tbody>
</table>
Compatibilité électromagnétique

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Décharge électrostatique</td>
<td>selon EN61000-4-2 : 8 kV : décharge de contact</td>
</tr>
<tr>
<td>Champs électromagnétiques</td>
<td>selon EN61000-4-3 : intensité de champ 10 V/m, 80 à 1000 MHz</td>
</tr>
<tr>
<td>Transitoires rapides (burst)</td>
<td>selon EN61000-4-4 : 4 kV sur les lignes d’alimentation CC, 4 kV sur les lignes d’E/S, 1 kV sur les lignes de transmission</td>
</tr>
<tr>
<td>Emission PCD1, PCD2, M110/M120/M170</td>
<td>selon EN61000-6-3 : seuil classe B (zones résidentielles)</td>
</tr>
<tr>
<td>Immunité PCD1/PCD2</td>
<td>selon EN61000-6-2</td>
</tr>
</tbody>
</table>

Mécanique et montage

<table>
<thead>
<tr>
<th>Matériau du châssis</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fond</td>
<td></td>
</tr>
<tr>
<td>Capot</td>
<td></td>
</tr>
<tr>
<td>Fibres optiques</td>
<td>PC, cristallines</td>
</tr>
<tr>
<td>Rail porteur</td>
<td>Double profilé oméga EN50022 (2 x 35 mm)</td>
</tr>
</tbody>
</table>

Raccordements

<table>
<thead>
<tr>
<th>Bornes à vis</th>
<th>Sauf indication contraire : pour fils 1,5 mm² (jauge 16) ou 2 x 0,5 mm² (2 x jauge 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bornes à vis embrochables</td>
<td>Le bornier ne doit pas être enfiché plus de 20 fois. Il doit ensuite être remplacé afin de garantir la fiabilité du contact.</td>
</tr>
</tbody>
</table>

Normes / agréments

<table>
<thead>
<tr>
<th>EN/CEI</th>
<th>EN/IEC61131-2 “Automates à logique programmables”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction navale</td>
<td>ABS, BV, DNV, GL, LRS, PRS. Vérifier si le produit est énuméré dans la liste des organisations autorisées sur le site web www.sbc-support.com.</td>
</tr>
<tr>
<td>cULus-listed</td>
<td>Vérifiez si le produit sélectionné a déjà un certificat obtenu sur le site web www.sbc-support.com. Les conditions pour l’approbation cULus sont énumérés dans l’annexe du produit ou peuvent être téléchargé sur le site web www.sbc-support.com.</td>
</tr>
</tbody>
</table>
3.3 **Ressources système**

3.3.1 **Blocs de programme**

<table>
<thead>
<tr>
<th>Type</th>
<th>Nombre</th>
<th>Adresses</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocs d’organisation cycliques (COB)</td>
<td>16</td>
<td>0…15</td>
<td>Parties de programme principales</td>
</tr>
<tr>
<td>Blocs d’organisation des exceptions/système (XOB)</td>
<td>32</td>
<td>0…31</td>
<td>Invoqués par le système</td>
</tr>
<tr>
<td>Blocs de programme (PB)</td>
<td>300</td>
<td>0…299</td>
<td>Sous-programmes</td>
</tr>
<tr>
<td>Blocs de fonction (FB)</td>
<td>1000</td>
<td>0…999</td>
<td>Sous-programmes avec paramètres</td>
</tr>
<tr>
<td>Blocs séquentiels (SB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD1, PCD2.M110/M120/M150 au total, 2 000 pas et transitions chacun</td>
<td>32</td>
<td>0…31</td>
<td>pour programmation Graftec d’opérations de type séquentiel</td>
</tr>
<tr>
<td>PCD2.M170, PCD2.M480 : au total, 6 000 pas et transitions chacun (avec PG5 ≥ 1.2 et version du firmware ≥ 010)</td>
<td>96</td>
<td>0…95</td>
<td></td>
</tr>
</tbody>
</table>

3.3.2 **Calcul des types de nombres**

<table>
<thead>
<tr>
<th>Type</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombres entiers</td>
<td>– 2 147 483 648 à + 2 147 483 647</td>
</tr>
<tr>
<td></td>
<td>Format : décimal, binaire, BCD ou hexadécimal</td>
</tr>
<tr>
<td>Nombres à virgule flottante</td>
<td>– 9,22337 x 10(^{18}) à + 5,42101 x 10(^{-20})</td>
</tr>
<tr>
<td></td>
<td>Des instructions permettent la conversion au format IEEE 754 des valeurs étant au format SBC (Motorola Fast Floating Point, FFP) et inversement.</td>
</tr>
</tbody>
</table>
3.3.3 Ressources

<table>
<thead>
<tr>
<th>Type</th>
<th>Nombre</th>
<th>Adresses</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicateurs (1 bit)</td>
<td>8192</td>
<td>F 0 à 8191</td>
<td>Tous les indicateurs sont par défaut non volatiles. Il est cependant possible de configurer une plage volatile commençant à l’adresse 0.</td>
</tr>
<tr>
<td>Registre (32 bits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD1</td>
<td>4096</td>
<td>R 0 à 4095</td>
<td>Pour les valeurs en nombres entiers ou à virgule flottante</td>
</tr>
<tr>
<td>PCD2.M110/120/M150/M170</td>
<td>16384</td>
<td>R 0 à 16383</td>
<td></td>
</tr>
<tr>
<td>PCD2.M480</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registre EEPROM (32 bits)</td>
<td>5</td>
<td>4096</td>
<td>Permettent le stockage de valeurs qui sont conservées même lorsque la pile ou le condensateur tampon sont vides.</td>
</tr>
<tr>
<td>PCD1.M110/120/130</td>
<td>50</td>
<td>4096</td>
<td></td>
</tr>
<tr>
<td>PCD1.M1x5</td>
<td>50</td>
<td>4096</td>
<td></td>
</tr>
<tr>
<td>PCD2</td>
<td>50</td>
<td>4096</td>
<td></td>
</tr>
<tr>
<td>Blocs de texte/données avec/sans extension de la mémoire utilisateur</td>
<td></td>
<td></td>
<td>Les textes 0 à 3999 sont toujours stockés dans la même plage de mémoire que le programme utilisateur. Si la mémoire utilisateur est étendue, la mémoire de base peut être configurée en vue du stockage de textes et DBs RAM. Les adresses des textes et DBs ainsi disponibles sont ≥ 4000.</td>
</tr>
<tr>
<td>PCD1</td>
<td>4000/5000</td>
<td>0 à 3999/4099</td>
<td></td>
</tr>
<tr>
<td>PCD2.M110/M120/M150</td>
<td>4000/6000</td>
<td>0 à 3999/5999</td>
<td></td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>8000</td>
<td>0 à 7999</td>
<td></td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>8191</td>
<td>0 à 8190</td>
<td></td>
</tr>
<tr>
<td>Temporisateurs/compteurs (31 bits)</td>
<td>1600¹)</td>
<td>T/C 0 à 1599</td>
<td>La répartition des temporisateurs et des compteurs peut être configurée. Les temporisateurs sont décémentés périodiquement par le système d’exploitation. L’unité de temps de base peut être définie dans une plage allant de 10 ms à 10 s.</td>
</tr>
<tr>
<td>Constantes avec code média K</td>
<td>au choix</td>
<td></td>
<td>Plage de valeur de 0 à 16 383, peut être utilisée dans les instructions à la place des registres.</td>
</tr>
<tr>
<td>Constantes sans code média</td>
<td>au choix</td>
<td></td>
<td>Plage de valeur - 2 147 483 648 à +2 147 483 647. Ne peut être chargée dans un registre qu’avec une instruction LD et ne peuvent être utilisées à la place des registres dans des instructions.</td>
</tr>
<tr>
<td>Sémaphores</td>
<td>100</td>
<td>0 à 99</td>
<td>Non pertinent pour les PCD1/PCD2, utilisées pour le verrouillage des accès aux ressources dans les systèmes à multiples UCs tels que le PCD6</td>
</tr>
</tbody>
</table>

¹) Ne configurer que le nombre de temporisateurs nécessaire afin d’éviter une charge inutile de l’UC.
3.3.4 Structure des programmes de la famille Saia PCD® Classic

Vous trouverez de plus amples informations sur ce thème dans les informations techniques (TI) 26/362 (PG5) et 26/354 (système d'exploitation).
3.4 Panorama des unités centrales

3.4.1 PCD1.M1x0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre d’E/S ou d’emplacements de module d’E/S</td>
<td>64<sup>1)</sup></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module d’E/S</td>
<td>tous les modules d’E/S PCD2, sauf PCD2.Gxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processeur</td>
<td>68 340 @ 16 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temps de traitement sur bits sur mots</td>
<td>par ex. ANH F 0 5 µs<sup>2)</sup></td>
<td>par ex. ADD R 0 20 µs<sup>2)</sup></td>
<td>R 1</td>
<td>R 2</td>
<td></td>
</tr>
<tr>
<td>Firmware</td>
<td>1 PROM dans le socle, à partir du premier semestre 2004, PROMs soudés</td>
<td></td>
<td>Mémoire Flash soudés (Mises à jour de la firmware par PGU possible)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version minimum du PG5</td>
<td>1.0, pour TCP/IP 1.1</td>
<td>1.3.120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mémoire utilisateur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM de base</td>
<td>17 Ko supplémentaires<sup>3)</sup></td>
<td>jusqu’à 128 Ko supplémentaires</td>
<td>jusqu’à 128 Ko supplémentaires</td>
<td>128 Ko</td>
<td>128 … 512 Ko</td>
</tr>
<tr>
<td>Extension par RAM, EPROM ou Flash EPROM</td>
<td>jusqu’à 128 Ko supplémentaires</td>
<td>jusqu’à 112 Ko supplémentaires</td>
<td>128 Ko</td>
<td>128 … 448 Ko</td>
<td></td>
</tr>
<tr>
<td>Horodateur (RTC)</td>
<td>non<sup>4)</sup></td>
<td>oui, déviation < 30 mip (80 s/mois)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauvegarde des données</td>
<td>30 jours avec condensateur</td>
<td>7 jours avec condensateur</td>
<td>1à 3 ans<sup>5)</sup> avec pile au lithium CR2032</td>
<td>7 jours avec condensateur</td>
<td>1à 3 ans<sup>5)</sup> avec pile au lithium CR2032</td>
</tr>
<tr>
<td>Entrées interruptives</td>
<td>non</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fréquence d’entrée maximale</td>
<td>-</td>
<td>1 kHz<sup>6)</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) En cas d’utilisation de modules d’E/S TOR PCD2.E16x ou A46x de 16 E/S chacun
2) Valeurs types. Le temps de traitement est fonction du volume des échanges effectués sur les ports de communication.
3) Si une mémoire d’extension est utilisée, il est possible d’employer 13 Ko de la mémoire de base au stockage des textes et DBs RAM (adresse du texte/DB ≥ 4000)
4) Lorsque la bibliothèque CVC est utilisée : un message d’erreur annonce l’absence de l’horodateur lors du traitement du bloc d’initialisation CVC. Les programmateurs ne peuvent être utilisés.
5) La durée spécifiée est une marge. Elle dépend de la température ambiante (plus la température est élevée plus la marge est réduite).
6) La valeur de 1 kHz vaut pour un rapport impulsion/pause de 1/1 et correspond à la somme des fréquences des deux entrées.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface de programmation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broche femelle de type D-Sub 9 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pour port PGU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pour câble de programmation PCD8.K111)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port série</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emplacement A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-422/485, intégré</td>
<td>RS-232, RS-422/485, MP-Bus ou TTY/BC 24 mA enfichable (modules PCD7.F1xx)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connexions bus de terrain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBC S-Bus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet TCP/IP (Ether-S-Bus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet TCP/IP (Ether-S-Bus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profibus DP LonWorks®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emplacement B pour réseau et/ou port, affichage à LED, petit terminal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pour kit terminal PCD7.D162 uniquement³</td>
<td>oui³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Peut aussi être utilisée comme port série, par ex. pour le raccordement d’un terminal, mais le diagnostic des erreurs par le débogueur en sera compliqué.

2) Ethernet TCP/IP disponible comme système configuré : PCD1.M130F655/PCD1.M135F655. Si le montage est effectué ultérieurement, le capot devra être remplacé, réf. de commande 4 104 7409 0.

3) Il est recommandé de commander le kit terminal PCD2.D16x monté sur l’automate. S’il est monté ultérieurement, le capot devra être remplacé, réf. de commande 4 104 7338 0
3.4.2 Schéma synoptique du PCD1.M1x0

Le retrait du capot expose des composants particulièrement sensibles aux décharges électrostatiques.

Recommandations : Toucher succintement le raccordement PGU juste avant de manipuler des circuits électroniques. Pour plus de sécurité, nous vous recommandons d’utiliser un bracelet antistatique raccordé par son câble à la borne négative du système.
Les modules d’E/S et les borniers d’E/S ne doivent être embrochés ou débrochés que lorsque le Saia PCD® n’est pas sous tension. La source d’alimentation externe de modules (+ 24 V), doit être désactivée également.

Pour éviter toute perte de données, la pile doit être changée lorsque l’alimentation est activée.

3.4.3 Versions du matériel et du firmware du PCD1

A ce stade, les restrictions suivantes s’imposent :

- L’utilisation de cartes de communication intelligentes, telles que Profibus DP, LON et Ethernet, ne nécessite que des versions minimales du matériel et du firmware. Note : ce thème est traité dans les manuels consacrés aux cartes de communication correspondantes.

3.4.4 Mises à jour de la firmware du PCD1.M110, PCD1.M120 et PCD1.M130

Le firmware du PCD1.M1x0 est stocké dans un PROM. Ces puces ne peuvent être programmées qu’une seule fois. Avec des puces vierges (réf. de commande 4 502 7178 0) et un graveur EPROM doublé d’un adaptateur pour puces PLCC44 (par ex. Galep-4 avec adaptateur 210841), de nouvelles puces firmware peuvent être gravées à tout moment. Vous pouvez télécharger la version actuelle du firmware sur le site www.sbc-support.com.

A ce stade, les restrictions suivantes s’imposent :

3.4.5 Mises à jour de la firmware du PCD1.M125 et PCD1.M135

Le firmware est stocké dans un Flash EPROM qui est soude sur la carte mère. Il est possible de mettre à jour le firmware en téléchargeant une nouvelle version avec le PG5. La procédure est la suivante :

- Etablir une connexion entre le PG5 et l'UC comme pour le téléchargement d'une application (selon les capacités, en série via câble PGU, modem1), USB, Ethernet).
- Ouvrir le configurateur en ligne et passer hors connexion.
- Dans le menu Tools, sélectionner « Download Firmware », puis sélectionner, à l’aide de la fonction Parcourir, le chemin vers le fichier de la nouvelle version du firmware. Prendre garde à ne sélectionner qu’un fichier à télécharger.
- Lancer le téléchargement.
- Après le téléchargement, ne pas interrompre l’alimentation du Saia PCD® pendant 3 minutes (séquence de programmation CPLD). Dans le cas contraire, l'UC pourrait se bloquer de telle façon qu’il faille la renvoyer à l’usine.

1) Une connexion par modem n’est pas toujours fiable. Il peut arriver qu’un modem se bloque et qu’aucun accès à distance ne soit plus possible. Une intervention sur site est, dans ce cas, nécessaire. Les autres possibilités de connexion sont préférables.
3.4.6 PCD2.M1x0/M480

Panorama des unités centrales

<table>
<thead>
<tr>
<th>Comparatif des automates de base PCD2 (général, partie 1)</th>
<th>M110</th>
<th>M120</th>
<th>M150</th>
<th>M170</th>
<th>M480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecteur de bus d’E/S pour extensions</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>oui</td>
</tr>
<tr>
<td>Nombre d’E/S ou d’emplacements de module d’E/S :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilisation exclusive des composants PCD2</td>
<td>128$^{1)}$</td>
<td>8</td>
<td>255$^{2)}$</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Extension avec des composants PCD3</td>
<td>-</td>
<td>255$^{2)}$</td>
<td>16</td>
<td>510$^{2)}$</td>
<td>32</td>
</tr>
<tr>
<td>Extension avec des composants PCD4</td>
<td>-</td>
<td></td>
<td>255$^{12)}$</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>Processeur (Motorola)</td>
<td>68340</td>
<td>68340</td>
<td>CF5407</td>
<td>162 MHz</td>
<td></td>
</tr>
<tr>
<td>Temps de traitement sur bits, par ex. ANH F 0</td>
<td>3,8 µs$^{5)}$</td>
<td>1,8 µs$^{4)}$</td>
<td>0.12 µs$^{4)}$</td>
<td>0.4 µs$^{4)}$</td>
<td></td>
</tr>
<tr>
<td>Temps de traitement sur mots, par ex. ADD R 0 R 1 R 2</td>
<td>20 µs$^{5)}$</td>
<td>10 µs$^{4)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firmware, mise à jour du firmware</td>
<td>2 EPROMs sur socle DIL, enfichables</td>
<td></td>
<td>Mémoire firmware soudée, possibilité de téléchargement depuis l’environnement PG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version minimum du PG5</td>
<td>1.0.xxx</td>
<td>1.0.xxx</td>
<td>1.0.xxx</td>
<td>1.1.xxx</td>
<td>1.2.xxx</td>
</tr>
</tbody>
</table>

1) En cas d’utilisation de modules d’E/S TOR PCD2.E16x ou A46x de 16 E/S chacun

2) L’adresse 255 est réservée, dans tous les PCD2, au chien de garde, c’est aussi le cas de l’adresse 511 dans le M170. Les E/S réservées au chien de garde ne peuvent être utilisées par l’utilisateur. De plus, aucun module analogique ou H ne doit être installé sur les emplacements portant l’adresse de base 240 (pour le M170, adresses 240 et 496).

3) Tous les modules d’E/S PCD4 ne sont pas adaptés à une utilisation avec les unités centrales PCD2. Reportez-vous au chapitre « Extension avec des composants PCD4 ».

4) Valeurs types. Le temps de traitement est fonction du volume des échanges effectués sur les ports de communication.
Panorama des unités centrales

Unités centrales et boîtiers d’extension

<table>
<thead>
<tr>
<th>*</th>
<th>Firmware Update à la PCD2.M150</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW < V0D0</td>
<td>2 Flash EPROMs sur socle DIL, enfichables</td>
</tr>
<tr>
<td>FW ≥ V0D0</td>
<td>Mémoire Flash soudée (Mises à jour de la firmware par PGU possible)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparatif des automates de base PCD2 (général, partie 2)</th>
<th>M110</th>
<th>M120</th>
<th>M150</th>
<th>M170</th>
<th>M480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mémoire utilisateur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM de base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension par RAM, EPROM ou Flash EPROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version matérielle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= J :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128 Ko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jusqu’à 512 Ko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version matérielle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 Ko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jusqu’à 512 Ko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version matérielle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< H :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 Ko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jusqu’à 128 Ko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carte Flash PCD7.R400 enfichable (sauvegarde du programme utilisateur)</td>
<td>non</td>
<td>oui</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horodateur (RTC)</td>
<td>oui, déviation < 15 mip (40 s/mois)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauvegarde des données</td>
<td>Pile au lithium CR2032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 à 3 ans²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre d’entrées interruptives</td>
<td>non</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fréquence d’entrée maximale</td>
<td>-</td>
<td>1 kHz³</td>
<td>1 kHz³</td>
<td>1 kHz⁴</td>
<td></td>
</tr>
</tbody>
</table>

1) Lorsqu’une mémoire d’extension est utilisée, une grande partie de la mémoire de base peut être employée au stockage des textes et DBs de RAM (adresse du texte/DB ≥ 4000)
2) La durée spécifiée est une marge. Elle dépend de la température ambiante (plus la température est élevée, plus la marge est réduite).
3) La valeur de 1 kHz vaut pour un rapport impulsion/pause de 1/1 et correspond à la somme des fréquences des deux entrées.
4) La valeur 1 kHz vaut pour un rapport impulsion/pause de 1/1
Comparatif des automates de base PCD2 (ports)

<table>
<thead>
<tr>
<th>Comparatif des automates de base PCD2 (ports)</th>
<th>M110</th>
<th>M120</th>
<th>M150</th>
<th>M170</th>
<th>M480</th>
</tr>
</thead>
</table>
| Interface de programmation | Broche femelle de type D-Sub 9 points pour port PGU\(^1\)
| | (pour câble de programmation PCD8.K111)
| | PCD2.M480 ainsi que port USB\(^2\) | | | |
| Port série Emplacement A | 1 x |
| | RS-232, RS-422/485 ou TTY BC 20 mA, enfichable (modules PCD7.F1xx) |
| Port #0 (PGU) aussi disponible comme interface RS-485 (RS-232 ou RS-485) | ✓ | |
| Port série supplémentaire RS-485 (port 6, jusqu’à 115 kbits/s) | | ✓ |
| Interface Profi-S-Net (jusqu’à 1,5 Mbits/s) | | | ✓ |
| Connexions bus de terrain : | |
| Serial-S-Bus (SBCS-Bus) | ✓ | | |
| Ether-S-Bus (Ethernet-TCP/IP) | x | ✓\(^3\) | ✓ |
| Profi-S-Bus | x | | ✓ |
| ProfiBus FMS | x | ✓ | x\(^4\) |
| ProfiBus DP Master | x | | ✓ |
| ProfiBus DP Slave | x | ✓ | ✓\(^5\) |
| \(\text{LonWorks}\)\(^6\) | x | | ✓ |
| Emplacement pour réseau et/ou port, affichage à LED, petit terminal | (1 x B\(^6\)) | 1 x B\(^6\) | 1 x B\(^6\) | B1 et B\(^2\)(\(^7\)) |

1) Peut aussi être utilisé comme port série, par ex. pour le raccordement d’un terminal, mais le diagnostic des erreurs par le débogueur en sera compliqué.

2) Le port USB Port est de type « USB 1.1 Slave Device 12 Mbps » et ne peut être utilisé en tant qu’esclave S-Bus que pour la programmation en conjonction avec certains produits logiciels (Webconnect, ViSi-PLUS avec S-Drive).

3) Ethernet TCP/IP disponible sous forme de système configuré dans le PCD2.M150 : PCD2.M150F655. Si le montage est réalisé ultérieurement, le capot devra être remplacé, réf. de commande 4 104 7410 0.

4) L’implémentation de \text{lONWorks} et Profibus FMS est techniquement possible mais elle n’est pas prévue. Esclave Profibus DP avec Port Profi-S-Net jusqu’à 1,5 Mbps, une solution 12 Mbps pour le PCD7.F770 n’est pas réalisable.

6) Il est recommandé de commander le kit terminal PCD7.D16x monté sur l’automate. S’il est installé ultérieurement, le hublot rouge devra être retiré et quatre trous devront être percés pour les vis d’assemblage du terminal (des trous de guidage sont présents sur la face interne du capot)

7) Toutes les cartes de communication ne peuvent être montées sur les deux emplacements. Veuillez vous reporter au chapitre « Communication ».

3.4.7 Schéma synoptique du PCD2.Mxx0

![Diagrame](image)

- **Alimentation**: E/S de l'automate de base (adresses 0 à 127)
- **E/S du boîtier d'extension**: E/S du boîtier d'extension (adresses 128 à...)

Bus de UC et d'E/S

- **Entrées interruptives**
- **Horodateur nvol**
- **Chien de garde**
- **PGU**
- **USB**
- **Port série**
- **Bus Modul ..F..**
- **Mémoire utilitaire**
- **Sauvegarde**

UC

- **Emplacement A**: PCD7.F1x0 communications
- **Emplacement B(1)**: ..F..-module communications
- **Emplacement B2 (**)**: ..F..-module communications

UC

- **R vol**: Ressources utilisateur
- **C vol**: Mmoire utilisateur
- **F vol nvol**: Mmoire utilisateur
- **P**: Programme
- **T**: Temporisateur
- **C**: Compteur (counter)
- **F**: Indicateur (flag)
- **P**: Programme
- **TX**: Texte
- **DB**: Bloc de données

*1) PCD2.M110 n'est pas extensible
*2) PGU: connexion de l'appareil de programmation (Programming Unit)
*3) pas avec PCD2.M110
*4) non avec PCD2.M170 und PCD2.M480
*5) mit PCD2.M170 et PCD2.M480
*6) seulement avec PCD2.M150
*7) seulement avec PCD2.M170
*8) seulement avec PCD2.M480
*9) aussi utilisable comme entrées de compteur rapides (pas avec PCD2.M110)

Emplacement B pour coupleurs

- Profibus DP/FMS ou LonWorks®, pour ports série, afficheurs 6 chiffres, petits terminaux

PCD2.M110/M120/M150

- Appareil de programmation (PGU) ou port série RS-232 port 0
- Emplacement A pour port série 1
- ou télécommunication/SMS via carte modem à l'emplancement d'E/S

Bornes à vis pour alimentation, chien de garde et port 0 comme RS-485
Le retrait du capot expose des composants particulièrement sensibles aux décharges électrostatiques.

Recommandations : Toucher succintement le raccordement PGU juste avant de manipuler des circuits électroniques. Pour plus de sécurité, nous vous recommandons d’utiliser un bracelet antistatique raccordé par son câble à la borne négative du système.

Les modules d’E/S et les borniers d’E/S ne doivent être embrochés ou débrochés que lorsque le Saia PCD® n’est pas sous tension. La source d’alimentation externe de modules (+ 24 V), doit être désactivée également.

Pour éviter toute perte de données, la pile doit être changée lorsque l’alimentation est activée.

3.4.8 Version du matériel et du firmware des PCD2.M110/M120

Les versions du firmware des PCD2.M110/M120 sont souvent rétrocompatibles avec le matériel. Les anciennes UC peuvent être équipées d’un nouveau firmware afin qu’elles puissent bénéficier de nouvelles fonctions. Cette caractéristique est très appréciée et nous nous efforcerons de la maintenir aussi longtemps que possible. Nous ne sommes malheureusement pas en mesure de le garantir.

A ce stade, les restrictions suivantes s’imposent :

- La version matérielle D1 de juillet/août 1995 ne fonctionne qu’avec la version 34 du firmware. Aucune mise à jour du firmware n’est possible avec ces automates.
- L’utilisation de cartes de communication intelligentes, telles que Profibus DP, LON et Ethernet, ne nécessite que des versions minimales du matériel et du firmware. Note : ce thème est traité dans les manuels consacrés aux cartes de communication.

La version matérielle H a apporté des modifications significatives :

- Horloge matérielle sur le circuit imprimé de base (au paravant sur les cartes de communication PCD2.Fxx0)
- Pile tampon au lithium CR 2032 (les versions matérielles plus anciennes se reconnaissent à leurs deux piles rondes LR03).
- Alimentation interne 5 V, accepte maintenant les charges jusqu’à 1,6 A (au paravant 1,1 A)
- Possibilité d’extension de la mémoire avec des puces de 4 Mbits (produisant 512 Ko)
A partir de la version matérielle J, la mémoire de base est équipée par défaut de 128 Ko (au préalable 32 Ko).

Le firmware des PCD2.M110/M120 est stocké dans deux EPROMs. **De nouvelles puces pour firmware peuvent être gravées à tout moment à l'aide d’un graveur EPROM (par ex. Galep-4).** Vous pouvez télécharger la version actuelle du firmware sur le site www.sbc-support.com. Des puces pour firmware vierges sont disponibles sous la réf. de commande 4 502 7126 0 (deux puces doivent être commandées par UC).

3.4.9 Version du matériel et du firmware du PCD2.M150, FW < V0D0 (jusqu'au début de l'année 2007)

Le firmware du PCD2.M150 est stocké dans deux Flash EPROMs. **De nouvelles puces pour firmware peuvent être gravées à tout moment avec un graveur EPROM (par ex. Galep-4).** Au contraire des M170/M480, aucune mise à jour n’est disponible par téléchargement. Vous pouvez télécharger la version actuelle du firmware sur le site www.sbc-support.com. Des puces pour firmware vierges sont disponibles sous la réf. de commande 4 502 7341 0 (deux puces doivent être commandées par UC).

3.4.10 Version du matériel et du firmware du PCD2.M150, FW ≥ V0D0 (depuis le début de l'année 2007)

Le firmware est stocké dans un Flash EPROM qui est soudé sur la carte mère. Il est possible de mettre à jour le firmware en téléchargeant une nouvelle version avec le PG5. La procédure est la suivante :

- Télécharger la version actuelle du firmware à l’adresse www.sbc-support.com.
- Etablir une connexion entre le PG5 et l’UC comme pour le téléchargement d’une application (selon les capacités, en série via câble PGU, modem1, USB, Ethernet).
- Ouvrir le configurateur en ligne et passer hors connexion.
- Dans le menu Tools, sélectionner « Download Firmware », puis sélectionner, à l’aide de la fonction Parcourir, le chemin vers le fichier de la nouvelle version du firmware. Prendre garde à ne sélectionner qu’un fichier à télécharger.
- Lancer le téléchargement.
- Après le téléchargement, ne pas interrompre l’alimentation du Saia PCD® pendant 3 minutes (séquence de programmation CPLD). Dans le cas contraire, l’UC pourrait se bloquer de telle façon qu’il faille la renvoyer à l’usine.

1) Une connexion par modem n’est pas toujours fiable. Il peut arriver qu’un modem se bloque et qu’aucun accès à distance ne soit plus possible. Une intervention sur site est, dans ce cas, nécessaire. Les autres possibilités de connexion sont préférables.
3.4.11 Versions du matériel et du firmware des PCD2.M170/M480

Les versions du firmware des PCD2.M170/M480 sont souvent rétrocopatibles avec le matériel. Les anciennes UC peuvent être équipées d’un nouveau firmware afin qu’elles puissent bénéficier de nouvelles fonctions. Cette caractéristique est très appréciée et nous nous efforcerons de la maintenir aussi longtemps que possible. Nous ne sommes malheureusement pas en mesure de le garantir.

Le firmware des PCD2.M170/M480 est stocké dans un Flash EPROM qui est soudé sur la carte mère. Il est possible de mettre à jour le firmware en téléchargeant une nouvelle version avec le PG5. La procédure est la suivante :

- Etablir une connexion entre le PG5 et l’UC comme pour le téléchargement d’une application (selon les capacités, en série via câble PGU, modem\(^1\), USB, Ethernet).
- Ouvrir le configurateur en ligne et passer hors connexion.
- Dans le menu Tools, sélectionner « Download Firmware », puis sélectionner, à l’aide de la fonction Parcourir, le chemin vers le fichier de la nouvelle version du firmware. Prendre garde à ne sélectionner qu’un fichier à télécharger.
- Lancer le téléchargement.
- Après le téléchargement, ne pas interrompre l’alimentation du Saia PCD\(^5\) pendant 3 minutes (séquence de programmation CPLD). Dans le cas contraire, l’UC pourrait se bloquer de telle façon qu’il faille la renvoyer à l’usine.

\(^1\) Une connexion par modem n’est pas toujours fiable. Il peut arriver qu’un modem se bloque et qu’aucun accès à distance ne soit plus possible. Une intervention sur site est, dans ce cas, nécessaire. Les autres possibilités de connexion sont préférables.
3.5 **Montage**

Les PCD1 et PCD2 peuvent être accrochés sur deux rails DIN selon DIN EN60715 TH35 (ex DIN EN50022) (2 x 35 mm). Ils peuvent aussi être fixés sur n’importe quelle platine par 4 vis M4 : les encoches prévues à cet effet sont accessibles en soulevant le capot clipsé.

Accrochage du PCD1/PCD2 sur le rail DIN.

1. Appuyer le dessous du châssis contre la surface de montage.
2. Appuyer vers le haut contre le rail DIN.
3. Appuyer le dessus du châssis contre la surface de montage et le clipser en place.
4. Pour vérifier qu’il est bien attaché, appuyer le châssis vers le bas sur le rail DIN.

Décrochage

Pousser le châssis vers le haut afin de le décrocher et le déloger en le tirant vers soi.

3.5.1 **Position de montage et température ambiante**

Le support du module est normalement monté sur une surface verticale. Les connexions d’E/S des modules cheminent alors également verticalement. Dans cette position de montage, la température ambiante doit être comprise entre 0 °C et 55 °C. Dans toutes les autres positions, la convexion de l’air opère moins bien. Une température ambiante de 40 °C ne doit donc pas être dépassée.
3.6 **Boîtiers d'extension et câbles de bus**

Les PCD2.M120/M150/M170/M480 peuvent être enrichis de composants PCD2, PCD3 ou PCD4. Des emplacements de module supplémentaires sont disponibles à cet effet :

<table>
<thead>
<tr>
<th>Type</th>
<th>M120/M150</th>
<th>M170</th>
<th>M480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre maximum d'E/S ou d'emplacements d'E/S du système :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilisation exclusive de composants PCD2</td>
<td></td>
<td>255(^{[2]})</td>
<td>16</td>
</tr>
<tr>
<td>Extension avec des composants PCD3</td>
<td>255(^{[2]})</td>
<td>510(^{[2]})</td>
<td>1023(^{[2]})</td>
</tr>
<tr>
<td>Extension avec des composants PCD4</td>
<td>255(^{[3]})</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

1) En cas d’utilisation de modules d’E/S TOR PCD2/3.E16x ou A46x de 16 E/S chacun
2) L’adresse 255 est réservée, dans tous les PCD2, au chien de garde, c’est aussi le cas de l’adresse 511 dans le M170. Les E/S réservées au chien de garde ne peuvent être utilisées par l’utilisateur. De plus, aucun module analogique ou H ne doit être installé sur les emplacements portant l’adresse de base 240 (pour le M170, adresses 240 et 496).
3) Tous les modules d’E/S PCD4 ne sont pas adaptés à une utilisation avec les unités centrales PCD2. Reportez-vous au chapitre « Extension avec des composants PCD4 ».
3.6.1 **Extension avec des composants PCD2**

Le raccordement à l’automate de base est réalisé par le câble d’extension 26 points
● PCD2.K100 pour le montage vertical ou
● PCD2.K110 pour le montage horizontal
● PCD2.K120 pour les applications spéciales (longueur de 2 m)

Les automates de base PCD2.Mxx0 disposent de 8 emplacements pour les modules d’E/S. Ces emplacements sont numérotés de 0 à 7 dans le sens des aiguilles d’une montre en commençant par l’emplacement situé en haut à gauche.

Les automates peuvent aussi être enrichis d’un maximum de 16 emplacements grâce aux boîtiers d’extension PCD2.C150 (4 emplacements) et PCD2.C100 (8 emplacements).

Automate de base PCD2.Mxx0
Emplacements numérotés de 0 à 7 dans le sens des aiguilles d’une montre.
Tous les modules de type E, S, W et H peuvent être exploités à n’importe quel emplacement.
Les modems PCD2.T8xx ne peuvent être utilisés à tous les emplacements. Veuillez vous reporter au manuel de ces modules 26/771.

Câbles d’extension de bus PCD2.K100 ou K110

Boîtier d’extension PCD2.C100
Emplacements numérotés de 8 à 15 dans le sens des aiguilles d’une montre.
Aucun module de type W ou H ne peut être enfiché à l’emplacement 16 (ombré).

Boîtier d’extension PCD2.C150
Emplacements numérotés de 8 à 11 dans le sens des aiguilles d’une montre.
3.6.2 Extension avec des composants PCD3

Les modules PCD3 d’E/S locales PCD3 peuvent être utilisés pour une extension locale :

PCD3.C200 4 modules d’E/S enfichables, alimentation 24 VCC / 5 VCC intégrée pour modules et refroidissement du signal
PCD3.C100 4 modules d’E/S enfichables
PCD3.C110 2 modules d’E/S enfichables

Les modules d’E/S déportées PCD3 peuvent être utilisés pour une extension décentralisée sur Proibus :

PCD3.T760 Raccordement intégré Proibus DP esclave / Profi-S-Net esclave jusqu’à un maximum de 1,5 Mbps
4 cassettes d’E/S enfichables
Serveur Web intégré pour diagnostics, assistance et mise en service (connexion à un PC via le câble de raccordement facultatif PCD3.K225)

Le nombre maximum d’E/S dépend de l’automate utilisé :

<table>
<thead>
<tr>
<th>Type de Saia PCD®</th>
<th>Nombre maximum d’E/S PCD3</th>
<th>Nombre maximum d’E/S par système</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD2.M120/150</td>
<td>127</td>
<td>255</td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>382</td>
<td>510</td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>897</td>
<td>1023</td>
</tr>
<tr>
<td>Noeuds PCD3.RIO</td>
<td>256 par noeud</td>
<td>Déterminé par la taille maximale de l’image du procédé d’E/S pour DP maître</td>
</tr>
</tbody>
</table>
Lors du choix des cassettes d’E/S, faites attention à ce qu’il n’y ait pas de surcharge de l’alimentation interne 5 V et +V.

Pour en savoir plus sur la planification de systèmes PCD2/PCD3 combinés, consultez le manuel PCD3.

3.6.3 Extension avec des composants PCD4

A partir d’un automate PCD2.M120/M150/M170/M480, ce module de bus de couplage permet d’exploiter les modules d’E/S et les modules à commandes manuelles de la gamme PCD4 suivants :

<table>
<thead>
<tr>
<th>Modules d’E/S TOR</th>
<th>Modules à commandes manuelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD4.E11x</td>
<td>PCD4.A810</td>
</tr>
<tr>
<td>PCD4.E60..</td>
<td>PCD4.A820</td>
</tr>
<tr>
<td>PCD4.A200</td>
<td></td>
</tr>
<tr>
<td>PCD4.A250</td>
<td></td>
</tr>
<tr>
<td>PCD4.A350</td>
<td></td>
</tr>
<tr>
<td>PCD4.A400</td>
<td></td>
</tr>
<tr>
<td>PCD4.A410</td>
<td></td>
</tr>
<tr>
<td>PCD4.B90x</td>
<td></td>
</tr>
</tbody>
</table>

Les modules d’E/S PCD4 ne figurant pas ici ne sont pas pris en charge.

Il faut donc faire attention à ce que l’alimentation interne 5 V et +V du PCD2 ne soit pas surchargée ! Vous trouverez la consommation de courant des modules PCD4 dans le manuel 26/734.
3.7 Installation et adressage des modules d'E/S PCD2

3.7.1 Insertion des modules d'E/S

Le module d'E/S est glissé dans l'ouverture latérale jusqu'à ce qu'il atteigne la butée puis il est clipsé au loquet de retenue.

Les modules d'E/S et les borniers d'E/S ne doivent être embrochés ou débrochés que lorsque le Saia PCD® n'est pas sous tension. La source d'alimentation externe de modules (+ 24 V), doit être désactivée également.

3.7.2 Désignation des adresses et des bornes

*) Tous les PCD1/PCD2 sont accompagnés d'un jeu d'étiquettes approprié.

Le retrait du capot permet d'accéder aux bornes mais il expose aussi des composants particulièrement sensibles aux décharges électrostatiques.
3.7.3 Topologie des câbles

Le câblage vers les modules d’E/S peut s’effectuer aux deux extrémités dans les galeries de câbles.

Les câbles allant vers les bornes de la carte principale sont connectés par les deux voies latérales depuis le haut et le bas.

En suivant ces règles, vous vous assurerez la visibilité des voyants et l’accès aux raccordements du bus.
3.8 Dimensions

PCD1.M1x0/PCD2.C150

PCD2.Mxx0/PCD2.C100
3.9 **Alimentation et concept de raccordement**

3.9.1 **Alimentation externe**

Installations petites et simples

- **Capteurs :** Interrupteurs électromécaniques
- **Actionneurs :** Relais, voyants, petits électrovannes avec courant < 0.5 A

La tension du transformateur de 19 VCA ±15% doit impérativement être respectée. La tension à l’entrée du Saia PCD® peut autrement devenir trop élevée et le détruire.

Les modules PCD2.H1xx, H2xx, H3xx, PCD7.D1xx, D2xx et PCA2.D12, D14 doivent être reliés à une tension lissée de 24 VCC.

Installations petites à moyennes

- **Capteurs :** Interrupteurs électromécaniques, détecteurs de proximités et barrières photo-électriques
- **Actionneurs :** Relais, voyants, afficheurs, petites électrovannes avec courant < 0.5 A

Remarque : Portion de réseau classique synchronisée sur un cycle primaire
3.9.2 **Concept de mise à terre et de raccordement**

Concept de conducteur de protection avec rail de mise à la terre

Vous trouverez, au bas du châssis du PCD1/PCD2, une plaque de blindage et de mise à la terre. Elle constitue la masse utilisateur grande surface commune à tous les modules d’E/S pour l’alimentation externe.

Lorsqu’un module est enfiché au niveau d’E/S, les lamelles flexibles de la plaque établissent un contact multipoints fiable avec le module correspondant.

Le potentiel zéro (borne moins) de l’alimentation 24 V est raccordé à la borne moins de l’alimentation du PCD1/PCD2. Celle-ci doit être raccordée au rail de mise à la terre par un fil aussi court que possible (< 25 cm) de 1,5 mm². Il en va de même pour le raccordement de la borne moins au F1xx ou à la borne interruptive.

Les blindages des signaux analogiques ou des câbles de communication doivent aussi être ramenés au même potentiel de terre via une borne moins ou le rail de mise à la terre.

Tous les raccordements négatifs sont internes. Pour une exploitation sans bruit, ces raccordements doivent être renforcés de manière externe par des fils courts de 1,5 mm² de section.
Le concept de conducteur de protection en étoile ne doit être utilisé que lorsqu’il n’y a pas de rail de mise à la terre.

Exemples de bornes de conducteur de protection pour des rails porteurs de 35 mm

<table>
<thead>
<tr>
<th>Fabricant</th>
<th>Type de raccordement</th>
<th>Type</th>
<th>Plaque de raccordement</th>
<th>Butée d’arrêt/clip de fixation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weidmüller</td>
<td>Borne à vis</td>
<td>WPE4 101’010’0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weidmüller</td>
<td>Borne à ressort sans vis</td>
<td>ZPE4 163’208’0000</td>
<td>ZAP/TB4 163’209’0000</td>
<td>ZEW 954’000’0000</td>
</tr>
<tr>
<td>Wieland</td>
<td>Borne à vis</td>
<td>WKI4SL/35</td>
<td>AP2.5-4 gris</td>
<td>9708/2 S 35</td>
</tr>
<tr>
<td>Wieland</td>
<td>Raccordement à ressort</td>
<td>WKF4SL/35</td>
<td>APF2,5-4 GN</td>
<td>WEF 1/35</td>
</tr>
</tbody>
</table>

1) DIN EN 60715 TH35
3.9.3 Alimentation interne

En commençant par les automates de base, les modules enfichables disposent des plages de courant suivantes :

+5 V :
- PCD1 : 750 mA
- PCD2.M110/M120 : 1600 mA (avant la version matérielle H : 1100 mA)
- PCD2.M150/M170 : 1600 mA
- PCD2.M480 : 2000 mA

+V (16 à 24 V) :
- PCD1 : 100 mA
- PCD2 : 200 mA
3.10 États de fonctionnement PCD1.M1x0 et PCD1.M1x5

L’UC peut adopter les états de fonctionnement suivants :

START, RUN, CONDITIONAL RUN, STOP et HALT

3 voyants permettent de signaler ces états :
- SUPPLY 24 VCC voyant jaune
- RUN voyant jaune
- ERROR voyant rouge

Le voyant « SUPPLY 24 VCC » indique que l’alimentation électrique fonctionne correctement.
Les voyants RUN et ERROR indiquent l’état de fonctionnement de l’unité centrale :

<table>
<thead>
<tr>
<th>START</th>
<th>RUN</th>
<th>COND. RUN</th>
<th>STOP</th>
<th>HALT</th>
<th>RESET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>●</td>
<td>●/○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ERROR</td>
<td>●/○</td>
<td>1)</td>
<td>1)</td>
<td>1)</td>
<td>1)</td>
</tr>
</tbody>
</table>

1) Le voyant peut signaler une ERREUR dans les états de fonctionnement RUN, CONDITIONAL RUN, STOP et HALT. En cas d’erreur, le voyant ne s’allume que lorsqu’aucun XOB 13 n’est programmé pour traiter cette erreur.

- ● Le voyant est activé.
- ●/○ Le voyant clignote.
- ○ Le voyant est désactivé.

START
- Autodiagnostic pendant environ 1s après la mise sous tension ou après un redémarrage.

RUN
- Déroulement normal du programme utilisateur après démarrage START. Lorsqu’un appareil de programmation est raccordé en mode PGU (par ex. PG5 en mode PGU), l’unité centrale se met, pour des raisons de sécurité, automatiquement en état STOP et non pas en état RUN.

COND. RUN
- Fonctionnement RUN conditionnel. Une condition qui n’a pas encore remplie (RUN Until…) a été définie dans le débogueur.

STOP
- L’état STOP survient dans les cas suivants :
 - L’appareil de programmation est raccordé en mode PGU à la mise sous tension de l’UC.
 - Le PGU est arrêté par l’appareil de programmation.
 - La condition pour un COND. RUN a été remplie.

HALT
- L’état HALT survient dans les cas suivants :
 - Exécution de la commande HALT
 - Erreur grave dans le programme utilisateur
 - Défaut matériel
 - Pas de programme chargé.
 - Absence de carte de communication sur un PGU S-Bus ou un port passerelle maître

RESET
- L’état RESET est causé par les éléments suivants :
 - La tension est trop basse.
 - Le firmware ne s’exécute pas.
3.11 **États de fonctionnement des PCD2.M1x0/M480**

L’UC peut adopter les états de fonctionnement suivants :

START, RUN, CONDITIONAL RUN, STOP, HALT et RESET.

3 voyants permettent de signaler ces états :

- **RUN** voyant jaune
- **HALT** voyant rouge
- **ERROR** voyant jaune

<table>
<thead>
<tr>
<th></th>
<th>START</th>
<th>RUN</th>
<th>COND. RUN</th>
<th>STOP</th>
<th>HALT</th>
<th>RESET</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN</td>
<td>●/○</td>
<td>●</td>
<td>●/○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>HALT</td>
<td>●/○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ERROR</td>
<td>●/○</td>
<td>1)</td>
<td>1)</td>
<td>1)</td>
<td>1)</td>
<td>1)</td>
</tr>
</tbody>
</table>

1) Le voyant peut signaler une ERREUR dans les états de fonctionnement RUN, CONDITIONAL RUN, STOP et HALT. En cas d’erreur, le voyant ne s’allume que lorsqu’aucun XOB 13 n’est programmé pour traiter cette erreur.

- ● Le voyant est activé.
- ●/○ Le voyant clignote.
- ○ Le voyant est désactivé.

START

Autodiagnostic pendant environ 1 s après la mise sous tension ou après un redémarrage.

RUN

Déroulement normal du programme utilisateur après démarrage START.
Lorsqu’un appareil de programmation est raccordé en mode PGU au moyen d’un PCD8.K11x (par ex. PG5 en mode PGU), l’unité centrale se met, pour des raisons de sécurité, automatiquement en état STOP en non pas en état RUN.

COND. RUN

Fonctionnement RUN conditionnel. Un condition qui n’est pas encore remplie (RUN Until…) a été définie dans le débogueur.

STOP

L’état STOP survient dans les cas suivants :
- L’appareil de programmation est raccordé en mode PGU à la mise sous tension de l’UC.
- Le PGU est arrêté par l’appareil de programmation.
- La condition pour un COND. RUN a été remplie.

HALT

L’état HALT survient dans les cas suivants :
- Exécution de la commande HALT
- Erreur grave dans le programme utilisateur
- Défaut matériel
- Aucun programme chargé.
- Absence de carte de communication sur un PGU S-Bus ou un port passerelle maître

RESET

L’état RESET est causé par les éléments suivants :
- La tension est trop basse.
- Le firmware ne s’exécute pas.
3.12 Brochage du PCD1

Emplacements de modules et borniers à vis PCD1

<table>
<thead>
<tr>
<th>Alim./Interruptions</th>
<th>Interfaces série optionnelles en A, port #1, bornier à vis</th>
<th>Modular terminal PCD7.F112</th>
</tr>
</thead>
<tbody>
<tr>
<td>20...25</td>
<td>20</td>
<td>+24V</td>
</tr>
<tr>
<td>21</td>
<td>+24V</td>
<td>11</td>
</tr>
<tr>
<td>22</td>
<td>PGND</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>PGND</td>
<td>13</td>
</tr>
<tr>
<td>24</td>
<td>INB2 1)</td>
<td>14</td>
</tr>
<tr>
<td>25</td>
<td>INB1 1)</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>RTS</td>
</tr>
<tr>
<td>17</td>
<td>–</td>
<td>/RTS</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>CTS</td>
</tr>
<tr>
<td>19</td>
<td>–</td>
<td>/CTS</td>
</tr>
</tbody>
</table>

3) séparation galvanique

PGU/RS-232, port #0 (cf. « Brochage du PCD2 »)

Modules en B
Coupleurs Profibus DP et LonWorks®

Le bus doit être raccordé directement au PCD7.F7x0. Le raccordement peut s'effectuer par bornier à vis.

Pour le détail, cf. manuels 26/737, 26/742, 26/765, 26/767

Coupleur Ethernet-TCP/IP
Prend la forme d’un système configuré référencé PCD1.M135F655 (avec capot spécial n° 410474090)
Le raccordement peut s'effectuer par prise RJ 45, catégorie 5.

Pour le détail, cf. manuel 26/776
3.13 Brochage du PCD2

Emplacements de modules et borniers à vis PCD2

<table>
<thead>
<tr>
<th>Signaux</th>
<th>Broches</th>
<th>TTY/BC</th>
<th>Bus MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>+24V</td>
<td>21</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>+24V</td>
<td>22</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>PGND</td>
<td>23</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>PGND</td>
<td>24</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>WD</td>
<td>25</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>WD</td>
<td>26</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>WD</td>
<td>27</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>/D</td>
<td>28</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>29</td>
<td>19</td>
<td>9</td>
</tr>
</tbody>
</table>

* séparation galvanique

Interfaces série optionnelles en A, port #1, bornier à vis

<table>
<thead>
<tr>
<th>Ports</th>
<th>Broches</th>
<th>RS-485</th>
<th>RS-422</th>
<th>RS-232</th>
<th>RS-485</th>
<th>Bus MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>B1</td>
<td>PCD7</td>
<td>PCD7</td>
<td>PCD7</td>
<td>PCD7</td>
<td>PCD7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F110</td>
<td>F110</td>
<td>F120</td>
<td>F130</td>
<td>F150</td>
</tr>
</tbody>
</table>

Interconnections/compteurs (embarqués)

<table>
<thead>
<tr>
<th>Ports</th>
<th>Broches</th>
<th>RS-485</th>
<th>RS-485</th>
<th>Bus MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>B1</td>
<td>PCD7</td>
<td>PCD7</td>
<td>PCD7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F110</td>
<td>F110</td>
<td>F150</td>
</tr>
</tbody>
</table>

Interfaces série optionnelles en B/B1 et B2, bornier à vis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>B1</td>
<td>F520</td>
<td>F530</td>
<td>F520</td>
<td>F520</td>
<td>F522</td>
<td>F522</td>
<td>F522</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F202</td>
<td>F202</td>
<td>F202</td>
<td>F202</td>
<td>F222</td>
<td>F222</td>
<td>F222</td>
</tr>
</tbody>
</table>

Interfaces série optionnelles en B/B1 et B2, connecteur Sub-D 9 pôles

<table>
<thead>
<tr>
<th>Broches</th>
<th>Port #</th>
<th>RS-232</th>
<th>RS-422</th>
<th>RS-485</th>
<th>Profibus</th>
<th>LowWorks</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>B1</td>
<td>F522</td>
<td>F530</td>
<td>F520</td>
<td>F520</td>
<td>F520</td>
</tr>
<tr>
<td>#2</td>
<td>B2</td>
<td>F202</td>
<td>F202</td>
<td>F202</td>
<td>F202</td>
<td>F202</td>
</tr>
<tr>
<td>#2</td>
<td>B3</td>
<td>F222</td>
<td>F222</td>
<td>F222</td>
<td>F222</td>
<td>F222</td>
</tr>
</tbody>
</table>

Interfaces série optionnelles en B/B1 et B2, connecteur Sub-D 9 pôles

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>B1</td>
<td>F520</td>
<td>F530</td>
<td>F520</td>
<td>F520</td>
<td>F520</td>
<td>F520</td>
</tr>
<tr>
<td>#2</td>
<td>B1</td>
<td>F520</td>
<td>F530</td>
<td>F520</td>
<td>F520</td>
<td>F520</td>
<td>F520</td>
</tr>
</tbody>
</table>

Interfaces sur PCD2.M480

<table>
<thead>
<tr>
<th>Broches</th>
<th>Port #</th>
<th>RS-485</th>
<th>RS-485</th>
<th>RS-485</th>
<th>RS-485</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>B1</td>
<td>F520</td>
<td>F530</td>
<td>F520</td>
<td>F520</td>
</tr>
<tr>
<td>#2</td>
<td>B1</td>
<td>F520</td>
<td>F530</td>
<td>F520</td>
<td>F520</td>
</tr>
</tbody>
</table>

Pour le détail, cf. manuel 26/737

Profil-S-IO: SANS module d’additif jusqu’à 255 PCD3.T76x sont contrôlables

Profil-S-IO: OBLIGATOIRE
3.14 Extension de la mémoire utilisateur

3.14.1 Bases

L'extension de la mémoire utilisateur d'un PCD1/PCD2 peut être, pour l’essentiel, motivée par les raisons suivantes :

- La mémoire de base est trop limitée pour pouvoir stocker le programme utilisateur et les textes.
- Le programme utilisateur et les textes et blocs de données invariables doivent être stockés de manière sûre en cas de panne dans le Flash EPROM (la mémoire de base est toujours la mémoire RAM).
- Les avantages des blocs de données avec une adresse ≥ 4000 doivent être utilisés :
 - jusqu'à 16 384 éléments / DB
 - charge de trafic de service par élément nettement moindre : 4 octets par valeur de 32 bits au lieu de 8 octets
 - accès nettement plus rapide

L'utilisation d'EPROMs pour l'extension de la mémoire utilisateur est obsolète et n'est plus recommandée. Le travail avec des Flash EPROMs est nettement plus commode (aucun appareil de programmation EPROM nécessaire, se comporte comme une mémoire RAM pour le programmateur) et aussi sûr que les EPROMs.
3.14.2 Emplacement mémoire du programme utilisateur, des ressources, des textes et des DBs

Selon que la mémoire utilisateur d’un PCD1/PCD2 a été étendue ou non, l’emplacement mémoire des différentes parties de l’application sera modifié. Dès que la mémoire utilisateur est étendue par l’enfichage de puces mémoire, le programme utilisateur et les textes/DBs possédant une adresse < 4000 sont stockés sur la puce qui a été ajoutée.

La mémoire utilisateur dont est équipée l’UC est alors libre. Elle peut être configurée de manière facultative dans le configurateur matériel comme « mémoire d’extension » et être utilisée pour le stockage des textes et DBs portant une adresse ≥ 4000.

<table>
<thead>
<tr>
<th>Emplacement mémoire Contenu</th>
<th>Sans extension de la mémoire utilisateur</th>
<th>Avec extension de la mémoire utilisateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ressources (registres, indicateurs, compteurs…)</td>
<td>Les ressources sont conservées dans une mémoire RAM séparée, au sein de l’unité centrale (toujours au même emplacement, mises en mémoire tampon par le condensateur ou la pile).</td>
<td></td>
</tr>
<tr>
<td>Programme utilisateur</td>
<td>dans la mémoire de base</td>
<td>dans la puce rajoutée sur le socle “USER PROG”(^1)</td>
</tr>
<tr>
<td>Textes et DBs avec adresse < 4000</td>
<td>dans la mémoire de base</td>
<td>dans la puce rajoutée sur le socle “USER PROG”(^1)</td>
</tr>
<tr>
<td>Textes et DBs avec adresse ≥ 4000</td>
<td>non disponible</td>
<td>dans la mémoire d’extension(^2)</td>
</tr>
</tbody>
</table>

\(^1\) Selon la puce utilisée, dans RAM, EPROM ou Flash EPROM. L’utilisation d’EPROM n’est plus recommandée. Utilisez plutôt Flash EPROM.

\(^2\) Doit être configuré dans le configurateur matériel.
3.14.3 Exemples de configuration de la mémoire

Les captures d’écran ci-dessous illustrent sous forme d’exemple la configuration matérielle et les paramètres logiciels appropriés dans le PG5 pour un module PCD2. M120 (version matérielle >= J) avec une extension Flash EPROM de 1 Mbit (réf. de commande 4 502 7141 0).

La mémoire d’extension est configurée et utilisée pour le stockage des textes et DBs RAM.

1ère étape : Configuration matérielle

Dans cet exemple, seuls 112 Ko de Flash EPROM sont disponibles en tant que mémoire code/texte (sur la puce connectée). Un bloc de la mémoire est perdu pour les données de configuration (en-tête) parce qu’il n’est possible d’accéder à Flash EPROM que bloc par bloc.

Dans le cas d’un PCD2.M110/M120 avec une version matérielle < J, seuls 24 Ko de mémoire d’extension (mémoire intégrée) peuvent être configurés. Ce type d’unité centrale disposait auparavant d’une mémoire de base plus limitée.

2ème étape : Téléchargement de la configuration matérielle

3ème étape : Personnalisation des paramètres logiciels
Paramètres logiciels avant la personnalisation :

![Software Settings (Demo)](image)

Après la personnalisation (« Set defaults » sélectionné) :

![Software Settings (Demo)](image)

Les adresses des textes et DBs RAM ont été modifiées.

Le bouton « Set Defaults » peut s’avérer utile dans de nombreux cas car il permet de définir automatiquement les adresses en fonction de la configuration matérielle. Les paramètres précédents seront cependant perdus.

Les nouveaux paramètres logiciels seront pris en compte au prochain build.
3.14.4 PCD1.M1x0

La mémoire utilisateur des unités centrales PCD1 peut être étendue avec une mémoire RAM, EPROM et, à partir de la version 002 du firmware, avec une mémoire Flash EPROM de 1 Mbit maximum.

La mémoire de base ainsi libérée peut être configurée comme mémoire d'extension et utilisée pour le stockage de 13 Ko de textes et DBs.

Les différences de prix entre les diverses puces de mémoire sont très minces. Nous recommandons l’utilisation des modèles suivants :

<table>
<thead>
<tr>
<th>Type de mémoire</th>
<th>Référence</th>
<th>Désignations types</th>
<th>Taille</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>4 502 7013 0<sup>1) </sup></td>
<td>BS62LV1025 PC-70 LP621024D-70LL SRM20100LLC70 HY628100ALP-70 GM76C8128CLL-70 MEL M5M51008BP-70L</td>
<td>1 Mbits / 128 Ko</td>
</tr>
<tr>
<td>EPROM<sup>2) </sup></td>
<td>4 502 7126 0</td>
<td>AM27C010-90 DC NM27C01Q-90 M27C1001-10F1</td>
<td>1 Mbits / 128 Ko</td>
</tr>
<tr>
<td>Flash EPROM<sup>3)</sup></td>
<td>4 502 7141 0</td>
<td>AM29F010-70PC</td>
<td>1 Mbits / 112 Ko<sup>4) </sup></td>
</tr>
</tbody>
</table>

1) Si vous utilisez des composants RAM qui ne sont pas agréés par SBC, vous risquez de perdre des données.

2) L’utilisation de EPROMs est obsolète. Utilisez plutôt Flash EPROM.

3) Flash EPROM est pris en charge à partir de la version 002 du firmware.

4) Une partie de la mémoire est perdue pour le stockage de la configuration. L’utilisateur ne dispose donc que de 112 Ko au lieu de 128 Ko pour la puce mentionnée.

Les puces suivantes sont compatibles. Elles ne sont cependant plus recommandées pour les installations récentes :

<table>
<thead>
<tr>
<th>Type de mémoire</th>
<th>Référence</th>
<th>Désignations types</th>
<th>Taille</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>4 502 5414 0<sup>1) </sup></td>
<td>SRM2B256LCX70 HY62256ALP-70 GM76C256CLL-70 MEL M5M5256DP-70LL TC55257DPL-70L</td>
<td>256 kbits / 32 Ko</td>
</tr>
<tr>
<td>EPROM<sup>2)</sup></td>
<td>4 502 3958 0</td>
<td>AM27C512-90 DC UPD27C512D-10 M27C512-10XF1 M27C512-10F1</td>
<td>512 kbits / 64 Ko</td>
</tr>
</tbody>
</table>
Étapes d'une bonne installation d'une extension de la mémoire utilisateur :

1) Couper l'alimentation et retirer le capot du PCD1.
2) Enficher la puce de mémoire supplémentaire dans le socle « USER PROG ».
 Faire attention à ce qu'elle soit bien orientée (les marquages du socle et de la
 puce doivent correspondre) et s'assurer que toutes les broches de la puce sont
 enfichées dans le support.
3) Installer correctement les cavaliers à côté du socle :

<table>
<thead>
<tr>
<th>Cavalier</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 (type de mémoire)</td>
<td>RAM</td>
</tr>
<tr>
<td></td>
<td>EPROM</td>
</tr>
<tr>
<td></td>
<td>Flash EPROM</td>
</tr>
<tr>
<td>J3 (protection en écriture)</td>
<td>Protection en écriture de la mémoire d'extension désactivée</td>
</tr>
<tr>
<td></td>
<td>Protection en écriture de la mémoire d'extension activée (ne fonctionne que pour RAM et Flash EPROM)</td>
</tr>
<tr>
<td></td>
<td>bas</td>
</tr>
<tr>
<td></td>
<td>WP (haut)</td>
</tr>
</tbody>
</table>

1) Position du cavalier à la livraison : RAM, protection en écriture désactivée

4) Personnaliser la configuration matérielle dans le PG5 en conséquence et
télécharger la nouvelle configuration.
3.14.5 PCD1.M125 et PCD1.M135

La mémoire utilisateur des unités centrales en question peut être étendue comme suit :

<table>
<thead>
<tr>
<th>Type d’UC</th>
<th>Possibilité d’extension</th>
<th>Mémoire disponible pour la mémoire d’extension¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD1.M1x5</td>
<td>RAM: 512 KBit / 128 KByte</td>
<td>128 KByte</td>
</tr>
<tr>
<td></td>
<td>EPROM: 128 KBit / 128 KByte</td>
<td>128 KByte</td>
</tr>
<tr>
<td></td>
<td>Flash-EPROM: 448 KBit / 112 KByte</td>
<td>128 KByte</td>
</tr>
</tbody>
</table>

¹) The base memory released by the extended memory can be configured as extension memory and used to store texts and DBs

Les différences de prix entre les diverses puces de mémoire sont très minces. Nous recommandons l’utilisation des modèles suivants :

<table>
<thead>
<tr>
<th>Type de mémoire</th>
<th>Référence</th>
<th>Désignations types</th>
<th>Taille</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>4 502 7013 0¹)</td>
<td>BS62LV1025 PC-70</td>
<td>1 Mbit / 128 Kbytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LP621024D-70LL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRM201000CLC70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HY628100ALP-70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GM76C8128CLL-70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEL M5M51008BP-70L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 502 7175 0¹)</td>
<td>HM628512LP-5</td>
<td>4 Mbits / 512 Kbytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM684000BPP-70L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K6T4008C1B-DB55</td>
<td></td>
</tr>
<tr>
<td>EPROM²)</td>
<td>4 502 7126 0</td>
<td>AM27C010-90 DC</td>
<td>1 Mbit / 128 Kbytes</td>
</tr>
<tr>
<td>Flash EPROM</td>
<td>4 502 7141 0</td>
<td>AM29F010-70PC</td>
<td>1 Mbit / 112 Kbytes²³)</td>
</tr>
<tr>
<td></td>
<td>4 502 7224 0</td>
<td>SBE29F040</td>
<td>4 Mbits / 448 Kbytes²³)</td>
</tr>
</tbody>
</table>

¹) Si vous utilisez des composants RAM qui ne sont pas agréés par SBC, vous risquez de perdre des données.
²) L’utilisation de EPROMs est obsolète. Utilisez plutôt Flash EPROM.
³) Une partie de la mémoire est perdue pour le stockage de la configuration. L’utilisateur ne dispose donc que de 112 Ko au lieu de 128 Ko pour la puce mentionnée.
Étapes d'une bonne installation d'une extension de la mémoire utilisateur :

1) Couper l'alimentation et retirer le capot du PCD1.
2) Enficher la puce de mémoire supplémentaire dans le socle « USER PROG ». Faire attention à ce qu'elle soit bien orientée (les marquages du socle et de la puce doivent correspondre) et s'assurer que toutes les broches de la puce sont enfichées dans le support.
3) Installer correctement les cavaliers à côté du socle :

 PCD1.M125/M135

<table>
<thead>
<tr>
<th>Cavalier</th>
<th>RAM</th>
<th>EPROM</th>
<th>Flash EPROM</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 (type de mémoire)</td>
<td></td>
<td></td>
<td></td>
<td>à gauche; R ¹) à droite; E/F ²)</td>
</tr>
<tr>
<td>J2 (protection en écriture)</td>
<td>Protection en écriture activée ²) (ne fonctionne que pour RAM et Flash EPROM)</td>
<td>Protection en écriture désactivée ²)</td>
<td>haut ¹)</td>
<td></td>
</tr>
<tr>
<td>J4 (taille de la mémoire <= 1 Mbit ou > 1 Mbit)</td>
<td>Taille de la mémoire > 1 Mbit</td>
<td>Taille de la mémoire <= 1 Mbit</td>
<td>haut ¹); >1MB bas</td>
<td></td>
</tr>
</tbody>
</table>

1) Position du cavalier à la livraison : RAM, protection en écriture désactivée, taille de la mémoire ≤ 1 Mbit
2) La protection en écriture ne s'applique qu'à la puce présente dans le socle USER PROG.

4) Personnaliser la configuration matérielle dans le PG5 en conséquence et télécharger la nouvelle configuration.
3.14.6 PCD2.M110/M120/M150

La mémoire utilisateur des unités centrales en question peut être étendue comme suit :

<table>
<thead>
<tr>
<th>Type d’UC</th>
<th>Version HW-</th>
<th>Equipe- ment de la base RAM:</th>
<th>Version FW-</th>
<th>Possibilité d’extension</th>
<th>Mémoire disponible pour la mémoire d’extension</th>
<th>1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD2.M150</td>
<td>tous</td>
<td>128 KByte</td>
<td></td>
<td>RAM: 4 MBit / 512 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPROM: 4 MBit / 512 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flash-EPROM: 4 MBit / 448 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td>PCD2.M110/ M120</td>
<td>> H</td>
<td>32 KByte</td>
<td>≥ 080</td>
<td>RAM: 4 MBit / 512 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPROM: 4 MBit / 512 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flash-EPROM: 4 MBit / 448 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 006</td>
<td></td>
<td></td>
<td>RAM: 4 MBit / 512 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPROM: 4 MBit / 512 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flash-EPROM: 4 MBit / 448 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
<tr>
<td>PCD2.M110/ M120</td>
<td>H</td>
<td>32 KByte</td>
<td>≥ 080</td>
<td>RAM: 4 MBit / 512 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPROM: 4 MBit / 512 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flash-EPROM: 4 MBit / 448 KByte</td>
<td>128 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 006</td>
<td></td>
<td></td>
<td>RAM: 4 MBit / 512 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPROM: 4 MBit / 512 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flash-EPROM: 4 MBit / 448 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
<tr>
<td>PCD2.M110/ M120</td>
<td>≥ C</td>
<td>32 KByte</td>
<td>≥ 080</td>
<td>RAM: 1 MBit / 128 KByte</td>
<td>24 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPROM: 1 MBit / 128 KByte</td>
<td>24 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flash-EPROM: 1 MBit / 128 KByte</td>
<td>24 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 080</td>
<td></td>
<td></td>
<td>RAM: 1 MBit / 128 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPROM: 1 MBit / 128 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flash-EPROM: 1 MBit / 128 KByte</td>
<td>6 KByte</td>
<td></td>
</tr>
</tbody>
</table>

1) La mémoire de base libérée par l’extension de la mémoire peut être configurée comme mémoire d’extension et utilisée pour stocker des textes et DBs.
Les différences de prix entre les diverses puces de mémoire sont très minces. Nous recommandons l’utilisation des modèles suivants :

<table>
<thead>
<tr>
<th>Type de mémoire</th>
<th>Référence</th>
<th>Désignations types</th>
<th>Taille</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>4 502 7175 0<sup>1</sup></td>
<td>BS62LV1025 PC-70
LP621024D-70LL
SRM20100LLC70
HY628100ALP-70
GM76C8128CLL-70
MEL M5M51000BP-70L
HM628512LP-5
KM684000BLP-SL
K6T4008C1B-DB55</td>
<td>1 Mbits / 512 Ko</td>
</tr>
<tr>
<td></td>
<td>4 502 7013 0<sup>1</sup></td>
<td></td>
<td>1 Mbits / 128 Ko</td>
</tr>
<tr>
<td>EPROM<sup>2</sup></td>
<td>4 502 7126 0</td>
<td>AM27C010-90 DC
NM27C01Q-90
M27C1001-10F1
AM27C040-100DC
M27C4001-10F1</td>
<td>1 Mbits / 128 Ko</td>
</tr>
<tr>
<td></td>
<td>4 502 7223 0</td>
<td></td>
<td>4 Mbits / 512 Ko</td>
</tr>
<tr>
<td>Flash EPROM<sup>3</sup></td>
<td>4 502 7141 0</td>
<td>AM29F010-70PC
SBE29F040
AM29F040B-90PC</td>
<td>1 Mbit / 112 Ko<sup>4</sup> / 4 Mbits / 448 Ko<sup>4</sup></td>
</tr>
<tr>
<td></td>
<td>4 502 7224 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Si vous utilisez des composants RAM qui ne sont pas agréés par SBC, vous risquez de perdre des données.
2) L’utilisation de EPROMs est obsolète. Utilisez plutôt Flash EPROM.
3) Flash EPROM est pris en charge à partir de la version 002 du firmware.
4) Une partie de la mémoire est perdue pour le stockage de la configuration. L’utilisateur ne dispose donc que de 112 Ko au lieu de 128 Ko sur la puce mentionnée.
Les puces suivantes sont compatibles. Elles ne sont cependant plus recommandées pour les installations récentes :

<table>
<thead>
<tr>
<th>Type de mémoire</th>
<th>Référence</th>
<th>Désignations types</th>
<th>Taille</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>4 502 5414 0</td>
<td>SRM2B256LCX70 HY62256ALP-70 GM76C256CLL-70 MEL M5M256DP-70LL TC55257DPL-70L</td>
<td>256 kbits / 32 Ko</td>
</tr>
<tr>
<td>EPROM</td>
<td>4 502 3958 0</td>
<td>AM27C512-90 DC UPD27C512D-10 M27C512-10XF1 M27C512-10F1</td>
<td>512 kbits / 64 Ko</td>
</tr>
</tbody>
</table>

Étapes d’une bonne installation d’une extension de la mémoire utilisateur :

1) Couper l’alimentation et retirer le capot du PCD2.
2) Enficher la puce de mémoire supplémentaire dans le socle « USER PROG ».
 Faire attention à ce qu’elle soit bien orientée (les marquages du socle et de la puce doivent correspondre) et s’assurer que toutes les broches de la puce sont enfichées dans le support.
3) Installer correctement les cavaliers à côté du socle :

<table>
<thead>
<tr>
<th>Cavalier</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 (type de mémoire)</td>
<td>RAM, EPROM, Flash EPROM</td>
</tr>
<tr>
<td>J3 (protection en écriture)</td>
<td>Protection en écriture désactivée³, Protection en écriture activée³ (ne fonctionne que pour RAM et Flash EPROM)</td>
</tr>
<tr>
<td>J5 (taille de la mémoire <= 1 Mbit ou > 1 Mbit)²</td>
<td>Taille de la mémoire <= 1 Mbit, Taille de la mémoire > 1 Mbit</td>
</tr>
</tbody>
</table>

1) Position du cavalier à la livraison : RAM, protection en écriture désactivée, taille de la mémoire ≤ 1 Mbit
3) La protection en écriture ne s’applique qu’à la puce présente dans le socle USER PROG.
4) Personnaliser la configuration matérielle dans le PG5 en conséquence et télécharger la nouvelle configuration.
3.15 Possibilités de répartition de la mémoire utilisateur

La configuration matérielle du PG5 prévoit une répartition de la mémoire utilisateur entre les lignes de programme et les textes/DBs convenant à la plupart des applications.

Dans le cas d’un très gros programme avec peu de textes/DBs ou d’un très petit programme avec de nombreux textes/DBs, l’utilisateur peut réaliser une répartition manuelle. Pour choisir une répartition raisonnable, tenez compte des éléments suivants :

- la répartition est réalisée en « Ko Lignes de programme » et « Ko Textes/DBs ». Seuls des pas de 4 Ko sont possibles pour les « Ko Lignes de programme » car chaque ligne de programme occupe 4 octets.
- le résultat de la formule $(4 \times \text{ « Ko Lignes de programme »}) + \text{ « Ko Textes/DBs »}$ doit correspondre à la mémoire utilisateur réellement disponible, par ex. $4 \times 24 \text{ Ko} + 32 \text{ Ko} = 128 \text{ Ko}$
- chaque caractère d’un texte occupe 1 octet.
- chaque élément de 32 bits d’un DB occupe, dans la plage d’adresse 0 à 3999, huit octets. L’en-tête du DB occupe trois autres octets.
- PCD1, PCD2.M110/M120/M150 :
 Nous recommandons, pour les applications comprenant de nombreux DBs, d’équiper l’automate d’une extension de mémoire afin de pouvoir configurer une mémoire d’extension. Les DBs pouvant y être stockés et dont les adresses sont supérieures à 4000 peuvent contenir plus d’éléments (16 384 au lieu de 384), mobilisent moins de d’espace (seulement 4 octets au lieu de 8 octets par élément, mais 8 octets au lieu de 3 pour l’en-tête) et leur temps d’accès est nettement moins long. La mémoire d’extension ne dépend pas de la répartition de la mémoire et n’est configurable que lorsqu’une extension a été enfichée.
- PCD2.M170/M480 :
 Nous recommandons de toujours utiliser des DBs avec des adresses ≥ 4000. Ils peuvent contenir plus d’éléments (16 384 au lieu de 384), mobilisent moins de place (seulement 4 octets au lieu de 8 octets par élément, mais 8 octets au lieu de 3 pour l’en-tête) et leur temps d’accès est nettement moins long.

Exemple de répartition manuelle d’un PCD2.M150 :

![Répartition manuelle](image)
3.16 Stockage des données en cas de panne de courant

Les ressources (registres, indicateurs, temporisateurs, compteurs ...), et, dans une certaine mesure, le programme utilisateur et les textes/DBs, sont conservés dans la mémoire RAM. Afin qu’ils ne soient pas perdus et que (lorsqu’elle existe) l’horloge matérielle continue à fonctionner en cas de panne de courant, les PCD1/PCD2 sont équipés d’un condensateur tampon (SuperCap) ou d’une pile tampon :

<table>
<thead>
<tr>
<th>Type d’UC</th>
<th>Tampon</th>
<th>Marge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD1.M110</td>
<td>Super Cap (soudé)</td>
<td>30 jours</td>
</tr>
<tr>
<td>PCD1.M120/M125</td>
<td>Super Cap (soudé)</td>
<td>7 jours</td>
</tr>
<tr>
<td>PCD1.M130/M135</td>
<td>Pile au lithium CR 2032</td>
<td>1 à 3 ans</td>
</tr>
<tr>
<td>PCD2.M110/M120 version matérielle < H</td>
<td>2 × piles alcalines de format LR03/AAA/AM4/Micro</td>
<td>1 à 5 ans</td>
</tr>
<tr>
<td>PCD2.M110/M120 version matérielle >= H</td>
<td>Pile au lithium CR 2032</td>
<td>1 à 3 ans</td>
</tr>
<tr>
<td>PCD2.M150/M170/M480</td>
<td>Pile au lithium CR 2032</td>
<td>1 à 3 ans</td>
</tr>
</tbody>
</table>

1) Le PCD1.M110 ne dispose pas d’une horloge matérielle. La marge est donc plus grande que celle du PCD1.M120.
3) Plus la température ambienne est élevée, plus la marge est courte.

Les piles des nouveaux automates sont placées dans l’emballage. Vous devrez les installer au moment de la mise en service. Vérifiez la polarité des piles :

- La polarité des piles alcalines est indiquée sur le socle.
- Insérez les piles boutons CR 2032 de manière à ce que la borne plus soit visible.

Les unités centrales avec des piles alcalines ou au lithium nécessitent quand même de l’entretien. L’unité centrale contrôle la tension de la pile. Le voyant BAT s’allume et le XOB 2 est appelé si

- la tension de la pile est inférieure à 2,4 V ou supérieure à 3,5 V.
- la pile est déchargée ou présente une interruption.
- il n’y a pas de pile.

Nous vous recommandons de changer les piles lorsque le Saia PCD® est sous tension afin d’éviter toute perte de données.

Les piles peuvent être localisées facilement dans tous les types d’unités centrales.
Dans les PCD2.M170 et M480, il n'est pas nécessaire de retirer l'ensemble du capot. Il suffit d'ouvrir le compartiment à piles latéral pour pouvoir accéder à la pile.

PCD2.M120/480 :

3.17 Sauvegarde du programme utilisateur (carte Flash pour PCD2.M170/M480)

3.17.1 Généralités

Nous vous recommandons d’équiper tous les modules PCD2.M170 et M480 d’une carte Flash afin d’éviter toute perte de données indésirable.

Malgré la sauvegarde sur la carte Flash, les fichiers sources du projet doivent être conservés car l’application n’est conservée dans le Saia PCD que sous forme de code machine.

La carte Flash permet aussi de transférer les applications d’un automate à un autre et de créer une sauvegarde des textes et DBs RAM dans la mémoire d’extension (adresse ≥ 4000).

La carte Flash ne doit pas être enfichée ou retirée lorsque l’automate est sous tension.

S’il apparaît au démarrage des PCD2.M170/M480 qu’une des mémoires RAM a été altérée (par ex. après une panne de courant avec une pile absente ou déchargée), l’application est automatiquementcopiée dans le Saia PCD.
3.17.2 **Copie de l'application sur la carte Flash (sauvegarde)**

Il est possible, dans le PG5, de sélectionner une option afin que l'ensemble du
programme utilisateur (code, textes/DBs et mémoire d'extension) soit copié sur la
carte Flash après chaque téléchargement. Vous la trouverez dans le gestionnaire de
projets, sous Tools > Options > Download :

Cette même fenêtre d'options peut être appelée au cours du téléchargement, comme
suit :

![Options](image1)

![Download Program](image2)
Sauvegarde du programme utilisateur

Il est aussi possible, indépendamment d’un téléchargement, de copier l’application sur la carte Flash ou, à l’inverse, de copier l’application depuis la carte Flash sur le Saia PCD®. Les articles de menus correspondants se trouvent sous Online > Flash Card :

Pour réaliser la copie, l’automate doit passer à l’état STOP. Le cas échéant, une invite appropriée apparaîtra à l’écran. La copie peut prendre jusqu’à 30 secondes.

3.17.3 Transfert d’une application

La carte Flash permet de transférer une application d’un PCD2.M170/M480 vers un autre automate du même modèle :

- copier l’application de l’automate source vers la carte Flash en suivant les instructions données dans les chapitres précédents.
- retirer l’alimentation de l’automate source, puis détacher la carte Flash.
- le cas échéant, envoyer la carte Flash.
- s’assurer que l’automate cible n’est pas sous tension, puis enficher la carte Flash.
- mettre l’automate cible sous tension, puis maintenir l’interrupteur LOAD de la carte Flash enfoncé pendant au moins 3 secondes, et ce à n’importe quel moment.
- attendre que l’automate redémarre.
3.17.4 Sauvegarde/restauration de textes/DBs RAM pendant l'exécution

Comme nous l'avons décrit ci-dessus, l’application peut être copiée sur la carte Flash après le téléchargement. Les données qui ont été rassemblées pendant l’exploitation peuvent être conservées en copiant des textes ou des DBs provenant de la mémoire d’extension (adresse >= 4000) sur la carte Flash ou, inversement, en recopiant le dernier état sauvegardé sur la carte Flash dans le texte/DB de la mémoire d’extension. Un maximum de 64 Ko sont disponibles à cet effet.

Pour pouvoir utiliser cette fonction, l’option présentée ci-dessous doit être activée dans le configurateur matériel et la configuration doit être chargée dans l’automate.

L’application entière (code, textes/DBs et mémoire d’extension) ne disposerà ensuite plus que de 896 Ko.

Quatre instructions SYSRD/SYSWR qui sont décrites plus en détail plus bas sont fournies pour stocker, rétablir, effacer et diagnostiquer les textes/DBs présents sur la carte Flash. Elles peuvent être appelées à un emplacement approprié du programme utilisateur. Ces commandes doivent être utilisées en connaissance de cause afin que le système et la carte Flash ne subissent aucun dommage.
Stockage d'un texte/DB sur la carte Flash, **SYSWR K 9000**

Instruction :

<table>
<thead>
<tr>
<th>SYSWR</th>
<th>K 9000(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre K</td>
<td>; Adresse des textes/DBs comme</td>
</tr>
<tr>
<td></td>
<td>; constante K ou dans un registre,</td>
</tr>
<tr>
<td></td>
<td>; les adresses de texte/DB existantes</td>
</tr>
<tr>
<td></td>
<td>; dans la plage >= 4000 sont acceptables</td>
</tr>
</tbody>
</table>

\(^1\) Alternativement, la valeur 9000 peut aussi être transmise à un registre. L'instruction **SYSWR K 3000** est utilisée pour cette même fonction dans le PCD3. Pour des raisons de compatibilité, cette instruction est aussi utilisée dans les PCD1/2. Cette alternative n’a cependant été intégrée au firmware qu’au second semestre 2004.

Etat de l’accu après exécution :

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>faible</td>
<td>le texte/DB a été sauvegardé. La carte Flash est prête pour de nouvelles instructions SYSWR.</td>
</tr>
<tr>
<td>élevée</td>
<td>la dernière commande n’a pas encore été entièrement exécutée. Avant de pouvoir réaliser d'autres instructions SYSWR K 900x, un SYSRD K 9000 doit être exécuté pour vérifier que la carte Flash est prête.</td>
</tr>
</tbody>
</table>

Lorsque l'instruction **SYSWR K 9000** est utilisée, notez que :

- la carte Flash ne permet que 100'000 d'écritures maximum. Il n’est donc pas permis d’invoquer la commande de manière cyclique ou à de courts intervalles.
- il est fortement recommandé d’exécuter un **SYSRD K 9000** avant l’instruction afin de vérifier que la carte est accessible et prête.
- le traitement de la commande peut prendre jusqu’à 100 ms. Rien ne garantit pas que l’écriture du texte/DB soit déjà terminée. La procédure peut en effet continuer en arrière-plan. L'instruction ne doit, pour cette raison, pas être invoquée dans le XO 0 (XO 0 en cas de panne de courant) ou pendant des processus prioritaires.
- si des erreurs surviennent pendant le traitement, par ex. parce qu’aucune carte Flash n’est enfichée, le XO 13, s’il est disponible, sera appelé ou le voyant ERROR sera positionné.
- au démarrage du Saia PCD\(^2\) et après une perte de mémoire RAM, l’état des textes/DBs après le dernier téléchargement est rétabli. C’est aussi le cas lorsque l'instruction **SYSWR K 9000** a été utilisée pour conserver des versions plus récentes.
- dans la limite du nombre maximum de cycles d’écriture, un texte/DB peut être sauvegardé aussi souvent que nécessaire sans que la carte Flash ne soit encombrée.
Restauration d’un texte/DB, SYSWR K 9001

Instruction :

<table>
<thead>
<tr>
<th>SYSWR</th>
<th>K 9001(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre K</td>
<td>; Adresse des textes/DBs comme ; constante K ou dans un registre ; les adresses de texte/DB existantes ; dans la plage >= 4000 sont acceptables</td>
</tr>
</tbody>
</table>

\(^1\) Alternativement, la valeur 9001 peut aussi être transmise à un registre. L’instruction SYSWR K 3001 est utilisée pour cette même fonction dans le PCD3. Pour des raisons de compatibilité, cette instruction est aussi utilisée dans les PCD1/2. Cette alternative n’a cependant été intégrée au firmware qu’au second semestre 2004.

Etat de l’accu après exécution :

- **faible :** le texte/DB a été rétabli et le processus est terminé. D’autres instructions SYSWR K 900x peuvent être exécutées immédiatement.
- **élevée :** la dernière instruction n’a pas encore été entièrement exécutée. Avant de pouvoir réaliser d’autres instructions SYSWR K 900x, un SYSRD K 9000 doit être exécuté pour vérifier que la carte Flash est prête.

Lorsque l’instruction SYSWR K 9001 est utilisée, notez que :

- il est fortement recommandé d’exécuter un SYSRD K 9000 avant l’instruction afin de vérifier que la carte est accessible et prête.
- si des erreurs surviennent pendant le traitement, par ex. parce qu’aucune carte Flash n’est enfichée, le XOB 13, s’il est disponible, sera appelé ou le voyant ERROR sera positionné.
Effacement des textes/DBs stockés sur la carte Flash, SYSWR K 9002

Instruction :

<table>
<thead>
<tr>
<th>SYSWR</th>
<th>K 9002<sup>1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>K 0</td>
<td>; Paramètre factice qui est nécessaire ; pour respecter la structure de ; l'instruction SYSWR</td>
</tr>
</tbody>
</table>

1) Alternativement, la valeur 9002 peut aussi être transmise à un registre. L' instruction SYSWR K 3002 est utilisée pour cette même fonction dans le PCD3. Pour des raisons de compatibilité, cette instruction est aussi utilisée dans les PCD1/2. Cette alternative n’a cependant été intégrée au firmware qu’au second semestre 2004.

Etat de l’accu après exécution :

<table>
<thead>
<tr>
<th>Etat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>faible</td>
<td>les textes/DBs ont été effacés et le processus est terminé. D’autres instructions SYSWR K 900x peuvent être exécutées immédiatement.</td>
</tr>
<tr>
<td>élevée</td>
<td>la dernière instruction n’a pas encore été entièrement exécutée. Avant de pouvoir réaliser d'autres instructions SYSWR K 900x, un SYSRD K 9000 doit être exécuté pour vérifier que la carte Flash est prête.</td>
</tr>
</tbody>
</table>

Lorsque l'instruction SYSWR K 9002 est utilisée, notez que :

- l’effacement ne concerne que les textes/DBs qui ont été au préalable sauvegardés avec l'instruction SYSWR K 9000. Le contenu de la mémoire d'extension sauvegardé après un téléchargement est conservé.
- il est fortement recommandé d’exécuter un SYSRD K 9000 avant l’instruction afin de vérifier que la carte est accessible et prête.
- le traitement de l'instruction peut prendre plusieurs centaines de ms. L'instruction ne doit, pour cette raison, pas être invoquée dans le XOB 0 (XOB en cas de panne de courant) ou pendant des processus prioritaires.
- si des erreurs surviennent pendant le traitement, par ex. parce qu'aucune carte Flash n’est enfichée, le XOB 13, s’il est disponible, sera appelé ou le voyant ERROR sera positionné.
Diagnostics de la carte Flash, SYSRD K 9000

Instruction :

<table>
<thead>
<tr>
<th>SYSRD</th>
<th>K 9000</th>
<th>R_Diag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Registre de diagnostic</td>
</tr>
</tbody>
</table>

1) Alternativement, la valeur 9000 peut aussi être transmise à un registre. L'instruction SYSWRD K 3000 est utilisée pour cette même fonction dans le PCD3. Pour des raisons de compatibilité, cette instruction est aussi utilisée dans les PCD1/2. Cette alternative n’a cependant été intégrée au firmware qu’au second semestre 2004.

Etat de l’accu après exécution :

<table>
<thead>
<tr>
<th>Faible :</th>
<th>élevée :</th>
</tr>
</thead>
<tbody>
<tr>
<td>la carte Flash est prête, les instructions SYSWR 900x peuvent être exécutées.</td>
<td>la carte Flash n’est pas accessible ou n’est pas prête. Le registre Diagnostic doit être analysé et le processus éventuellement retenté ultérieurement.</td>
</tr>
</tbody>
</table>

Lorsque l’instruction SYSRD K 9000 est utilisée, notez que :

- si des erreurs surviennent pendant le traitement, par ex. parce qu’aucune carte Flash n’est enfichée, le XOB 13, s’il est disponible, sera appelé ou le voyant ERROR sera positionné.

Description du registre de diagnostic

<table>
<thead>
<tr>
<th>bits (si élevé)</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (LSB)</td>
<td>Aucune carte Flash</td>
</tr>
<tr>
<td>1</td>
<td>En-tête non configuré</td>
</tr>
<tr>
<td>2</td>
<td>Accès SYSWR à la carte Flash impossible</td>
</tr>
<tr>
<td>3</td>
<td>DB/texte inexistant</td>
</tr>
<tr>
<td>4</td>
<td>Format de DB/texte non valide</td>
</tr>
<tr>
<td>5</td>
<td>Restauré</td>
</tr>
<tr>
<td>6</td>
<td>Mémoire pleine</td>
</tr>
<tr>
<td>7</td>
<td>Déjà en cours</td>
</tr>
<tr>
<td>8…31</td>
<td>Réserve</td>
</tr>
</tbody>
</table>

- Le texte/DB présent sur la carte Flash a été rétabli car une erreur est survenue.
- Trop de textes/DBs ont été sauvegardés. Il n’y a plus d’espace mémoire libre.
- La dernière instruction SYSWR 900x n’était pas encore entièrement exécutée que l’instruction suivante était déjà lancée.
3.18 Horloge matérielle (horloge temps réel)

La plupart des UCs PCD1/PCD2 sont équipées d’une horloge matérielle :

<table>
<thead>
<tr>
<th>Type d’UC</th>
<th>Ou se trouve l’horloge matérielle ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD1.M110</td>
<td>Inexistante, ne peut pas être ajoutée à l’équipement</td>
</tr>
<tr>
<td>PCD1.M120/M130</td>
<td>Sur la carte mère</td>
</tr>
<tr>
<td>PCD1.M125/M135</td>
<td>Sur la carte mère</td>
</tr>
<tr>
<td>PCD2.M110/M120</td>
<td>Sur les modules facultatifs PCD2.F5x0, version matérielle A (dans la limite des stocks disponibles)</td>
</tr>
<tr>
<td>version matérielle < H</td>
<td></td>
</tr>
<tr>
<td>PCD2.M110/M120</td>
<td>Sur la carte mère. Les anciens modules PCD2.W5x0 peuvent aussi être équipés d’une horloge matérielle.</td>
</tr>
<tr>
<td>version matérielle >= H</td>
<td></td>
</tr>
<tr>
<td>PCD2.M150/M170/M480</td>
<td>Sur la carte mère</td>
</tr>
</tbody>
</table>

La présence d’une horloge matérielle est absolument nécessaire lorsque des minuteries de bibliothèque CVC sont utilisées.

3.18.1 Module horloge PCD2.F500 (obsolète, PCD2.M110/M120 uniquement)

Les PCD2.M110/M120, version matérielle < H étaient équipés, si besoin était, d’un module PCD2.F5x0 avec une horloge matérielle (version matérielle A).

3.19 **Surveillance de l’unité centrale (chien de garde)**

Le chien de garde permet de surveiller de manière très fiable le bon déroulement du programme utilisateur et, en cas d’erreurs, de prendre rapidement les mesures de sécurité qui s'imposent, par ex. l'arrêt de parties du système.

3.19.1 Chien de garde matériel du PCD1

Sur le PCD1, ce résultat peut être obtenu à l’aide d’un relais temporisé externe SBC KOP128j dans une plage de temporisation d’1 s. Le relais temporisé dispose d’un déclenchement retardé redéclenchable. L’entrée B1 du relais temporisé est connectée à une sortie du PCD1 (par ex. une sortie d’une carte PCD2.A400).

Dans le programme utilisateur du Saia PCD®, la sortie clignote.

Exemple:

```
COB 0 ; ou COB 1…15
0
STL WD_Flag ; inverser l’indicateur d’aide
OUT WD_Flag
OUT O 255 ; Faire clignoter sortie 255
... : :
ECOB
```

L’exemple du code permet la mise au repos du chien de garde dans le cas de boucles sans fin provoquées par le programmateur. Notez cependant les points suivants concernant le temps de cycle du programme utilisateur :

- Dans le cas de temps de cycles très courts, il peut arriver que le relais temporisé ne reconnaissie pas les impulsions de manière fiable.
- Dans le cas de temps de cycle très longs, la séquence de code doit être répétée plusieurs fois dans le programme utilisateur où le temps de relâchement du relais temporisé doit être rallongé pour éviter que le chien de garde ne se mette au repos en fonctionnement normal.
3.19.2 Chien de garde matériel du PCD2

Si, pour une raison quelconque, la partie de programme accompagnant la boîte de fonction du chien de garde n’est plus exécutée à des intervalles de temps suffisants, le relais du chien de garde se mettra au repos et son voyant jaune s’allumera. Veuillez lire l’aide en ligne pour obtenir plus de détails concernant ces boîtes de fonction.

La même fonction peut être implémentée avec une liste d’instructions (LIST).

Exemple:

```
COB 0 ; ou COB 1…15

0
STL WD_Flag ; inverser l’indicateur d’aide
OUT WD_Flag
OUT O 255 ; Faire clignoter sortie 255
```

L’exemple du code permet la mise au repos du chien de garde dans le cas de boucles sans fin provoquées par le programmateur. Notez cependant le point suivant concernant le temps de cycle du programme utilisateur :

- Dans le cas de temps de cycle supérieurs à 200 ms, la séquence du code devra être répétée plusieurs fois dans le programme utilisateur pour empêcher une mise au repos du chien de garde en fonctionnement normal.

L’adresse 255 se trouvant dans la plage d’E/S normale, des restrictions sont imposées concernant les modules d’E/S autorisés à certains emplacements :

<table>
<thead>
<tr>
<th>Type d’UC</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD2.M110</td>
<td>aucune</td>
</tr>
<tr>
<td>PCD2.M120/M150</td>
<td>1) aucun module analogique, ni carte de comptage ou de commande d’axes à l’emplacement portant l’adresse de base 240 2) la sortie 255 ne peut être utilisée pour des modules d’E/S TOR.</td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>1) aucun module analogique ni carte de comptage ou de commande d’axes aux emplacements des adresses de base 240 et 496 2) les sorties 255 et 511 ne peuvent être utilisées pour les modules d’E/S TOR.</td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>1) aucun module analogique, ni carte de comptage ou de commande d’axes à l’emplacement portant l’adresse de base 240 2) la sortie 255 ne peut être utilisée pour des modules d’E/S TOR.</td>
</tr>
</tbody>
</table>

L’état du chien de garde est indiqué par le voyant jaune « WD » :
Surveillance de l’unité centrale (chien de garde)

- Le voyant s’allume : relais fermé
- Le voyant ne s’allume pas : relais désactivé

Schéma de raccordement du chien de garde

1) Pouvoir de coupure du contact du chien de garde : 1 A, 48 VCA/CC
3.19.3 Chien de garde logiciel pour PCD1 et PCD2

Le chien de garde matériel offre un sécuritè optimale. Pour les applications non critiques, un chien de garde logiciel grâce auquel le processeur pourra se contrôler tout seul et l’unité centrale pourra redémarrer en cas de dysfonctionnement ou de boucle sans fin peut cependant s’avérer suffisant.

Au cœur du chien de garde logiciel se trouve l’instruction SYSWR K 1000. La fonction du chien de garde logiciel est activée à la première invocation de cette instruction. Elle doit ensuite être invoquée au moins toutes les 200 ms sinon le chien de garde se déclenchera et redémarrera l’automate.

Instruction :

<table>
<thead>
<tr>
<th>Instruction</th>
<th>SYSWR</th>
<th>K 1000</th>
<th>; Commande chien de garde logiciel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>R/K xy; Paramètres d’après tableau ci-dessous, ; constante K ou valeur dans le registre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x = 0</td>
<td>Le chien de garde logiciel est désactivé.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x = 1</td>
<td>Le chien de garde logiciel est activé. Si l’instruction n’est pas répétée dans les 200 ms, un démarrage à froid s’ensuit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x = 2</td>
<td>Le chien de garde logiciel est activé. Si l’instruction n’est pas répétée dans les 200 ms, le XOB 0 est appelé et un démarrage à froid s’ensuit. Les appels XOB 0 sont enregistrés dans l’historique du Saia PCD® comme suit :</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"**XOB 0 WDOG START**" lorsque le XOB 0 a été appelé par le chien de garde logiciel.

"**XOB 0 START EXEC**" lorsque le XOB 0 a été appelé en raison d’une erreur d’alimentation.

Les versions du firmware doivent nécessairement être au minimum les suivantes pour pouvoir installer le chien de garde logiciel :

<table>
<thead>
<tr>
<th>Type d’UC</th>
<th>Version minimum du firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD1.M1x0</td>
<td>001</td>
</tr>
<tr>
<td>PCD1.M1x5</td>
<td>001</td>
</tr>
<tr>
<td>PCD2.M110/120</td>
<td>080</td>
</tr>
<tr>
<td>PCD2.M150</td>
<td>0B0</td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>010</td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>010</td>
</tr>
</tbody>
</table>

« 1 » = relais du chien de garde activé
3.20 Affichages à LED internes et petits terminaux

Les sorties ou les cartes de communication permettent, dans toutes les UCs des Saia PCD®, de raccorder des afficheurs et des terminaux externes. En outre, dans les PCD1 et PCD2, il est possible d’équiper l’unité centrale d’une telle interface utilisateur.

3.20.1 Outphased displays and small terminals

<table>
<thead>
<tr>
<th>Article</th>
<th>Active</th>
<th>N’est pas recommandé pour des projets nouveaux</th>
<th>outphased (n’est plus produit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD2.F510</td>
<td>x</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>PCD2.F520</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.F522</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.F530</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.D120</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>PCD7.D162</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.D163</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.D164</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.D165</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.20.2 Afficheur à LED 7 segments PCD2.F510 (PCD2.M110/M120/M150 uniquement)

L’affichage est composé de six chiffres à LED 7 segments avec virgule décimale. Il est monté en B. Il est visible de l’extérieur depuis le hublot placé sur le support. L'instruction DSP permet l'affichage des chiffres 0 à 9 ainsi que divers caractères :

Exemples :

```
123456 | 123456 | -123 | 5432
HELP  | HLP 25 | Err-bf | Err 13
```

Cet afficheur intégré permet d’indiquer facilement les états des procédés, les numéros des erreurs et des segments, la date, l’heure, les avis de révisions, etc. En alternant l’affichage ou en appliquant des interrupteurs sur les sorties, de nombreuses informations peuvent être affichées.

Vous trouverez, dans la bibliothèque standard Fupla, sous Affichage, deux boîtes de fonction qui vous permettront d’accéder sans difficulté à l’afficheur.
Les conseils de programmation suivants s’appliquent à la programmation LIST :

Il existe trois modes d’affichage :

<table>
<thead>
<tr>
<th>Mode</th>
<th>Caractéristiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 chiffres</td>
<td>La totalité de l'afficheur est utilisée pour un nombre (par ex. 123456) ou un des textes standard (par ex. Error ou HELP).</td>
</tr>
<tr>
<td>2 chiffres</td>
<td>Les quatre premiers chiffres ont été définis par une instruction précédente (texte, par ex. Err). Les deux derniers chiffres peuvent désormais être utilisés pour afficher un numéro.</td>
</tr>
<tr>
<td>mode libre</td>
<td>Dans la limite de 7 segments, l'afficheur peut afficher n'importe quelle chaîne de caractères.</td>
</tr>
</tbody>
</table>

Le contenu de l'afficheur est géré par l'instruction DSP. Des instructions DSP avec une constante (par ex. DSP K 0) ou un registre (par ex. DSP R 0) peuvent être utilisées comme paramètre.

L’incidence des instructions DSP K x ne dépend pas du mode de leur appel. Un grand nombre d’entre elles ont cependant une incidence sur le mode :

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Affichage</th>
<th>Mode après l'instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP K 0</td>
<td>La totalité de l'afficheur est effacée et l'afficheur passe en mode 6 chiffres.</td>
<td>6 chiffres</td>
</tr>
<tr>
<td>DSP K 1</td>
<td>S I A I A</td>
<td>6 chiffres</td>
</tr>
<tr>
<td>DSP K 2</td>
<td>P C D 2</td>
<td>6 chiffres</td>
</tr>
<tr>
<td>DSP K 3</td>
<td>E L P</td>
<td>6 chiffres</td>
</tr>
<tr>
<td>DSP K 4(1)</td>
<td>H L P n n</td>
<td>2 chiffres</td>
</tr>
<tr>
<td>DSP K 5</td>
<td>Error</td>
<td>6 chiffres</td>
</tr>
<tr>
<td>DSP K 6(1)</td>
<td>E r r n n</td>
<td>2 chiffres</td>
</tr>
<tr>
<td>DSP K 7(2)</td>
<td>L’afficheur s’efface et des zéros non significatifs s’affichent à partir de la prochaine instruction DSP R x.</td>
<td>6 chiffres</td>
</tr>
<tr>
<td>DSP K 8(2)</td>
<td>L’afficheur s’efface et l’affichage se réduit à 2 chiffres.</td>
<td>2 chiffres</td>
</tr>
<tr>
<td>DSP K 10(2)</td>
<td>Place la virgule décimale au niveau du chiffre 0 (tous à droite, effacé avec DSP K 0)</td>
<td>inchangé</td>
</tr>
<tr>
<td>DSP K 11(2)</td>
<td>Place la virgule décimale au niveau du 1er chiffre (effacé avec DSP K 0)</td>
<td>inchangé</td>
</tr>
<tr>
<td>DSP K 12(2)</td>
<td>Place la virgule décimale au niveau du 2ème chiffre en mode 6 chiffres (effacé avec DSP K 0)</td>
<td>inchangé</td>
</tr>
<tr>
<td>DSP K 13(3)</td>
<td>Place la virgule décimale au niveau du 3ème chiffre en mode 6 chiffres (effacé avec DSP K 0)</td>
<td>inchangé</td>
</tr>
</tbody>
</table>
Affichages à LED internes et petits terminaux

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Affichage</th>
<th>Mode après l'instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP K 14²)</td>
<td>Place la virgule décimale au niveau du 4ème chiffre en mode 6 chiffres (effacé avec DSP K 0)</td>
<td>inchangé</td>
</tr>
<tr>
<td>DSP K 15³)</td>
<td>Place la virgule décimale au niveau du 5ème chiffre en mode 6 chiffres (tout à gauche, effacé avec DSP K 0)</td>
<td>inchangé</td>
</tr>
<tr>
<td>DSP K 20³)</td>
<td>Passe en mode libre</td>
<td>mode libre</td>
</tr>
<tr>
<td>DSP K 21³)</td>
<td>En mode libre, tous les segments sont décalés d’un chiffre vers la gauche. Un chiffre vierge est ajouté. Le chiffre se trouvant auparavant le plus à gauche est perdu.</td>
<td>mode libre</td>
</tr>
<tr>
<td>DSP K 22³)</td>
<td>Passe de mode libre à mode 2 chiffres</td>
<td>2 chiffres</td>
</tr>
</tbody>
</table>

1) Ces instructions doivent être suivies d’une deuxième instruction DSP au format : DSP R x ; x = 0..4095. La valeur du registre doit être comprise entre 0 et 99. Si la valeur ne fait pas partie de cette plage, rien ne s’affiche et l’indicateur d’erreur est positionné
2) Dans les PCD2.M110/M120, disponible à partir de la version 002 du firmware uniquement
3) Dans les PCD2.M110/M120, disponible à partir de la version 003 du firmware uniquement

L’incidence de l'instruction DSP R x dépend du mode de l’afficheur à 7 segments :

<table>
<thead>
<tr>
<th>Mode</th>
<th>Contenu du R x</th>
<th>Incidence de l'instruction DSP R x</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 chiffres</td>
<td>-99 999 à +999 999 en dehors de la plage mentionnée</td>
<td>La valeur du registre s’affiche avec justification à droite. Seules des valeurs entières au format décimal peuvent être affichées. aucune affichage, l’indicateur d’erreur est positionné</td>
</tr>
<tr>
<td>2 chiffres</td>
<td>0 à 99 en dehors de la plage mentionnée</td>
<td>La valeur est affichée au moyen des deux chiffres se trouvant le plus à droite. Les quatre chiffres se trouvant à gauche demeurent inchangés. aucune affichage, l’indicateur d’erreur est positionné</td>
</tr>
</tbody>
</table>
| mode libre | 0 à 1111111 binaire ou 0 à 255 décimal | Les segments situés le plus à droite sont organisés de la manière suivante :

(Bit 0 = bit le plus bas)

Exemple : R x correspond en chiffres binaires à 01110101. Affichage d’un 3 sans virgule décimale |

3.20.3 Afficheur à LED 7 segments PCD2.F530 (PCD2.M120/M150 uniquement)

Ce module dispose de l’afficheur à 7 segments d’un PCD2.F510 (reportez-vous au chapitre précédent) et des deux ports séries d’un PCD2.F520 (détails au chapitre 3).
3.20.4 Kits petit terminal PCD7.D16x

Les unités centrales PCD1 et PCD2 CPU peuvent être équipées d’un petit terminal monté sur le capot :

Il dispose d’un affichage 4 × 16 caractères. Le dialogue peut être généré sans difficulté dans l’éditeur HMI. L’éditeur HMI fait partie intégrante du logiciel PG5.

Le terminal communique avec l’unité centrale via une carte de communication qui occupe l’emplacement B ou B1. Les variantes suivantes sont disponibles :

<table>
<thead>
<tr>
<th>Kit</th>
<th>Carte de communication, interfaces supplémentaires</th>
<th>Convient à</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD7.D162</td>
<td>PCD2.F540<sup>1)</sup> Aucune interface supplémentaire, le terminal occupe le port 2</td>
<td>PCD1.M1xx
PCD2.Mxx0</td>
</tr>
<tr>
<td>PCD7.D163</td>
<td>PCD2.F550<sup>1)</sup> Une interface RS-485 / RS-422 supplémentaire (occupe le port 3<sup>2)</sup>), le terminal occupe le port 2</td>
<td>PCD2.M120/M150/M170/M480</td>
</tr>
<tr>
<td>PCD7.D164</td>
<td>PCD2.F774<sup>1)</sup> Profibus DP esclave<sup>3)</sup> et une interface RS-485 / RS-422 supplémentaire** (occupe le port 3<sup>3)</sup>), le terminal occupe le port 2</td>
<td>PCD1.M13x
PCD2.M120/M150/M170</td>
</tr>
<tr>
<td>PCD7.D165</td>
<td>PCD2.F804<sup>1)</sup> Interface LON<sup>4)</sup> et une interface RS-485 / RS-422 supplémentaire** (occupe le port 3<sup>3)</sup>), le terminal occupe le port 2</td>
<td>PCD1.M13x
PCD2.M120/M150/M170</td>
</tr>
</tbody>
</table>

1) Uniquement disponible en tant que partie du kit PCD7.D16x
2) Le raccordement est identique à celui au port 3 d’un PCD2.F520. Veuillez vous reporter au chapitre 4 pour plus de détails.
3) Profibus DP requiert les versions logicielles et matérielles minimales. Veuillez vous reporter au manuel 26/765 sur Profibus DP.
4) LON requiert les versions logicielles et matérielles minimales. Veuillez vous reporter au manuel 26/767 sur LON.

Nous recommandons de commander les kits PCD7.D16x montés sur les unités centrales. Il est possible de réaliser le montage ultérieurement mais cela implique de:

PCD1 : remplacer le capot, réf. de commande 4 104 7338 0
PCD2 : retirer le hublot rouge et faire 4 trous de montage. La position des trous est indiquée sur la face interne du capot.
3.21 **Entrées interruptives**

3.21.1 **Bases**

Les modules d’entrées TOR ne sont pas adaptés pour une réaction immédiate à des événements ou pour des procédures de comptage rapides à cause du filtrage d’entrée et de l’incidence du temps de cycle du programme utilisateur. Certaines UCs disposent à cet effet d’entrées interruptives.

Dans le cas d’un front positif sur une entrée interruptive, un XOB appartenant à cette entrée (par ex. XOB 20) est invoqué. Le code de ce XOB détermine la réaction à l’événement, par ex. l’incrémentation d’un compteur.

Le code des XOBs qui sont appelés par les entrées interruptives doit être aussi court que possible afin de conserver un temps suffisant entre les interruptions pour le traitement du programme utilisateur restant.

De nombreuses boîtes de fonction sont prévues pour les appels cycliques et ne sont ainsi pas (ou uniquement dans une certaine mesure) adaptées à une utilisation dans les XOBs.

Exception : les boîtes de fonction de la gamme Graftec (bibliothèque standard) sont bien adaptées.

3.21.2 **PCD1.M120/M130 et PCD1.M125/M135**

Les deux entrées interruptives se trouvent sur la carte mère et peuvent être raccordées via un bornier enfichable 9 points (bornes 20 à 25). La logique positive est toujours utilisée.

Dans le cas d’un front positif à l’entrée INB1, le XOB 20 est invoqué. S’il s’agit d’un front positif à l’entrée INB2, l’invocation concerne le XOB 25. Le temps de réaction jusqu’à l’invocation du XOB 20/25 est au maximum d’1 ms. Le code de ce XOB détermine la réaction aux événements, par ex. l’incrémentation d’un compteur (fréquence d’entrée maximale 1 kHz, rapport impulsion/pause de 50 %, somme des deux fréquences au maximum 1 kHz). Si le XOB correspondant n’est pas programmé, le voyant ERROR s’activera ou le XOB 13 sera appelé.

![Diagramme des entrées interruptives](image)

Plage de tensions d’entrées: (toujours logique positive avec PCD1.M1x0):
Niveau haut "H" = 15 à 30V
Niveau bas "L" = -30 à +5V ou non attaché
3.21.3 **PCD2.M120/M150/M170**

Les deux entrées interruptives se trouvent sur la carte mère et peuvent être raccordées via un bornier enfichable 10 points (bornes 0 à 9). Une logique positive ou négative est utilisée au choix.

Fonctionnement en logique positive et négative :
Dans le cas d’un front positif à l’entrée **INB1**, le **XOB 20** est invoqué. S’il s’agit d’un front positif à l’entrée **INB2**, l’invocation concerne le **XOB 25**. Le temps de réaction jusqu’à l’invocation du XOB 20/25 est au maximum d’1 ms. Le code de ce XOB détermine la réaction aux événements, par ex. l’incrémentation d’un compteur (fréquence d’entrée maximale 1 kHz, rapport impulsion/pause de 50 %, somme des deux fréquences au maximum 1 kHz). Si le XOB correspondant n’est pas programmé, le voyant ERROR sera activé ou le XOB 13 sera appelé.

![Diagramme](image)

- **Plage de tensions d’entrées: logique positive**
 - Niveau haut "H" = 15 à 30V
 - Niveau bas "L" = -30 à +5V ou non attaché

- **Plage de tensions d’entrées: logique négative**
 - Niveau haut "H" = 15 à 30V ou non attaché
 - Niveau bas "L" = -30 à +5V

Les connexions INA1, INA2, OUT1, OUT2 et + sont prévues pour des extensions futures et ne doivent pas être utilisées.

3.21.4 **PCD2.M480**

Les quatre entrées interruptives se trouvent sur la carte mère et peuvent être raccordées via un bornier enfichable 10 points (bornes 0 à 9). Une logique positive ou négative est utilisée au choix.

Fonctionnement en logique positive et négative :
Chaque entrée interruptive est associée à un XOB qui est invoqué lorsqu’un front positif survient. Le code de ces XOBs détermine la réaction aux événements, par ex. l’incrémentation d’un compteur (fréquence d’entrée maximale 1 kHz, rapport impulsion/pause de 50 %). Le temps de réaction jusqu’à l’invocation des XOB 20 à 23 est au maximum d’1 ms.

Lorsque les XOBs correspondants ne sont pas programmés, les entrées interruptives peuvent être utilisées dans le programme utilisateur en tant qu’entrées normales à partir de l’adresse 8100.
Entrées interruptives

<table>
<thead>
<tr>
<th>Entrée interruptive</th>
<th>XOB invoqué en cas de front positif</th>
<th>Entrée lorsque le XOB correspondant n'est pas programmé</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN0</td>
<td>XOB 20</td>
<td>E 8100</td>
</tr>
<tr>
<td>IN1</td>
<td>XOB 21</td>
<td>E 8101</td>
</tr>
<tr>
<td>IN2</td>
<td>XOB 22</td>
<td>E 8102</td>
</tr>
<tr>
<td>IN3</td>
<td>XOB 23</td>
<td>E 8103</td>
</tr>
</tbody>
</table>

Les sorties OUT4 et OUT5 peuvent être utilisées comme sorties à transistors anti court-circuit « normales » aux adresses S 8104 et S 8105 et chargées jusqu’à 0,5 A chacune.

Si les sorties OUT4/OUT5 sont utilisées, le point de connexion + (borne 6) doit être alimenté en +24 V.
3.22 Interrupteur Run/Stop ou Run/Halt (PCD2.M170/M480 uniquement)

Pour ces deux automates, la commutation STOP/HALT déclenche le passage du mode RUN au mode HALT. Le passage à RUN provoque l’exécution d’un démarrage à froid.

L’interrupteur Run/Stop ou Run/Halt est désactivé en usine. Il peut être activé à l’aide d’un cavalier situé juste à côté de l’interrupteur :

![Run Stop/Halt Switch Enable]

Evitez de raccorder les cavaliers lorsque l’unité centrale est sous alimentation !
3.23 Interrupteur Halt (PCD1.M125 et PCD1.M135)

Sur les automates PCD1.M125 et PCD1.M135, l'interrupteur se situe à côté du support de mémoire utilisateur. S'il est enfoncé au démarrage du Saia PCD®, l'automate ne passe pas en mode RUN mais reste en mode HALT.

Le passage en mode RUN n'a lieu qu'après un démarrage à froid ; pour cela, l'alimentation doit être désactivée/activée, sans interrupteur enfoncé.

3.23.1 Interrupteur Halt utilisé comme entrée (PCD1.M125 et PCD1.M135)

En fonctionnement normal, l'interrupteur Halt peut être lu comme une entrée. Pour cela, il faut retirer le capot du Saia PCD® et lire l'état de l'interrupteur sur une instruction SYSRD. Celui-ci n'est donc utilisé que pour des fonctions spéciales (démarrage, intervention…).

Instruction :

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description du registre de diagnostic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSRD K 8000</td>
<td>Bit</td>
</tr>
<tr>
<td>R Switch</td>
<td>0 (LSB)</td>
</tr>
<tr>
<td></td>
<td>0 (bas)</td>
</tr>
</tbody>
</table>

Le passage en mode RUN n'a lieu qu'après un démarrage à froid ; pour cela, l'alimentation doit être désactivée/activée, sans interrupteur enfoncé.
3.24 Sauvegarde des données dans EEPROM

Un EEPROM est utilisé dans les PCD1/PCD2 pour la sauvegarde de données de configuration. L'utilisateur en dispose d’une partie pour sauvegarder des valeurs 32 bits (registre EEPROM). Les valeurs ne sont pas perdues en cas de panne de la pile ou de déchargement du condensateur tampon.

Une instruction SYSRD contrôle la lecture des valeurs, une instruction SYSWR leur écriture:

Lecture:

<table>
<thead>
<tr>
<th>SYSRD</th>
<th>K x ou R x R y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>; K x est l’adresse du registre EEPROM</td>
</tr>
<tr>
<td></td>
<td>; dans la plage K 2000 à K 2004 pour les</td>
</tr>
<tr>
<td></td>
<td>; UCs PCD1, ou K 2000 à K 2049 pour</td>
</tr>
<tr>
<td></td>
<td>; les UCs PCD2</td>
</tr>
<tr>
<td></td>
<td>; Alternativement l’adresse d’un registre</td>
</tr>
<tr>
<td></td>
<td>; contenant l’adresse du registre</td>
</tr>
<tr>
<td></td>
<td>; EEPROM peut aussi être transmise</td>
</tr>
<tr>
<td></td>
<td>; (même plage que la constante K)</td>
</tr>
<tr>
<td></td>
<td>; R y est le registre cible</td>
</tr>
</tbody>
</table>

Ecriture:

<table>
<thead>
<tr>
<th>SYSWR</th>
<th>K x ou R x R y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>; K x est l’adresse du registre EEPROM</td>
</tr>
<tr>
<td></td>
<td>; dans la plage K 2000 à K 2004 pour les</td>
</tr>
<tr>
<td></td>
<td>; UCs PCD1, ou K 2000 à K 2049 pour</td>
</tr>
<tr>
<td></td>
<td>; les UCs PCD2</td>
</tr>
<tr>
<td></td>
<td>; Alternativement l’adresse d’un registre</td>
</tr>
<tr>
<td></td>
<td>; contenant l’adresse du registre</td>
</tr>
<tr>
<td></td>
<td>; EEPROM peut aussi être transmise</td>
</tr>
<tr>
<td></td>
<td>; (même plage que la constante K)</td>
</tr>
<tr>
<td></td>
<td>; R y est le registre source</td>
</tr>
</tbody>
</table>

Lors de l’utilisation de l’instruction SYSWR K 20xx, notez que:

- le EEPROM ne permet au maximum que 100 000 écritures. Il n’est donc pas permis d’invoquer l’instruction de manière cyclique ou à de courts intervalles.
- le traitement de l’instruction prend environ 20 ms. L’instruction ne doit, pour cette raison, pas être invoquée dans le XOB 0 (XOB en cas de panne de courant) ou pendant des processus prioritaires.
L'installation du registre EEPROM requiert nécessairement au moins les versions du firmware suivantes :

<table>
<thead>
<tr>
<th>Type d'UC</th>
<th>Version minimum du firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD1.M1x0</td>
<td>001</td>
</tr>
<tr>
<td>PCD1.M1x5</td>
<td>001</td>
</tr>
<tr>
<td>PCD2.M110/120</td>
<td>004</td>
</tr>
<tr>
<td>PCD2.M150</td>
<td>0A0</td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>010</td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>010</td>
</tr>
</tbody>
</table>

3.25 Remise à zéro des sorties lors d'un STOP ou HALT (PCD2 uniquement)

Un cavalier permet de configurer si les sorties doivent être conservées en leur état actuel lorsque l'état est STOP ou HALT ou si elles doivent être remises à zéro.

Ce cavalier reçoit des écritures des fonctions RO ou ROE (Reset Output Enable) et a deux positions :

<table>
<thead>
<tr>
<th>Position</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO/ROE</td>
<td>Toutes les sorties sont remises à zéro aux états STOP et HALT.</td>
</tr>
<tr>
<td>non RO/ROE</td>
<td>Les sorties demeurent inchangées aux états STOP et HALT (état de livraison).</td>
</tr>
</tbody>
</table>

Les options du PG5 et du cavalier RO interagissent lorsque le programme utilisateur est téléchargé par PG5 :

Les sorties ne sont conservées que lorsque le cavalier est en position « non RO » et que l'option présentée plus bas « Do not clear Outputs on download or restart » est activée. Dans tous les autres cas, les sorties sont remises à zéro.
3.26 Surveillance de présence/tension d'une extension (PCD2 uniquement)

Dans tous les PCD2 à l'exception du PCD2.M110, il est possible de détecter la présence d'une extension.

Dans le cas des modules PCD3.C200, il est aussi possible de distinguer si le C200 le plus proche de l'UC est alimenté.

Un cavalier permet de configurer l’activation de la surveillance :

<table>
<thead>
<tr>
<th>Position</th>
<th>Comportement</th>
</tr>
</thead>
</table>
| XOB 1 ENABLE | La surveillance est activée. Le XOB 1 est appelé dans les cas suivants :
 ● aucune extension n’est raccordée au démarrage.
 ● un des PCD3.C200 du système n’est pas alimenté au démarrage.
 ● la connexion à l’extension ou aux extensions est perdue pendant le traitement.
 ● l’alimentation d’un des PCD3.C200 du système a échoué pendant le traitement. |
| non XOB 1 ENABLE | La surveillance est désactivée (état de livraison). |

Le code du XOB 1 détermine la réaction aux événements. S’il est appelé par la surveillance mais n’a pas été programmé, une entrée est ajoutée dans l'historique et le voyant Error est positionné.
Modules de communication Saia PCD® Classic

4.1 Informations générales

4.1.1 Modules de communication «Outphased»

<table>
<thead>
<tr>
<th>Article</th>
<th>Active</th>
<th>N'est pas recommandé pour des projets nouveaux</th>
<th>outphased (n'est plus produit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD2.F510</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD2.F520</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.F522</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.F530</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.T500</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.T813</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD2.T814</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.T850</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.T851</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.D163</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.D164</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.D165</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.F110</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.F120</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F121</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.F130</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F150</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.F180</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD7.F650</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F651</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F655</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F700</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F750</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F770</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F772</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F800</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>PCD7.F802</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
</tbody>
</table>
4.1.2 SBC S-Net

SBC S-Net, le concept de mise en réseau de Saia Burgess Controls, est basé sur les normes ouvertes RS-485, Profibus et Ethernet. Ethernet regroupe les couches 1 et 2 de l'architecture en couches ISO/OSI. Les protocoles et applications les plus divers peuvent, à partir de la couche 2, être exploités en parallèle sur un même réseau.

Utilisation du SBC S-Bus

S-Bus, bus propriétaire de SBC, a été fondamentalement conçu pour le dialogue avec les outils de développement et de débogage, et la connexion des systèmes de contrôle-commande de procédé et de gestion de niveau supérieur.

Il ne saurait en aucun cas convenir au raccordement d'appareils de terrain de divers constructeurs. Un bus de terrain ouvert, indépendant de toute marque, sera plus performant pour accomplir cette tâche.

Pour PCD2.M480 uniquement :

La couche 2 (Field Data Link - FLD) de Profibus permet aussi l'exécution parallèle de différents protocoles d'application, par ex. DP, FMS, etc. Cette option permet de construire à l'aide de Profi-S-Net un « Private Control Network (PCN) » sur le Profibus. Tous les appareils SBC deviennent alors des composants de réseau actifs.

La couche 2 de Profibus (FDL) est intégrée au système d'exploitation des UCs PCD2.M480. Ces appareils sont ainsi dotés d'une connexion Profi-S-Net dont la vitesse de transfert peut atteindre 1,5 mbps.

Les automates prennent en charge Profibus DP et S-Net sur un même port. De cette manière, Profibus peut être utilisé pour construire des réseaux de manière rentable et flexible (vous trouverez des exemples détaillés dans les informations techniques (TI 26/381).

Vitesses de transmission du PCD2.M480:

À l'inverse, les vitesses plus faibles (300 et 600 bit/s) ne sont dorénavant plus prises en compte.
4.2 Panorama des interfaces embarquées PCD1/PCD2

<table>
<thead>
<tr>
<th>Automate de base avec interfaces embarquées</th>
<th>Panorama sans cartes de communication emboîtables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Port #</td>
</tr>
<tr>
<td>PCD1.M110</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PCD1.M120/M125</td>
<td>0</td>
</tr>
<tr>
<td>PCD1.M130/M135</td>
<td>0</td>
</tr>
<tr>
<td>PCD2.M110</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Port #0 (PGU) RS-232/RS-485</td>
</tr>
<tr>
<td>PCD2.M120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Port #0 (PGU) RS-232/RS-485</td>
</tr>
<tr>
<td>PCD2.M150</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Port #0 (PGU) RS-232/RS-485</td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Port #0 (PGU) RS-232</td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Port #6 (PGU) RS-485</td>
</tr>
<tr>
<td></td>
<td>USB</td>
</tr>
<tr>
<td></td>
<td>Prodi-S-Net</td>
</tr>
</tbody>
</table>
4.3 Panorama des modules de communication embrochables PCD1

<table>
<thead>
<tr>
<th>Automate de base avec emplacements pour les cartes de communication embrochables</th>
<th>Panorama des cartes de communication embrochables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Série</td>
</tr>
<tr>
<td>PCD1.M110</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCD1.M120/M125</td>
<td>Port 2</td>
</tr>
<tr>
<td></td>
<td>Port 3</td>
</tr>
<tr>
<td>PCD1.M130/M135</td>
<td>Port 2</td>
</tr>
<tr>
<td></td>
<td>Port 3</td>
</tr>
</tbody>
</table>

1) Convient au raccordement d’un modem grâce à ses 6 lignes de commande.
2) Avec capot spécial 4 104 7409 0 ou sous forme de système configuré portant le n° de modèle PCD1.M135F655
4.4 Panorama des modules de communication embrochables PCD2

<table>
<thead>
<tr>
<th>Automate de base avec emplacements pour les cartes de communication embrochables</th>
<th>Panorama des cartes de communication embrochables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emplacement</td>
<td>Série</td>
</tr>
<tr>
<td>PCD2.M110</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCD2.M120</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCD2.M150</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCD2.M170</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>B2</td>
</tr>
<tr>
<td>PCD2.M480</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>B2</td>
</tr>
</tbody>
</table>

1) Convient au raccordement d’un modem grâce à ses 6 lignes de commande.
2) Avec capot spécial 4 104 7410 0 ou sous forme de système configuré portant le n° de modèle PCD1.M150F655.
3) Les combinaisons suivantes ne sont pas possibles : 2 connexions Profibus DP esclave/2 connexions LonWorks®.
4.5 Interfaces embarquées

4.5.1 Connecteur PGU (PORT # 0, PCD1 et PCD2) (RS-232) pour raccordement d'appareils de programmation

L'interface PGU (port # 0) est raccordée à un connecteur D-Sub 9 points (femelle). L'appareil de programmation doit être raccordé à l'interface au moment de la mise en service.

L'interface est de type RS-232c.

L'affectation des broches et les signaux correspondants sont :

<table>
<thead>
<tr>
<th>Broche</th>
<th>Identification</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PGND</td>
<td>Protective Ground</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>n.c.</td>
<td>Not Connected</td>
</tr>
<tr>
<td>5</td>
<td>SGN</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>PGU Connected</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Request To Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Clear To Send</td>
</tr>
<tr>
<td>9</td>
<td>+5 V</td>
<td>Supply P100</td>
</tr>
</tbody>
</table>

Le protocole PGU est prévu pour une exécution avec un appareil de programmation. Le PCD8.P800 peut être utilisé dans tous les PCD1/PCD2 à partir de la version 301 du firmware.

Câble de raccordement PCD8.K111

(protocole P8 et S-Bus, convient à tous les PCD1/PCD2)
Câble de raccordement PCD8.K110 (obsolète)

(protocole P8, ne convient qu’aux PCD1.M110/120 et PCD2.M110/120)

4.5.2 Connecteur PGU (PORT # 0, PCD1 et PCD2) (RS-232) comme interface de communication

Une fois la mise en service ou la programmation terminée, le port peut être utilisé à d’autres fins.

Première possibilité : configuration avec le protocole souhaité (configuration S-Bus)

Deuxième possibilité : assignation (SASI) dans le programme utilisateur (le port ne doit pas être configuré comme port S-Bus PGU.)

- Si un appareil de programmation est raccordé à la place du périphérique pendant l’exécution, l’automate passera automatiquement en mode PGU (broche 6 « 1 » logique (DSR), DSR PING = « 1 », en mode PGU).

- Pour pouvoir réutiliser l’interface pour le raccordement d’un périphérique, l’interface 0 doit être reconfigurée à l’aide d’une instruction SASI.

1) En cas de communication avec des terminaux, vérifiez si certains raccordements doivent être fournis avec des ponts ou s’ils doivent être réglés sur « H » ou « L » par l’instruction « SOCL ». L’utilisation d’un protocole de transfert (RTS/CTS) est, en général, recommandée.
4.5.3 Connecteur PGU (PORT # 0, seulement PCD2.M110) (RS-485) pour interface de communication

Si le port 0 n’est pas utilisé au niveau du connecteur PGU (par l’appareil de programmation ou pour une autre utilisation comme interface RS-232), il peut être utilisé aux bornes 28 et 29 pour un raccordement S-Bus ou MC4.

![Diagramme des bornes connexion S-Bus](image)

Choix des résistances de terminaison

- **Résistance de rappel au niveau haut**: 330 ohms
- **Résistance de terminaison**: 150 ohms
- **Résistance de rappel au niveau bas**: 330 ohms

<table>
<thead>
<tr>
<th>Port #0</th>
<th>Première station</th>
<th>Stations intermédiaires</th>
<th>Dernière station</th>
</tr>
</thead>
</table>

- **Bus RS-485**
- **Longueur maxi du segment**: 1200 m
- **Nombre maxi de stations**: 32

Le cavalier J0 doit être en position fermée (closed) sur les stations d’extrémité.

Sur toutes les autres stations, le cavalier J0 doit rester en position ouverte (open) (état de livraison).
4.5.4 Interface de communication PORT#1 RS-485, seulement sur PCD1.M110

Sur le PCD1.M110, sur le port#1, est une interface de RS-485 intégrée.

Choix des résistances de terminaison

Le cavalier doit être en position fermée (closed) sur les stations d’extrémité.

Sur toutes les autres stations, le cavalier doit rester en position ouverte (open) (état de livraison).
4.5.5 Interface de communication PORT#6 RS-485, seulement sur PCD1.M480

Sur le PCD2.M480, sur le port#6, est une interface de RS-485 intégrée.

Choix des résistances de terminaison

- Première station
 - Résistance de rappel au niveau haut: 330 Ohm
 - Résistance de terminaison: 150 Ohm
 - Résistance de rappel au niveau bas: 330 Ohm

- Stations intermédiaires
 - PCD1.M1xx
 - PCD2.Mxx0

- Dernière station
 - PCD1.M1xx
 - PCD2.Mxx0

Le cavalier doit être en position fermée (c) sur les stations d’extrémité.

Sur toutes les autres stations, le cavalier doit rester en position ouverte (o) (état de livraison).
4.5.6 Port USB sur PCD2.M480

Pour pouvoir utiliser le port USB du PCD2.M480, la version 1.3.100 du Saia PCD® ou une version ultérieure doit être installée.

Lorsque le PCD2.M480 est raccordé pour la première fois à un ordinateur via le port USB, le système d'exploitation de cet ordinateur installe automatiquement le pilote USB correspondant.

Pour établir une connexion avec un Saia PCD® via le port USB, les paramètres suivants doivent être entrés dans les paramètres en ligne du projet PG5.

![Online Settings][1]

L’activation de l’option PGU permet de s’assurer que la communication peut être établie avec le PCD2.M480 connecté de manière directe à l'ordinateur, et ce, indépendamment de l'adresse S-Bus configurée.
4.5.7 Profi-S-Net sur PCD2.M480

Le PCD2.M480 est, par défaut, équipé d’une interface Profi-S-Bus. Celle-ci peut être utilisée aussi bien pour la configuration que pour la communication avec d’autres UCs (prenant en charge Profi-S-Bus) et/ou des E/S déportées.

Caractéristiques techniques :
Vitesse de transfert Jusqu’à 1,5 Mbps)
Nombre de stations Jusqu’à 124 stations réparties en segments de 32 stations chacun.
Protocoles Profi-S-Bus, Profi-S-IO, DP esclave, HTTP en préparation (fonctionnement multi protocole sur la même interface)

Schéma de raccordement

Pour plus de détails concernant la configuration et la programmation des fonctions Profi-S-Net, reportez-vous aux manuels spécialisés.
4.6 Interfaces série à l’emplacement A

4.6.1 RS-485/422 avec PCD7.F110, Port #1 (avec PCD1.M110 câblé)

Raccordement pour RS-485

PCD7.F110: interface RS-422 avec signaux RTS/CTS ou interface RS-485 sans séparation galvanique, avec résistances de terminaison activables, pour emplacement A

Choix des résistances de terminaison

- Résistance de rappel au niveau haut: 330 Ohm
- Résistance de terminaison: 150 Ohm
- Résistance de rappel au niveau bas: 330 Ohm

Tous les fabricants n’utilisent pas les mêmes brochages. Les lignes de données doivent donc, dans certains cas, être croisées.

Le cavalier J1 doit être en position fermé (closed) sur les stations d’extrémité et rester en position ouverte (open) sur toutes les autres stations (état de livraison). Ce cavalier figure dans la partie raccordement du module.

**Pour plus de détails, consultez le manuel 26/740 « Composants de réseau RS-485 ».*
Chaque paire de lignes de réception de données de l’interface RS-422 est terminée par une résistance de terminaison de 150 Ω. Le cavalier J1 doit rester en position ouverte (open) (état de livraison). Ce cavalier figure dans la partie raccordement du module.
RS-232 avec PCD7.F120 (pour modem), port #1
(avec PCD1.M110 pas existant)

PCD7.F120:
interface RS-232 avec signaux RTS/CTS, DTR/DSR, DCD, pour raccordement modem à l’emplacement A

Interface RS-232, port #1 pour modem externe (DCE), emplacement A

Câbles et bornes à vis embrochables A

<table>
<thead>
<tr>
<th>Sub-D m 9 points</th>
<th>Câble</th>
<th>Périphérique (DTE)</th>
<th>Sub-D f 9 points (pour PC)</th>
<th>Sub-D m 25 points (pour PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>PGND</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TXD</td>
<td>TX</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>RXD</td>
<td>RX</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>RTS</td>
<td>RTS</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>CTS</td>
<td>CTS</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>PGND</td>
<td>PGND</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>DTR</td>
<td>DTR</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>DSR</td>
<td>DSR</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>Reserve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DCD</td>
<td>DCD</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Câble Périphérique

Modem (ETCD) DCE

<table>
<thead>
<tr>
<th>Câble</th>
<th>Modem (ETCD) DCE</th>
<th>Sub-D m 25 points (z.B. Zyxel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGND</td>
<td>PGND</td>
<td></td>
</tr>
<tr>
<td>TXD</td>
<td>TX</td>
<td>2</td>
</tr>
<tr>
<td>RXD</td>
<td>RX</td>
<td>3</td>
</tr>
<tr>
<td>RTS</td>
<td>RTS</td>
<td>4</td>
</tr>
<tr>
<td>CTS</td>
<td>CTS</td>
<td>5</td>
</tr>
<tr>
<td>PGND</td>
<td>SGND</td>
<td>7</td>
</tr>
<tr>
<td>DTR</td>
<td>DTR</td>
<td>20</td>
</tr>
<tr>
<td>DSR</td>
<td>DSR</td>
<td>6</td>
</tr>
<tr>
<td>Reserve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCD</td>
<td>DCD</td>
<td>8</td>
</tr>
</tbody>
</table>
4.6.3 **RS-232 avec PCD7.F121, Port#1 (avec PCD1.M110 pas existant)**

PCD7.F121:
RS-232 avec signaux RTS/CTS, DTR/DSR, DCD, pour raccordement modem à l’emplacement A.

Le module peut être utilisé jusqu’à 115 200 Baud.

Interface RS-232, port#1 pour modem externe (DCE), emplacement A

<table>
<thead>
<tr>
<th>Bornes à vis embrochables A</th>
<th>Câble (DTE)</th>
<th>Modem DCE</th>
<th>Sub-D m 25 points (z.B. Zyxel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>--</td>
<td>PGND</td>
<td>Sub-D f 9 points (pour PC)</td>
</tr>
<tr>
<td>11</td>
<td>TXD 3</td>
<td>TX</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>RXD 2</td>
<td>RX</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>RTS 7</td>
<td>RTS</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>CTS 8</td>
<td>CTS</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>PGND 5</td>
<td>SGND</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>DTR 4</td>
<td>DTR</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>DSR 6</td>
<td>DSR</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>DCD 1</td>
<td>DCD</td>
<td>8</td>
</tr>
</tbody>
</table>

Remarque:
- GND = PGND
- TX = TXD
- RX = RXD
- RTS = RTS
- CTS = CTS
- SGND = PGND
- DTR = DTR
- DSR = DSR
- DCD = DCD
4.6.4 **Boucle de courant avec PCD7.F130, port #1**
(avec PCD1.M110 pas existant)

PCD7.F130:
TTY/BC 20 mA (actif ou passif), pour emplacement A

Connexions

<table>
<thead>
<tr>
<th>Emplacement A</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD7.F130</td>
<td></td>
</tr>
</tbody>
</table>

Saia PCD® actif

PCD7.F130 (actif)
Câble
Périphérique (passif)
Saia PCD® passif

![Diagram of Saia PCD® passif]

Emetteurs Saia PCD® et périphériques actifs

![Diagram of Emetteurs Saia PCD® et périphériques actifs]
4.6.5 **RS-485 avec PCD7.F150, port#1 (avec PCD1.M110 pas existant)**

PCD7.F150:
interface RS-485 avec séparation galvanique et résistances de terminaison, pour l'emplacement A

La séparation galvanique est réalisée par 3 optocoupleurs et un convertisseur CC/CC. Les signaux de données sont chacun protégés contre les surtensions par une diode « suppressor » (10 V). Les résistances de terminaison peuvent être connectées/déconnectées à l’aide d’un cavalier.

Connexions

Schéma synoptique :

1. **OPCOT-0601**
 - TXD : Transmet
 - RXD : Recev
 - RTS

2. **75176**
 - Driver RS-485
 - EN

3. SGND (con sep. galv.)
 - SGND (deva essere collegato alla schermatura del cavo.)

4. +5VE

5. 330 Ohm

6. 150 Ohm

7. 330 Ohm
Tous les fabricants n’utilisent pas les mêmes brochages. Les lignes de données doivent donc, dans certains cas, être croisées.

La différence potentielle entre PGND et les lignes de données Rx-Tx, /Rx-/Tx (et SGND) est limitée à 50 V par un condensateur antiparasites.

Pour plus de détails sur l’installation, reportez-vous au manuel 26/740 « Composants de réseau RS-485 ».

4.6.6 MP-Bus avec PCD7.F180, port #1 (avec PCD1.M110 pas existant)

PCD7.F180: coupleur pour MP-Bus, pour emplacement A

Le module dispose d’une option permettant de raccorder une alimentation MP-Bus avec 8 entraînements et capteurs.

Il ya les dispositifs de paramétrage suivantes de BELIMO®:

Dispositif d’essai MFT-H Avec sa propre alimentation / batteries
Outil PC MFT-P Avec l’adaptateur ZIP-RS-232
Possibilité d'alimentation

Alimentation commune pour automate et entraînement

Si le coupleur PCD7.F180 est utilisé, la tension du Saia PCD doit être au moins de 24 VCC, ±5 % (et non la tolérance par défaut de ±20 %).

Si les entraînements sont alimentés séparément avec une tension CC ou CA, il faut faire tout particulièrement attention à ce que la mise à la masse du Saia PCD soit raccordée à la masse (borne moins) de l'alimentation de l'entraînement. La masse sert de base commune pour la communication.

Pour plus de détails, reportez-vous aux informations techniques (TI) P+P26/342 « Interfaces MP-Bus pour servomoteurs de marque BELIMO® ».
4.6.7 Communication par modem

Cartes modem pour emplacement de module d'E/S

PCD2.T814: modem analogique à 33 600 bps (interface RS-232 et TTL)

PCD2.T851: modem numérique RNIS-TA (interface RS-232 et TTL)

Emplacements recommandés pour le raccordement avec câble plat :
- PCD1.M130 - emplacement 2
- PCD2.M120 - emplacement 4
- PCD2.M130 - emplacement 4
- PCD2.M150 - emplacement 4
- PCD2.M170 - emplacement 1
- PCD2.M480 - emplacement 1

Si un autre emplacement est sélectionné pour le modem interne, celui-ci ne pourra plus être raccordé à l’aide du câble plat. Le modem est raccordé aux modules de communication PCD7.F120 (port 1) ou PCD2.F522 (port 2) par une attache à ressort. Des modems externes peuvent aussi être raccordés aux interfaces PCD7.F120 et PCD2.F522.

En raison des dimensions mécaniques de la carte du modem, les points suivants doivent être pris en compte :

Le module PCD2.T8xx ne peut être installé dans le PCD1 ou le PCD2 aux emplacements suivants :

PCD1.Mxxx / PCD2.C150

PCD2.Mxxx / PCD2.C100

Deux modules modem ne peuvent pas être montés l'un à côté de l'autre.

Pour plus de détails sur l'installation, reportez-vous au manuel 26/771 « Manuel PCD2.T8xx »
4.7 Interfaces série aux emplacements B, B1 ou B2

4.7.1 RS-485 avec PCD2.F520 (seulement PCD2)

PCD2.F520:
1 interface RS-232 avec signaux RTS/CTS et
1 interface RS-485, sans séparation galvanique

ou

1 interface RS-232 avec signaux RTS/CTS et
1 interface RS-422 sans signaux RTS/CTS

pour emplacements B / B1/B2

RS-485 : emplacements B / B1, port#3

<table>
<thead>
<tr>
<th>Périphérique</th>
<th>Câble</th>
<th>Bornes à vis embrochables B/B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RX-TX</td>
<td>Bus RS-485</td>
<td>/RX-TX</td>
</tr>
<tr>
<td>RX-TX</td>
<td>Bus RS-485</td>
<td>RX-TX</td>
</tr>
<tr>
<td>PGND</td>
<td>GND</td>
<td>PGND</td>
</tr>
</tbody>
</table>

RS-485 : emplacement B2, port#5 (M170/M480 uniquement)

PCD2.F520

Emplacement B2

PCD2.M170/M480

Emplacement B2

<table>
<thead>
<tr>
<th>Port #4</th>
<th>Port #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232</td>
<td>RS-485</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bornes à vis embrochables B2</th>
<th>Câble</th>
<th>Périphérique</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGND</td>
<td>GND</td>
<td>SGND</td>
</tr>
<tr>
<td>RX-TX</td>
<td>Bus RS-485</td>
<td>RX-TX</td>
</tr>
<tr>
<td>/RX-/TX</td>
<td>Bus RS-485</td>
<td>/RX-/TX</td>
</tr>
</tbody>
</table>
RS-485 sur D-Sub connecteur avec PCD2.M170

<table>
<thead>
<tr>
<th>Affectation RS-485</th>
<th>Socket B1 D-Sub Broche</th>
<th>Socket B2 D-Sub Broche</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGND</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>/Rx-/Tx</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Rx-Tx</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

RS-485 sur D-Sub connecteur avec PCD2.M480

<table>
<thead>
<tr>
<th>Affectation RS-485</th>
<th>Socket B1 D-Sub Broche</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGND</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>/Rx-/Tx</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Rx-Tx</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
Le cavalier J1 doit être en position fermé (closed) sur les stations d’extrémité et rester en position ouverte (open) sur toutes les autres stations (état de livraison).

Pour plus de détails sur l’installation, reportez-vous au manuel 26/740 « Composants de réseau RS-485 ».

Le module Profibus PCD7.F772 (voir 3.10.3) et le module LON PCD7.F802 (voir 3.11) sont aussi dotés d’un port RS-485.

Ces modules ne sont cependant pas pris en charge par tous les PCD1/PCD2.

Le câblage est le même que le câblage RS-485 des modules PCD2.F520.

4.7.2 RS-422 avec PCD2.F520

RS-422 Emplacements B / B1, port #3

<table>
<thead>
<tr>
<th>Périphérique</th>
<th>Câble</th>
<th>Bornes à vis embrochables B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RX</td>
<td>RX</td>
<td></td>
</tr>
<tr>
<td>/TX</td>
<td>TX</td>
<td></td>
</tr>
<tr>
<td>SGND</td>
<td>PGND</td>
<td></td>
</tr>
</tbody>
</table>

Emplacement B(1)

<table>
<thead>
<tr>
<th>Port #3 RS-422</th>
<th>39</th>
<th>38</th>
<th>37</th>
<th>36</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-422</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>36</td>
<td>35</td>
</tr>
</tbody>
</table>

Port #2 RS-232

<table>
<thead>
<tr>
<th>Port #2 RS-232</th>
<th>33</th>
<th>32</th>
<th>31</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>30</td>
</tr>
</tbody>
</table>

PCD2.F520

J1

Le cavalier J1 doit être en position fermé (closed) sur les stations d’extrémité et rester en position ouverte (open) sur toutes les autres stations (état de livraison).

Pour plus de détails sur l’installation, reportez-vous au manuel 26/740 « Composants de réseau RS-485 ».

Le module Profibus PCD7.F772 (voir 3.10.3) et le module LON PCD7.F802 (voir 3.11) sont aussi dotés d’un port RS-485.

Ces modules ne sont cependant pas pris en charge par tous les PCD1/PCD2.

Le câblage est le même que le câblage RS-485 des modules PCD2.F520.
RS-422 : emplacement B2, port #5 (M170/M480 uniquement) pour périphérique

PCD2.F520

<table>
<thead>
<tr>
<th>Emplacement B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port #4 RS-232</td>
</tr>
<tr>
<td>Port #5 RS-422</td>
</tr>
<tr>
<td>Borne à vis embrochables</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>43</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>49</td>
</tr>
</tbody>
</table>

RS-422 sur D-Sub connecteur avec PCD2.M170

PCD2.M170

<table>
<thead>
<tr>
<th>Affectation RS-422</th>
<th>Socket B1 Port #3 D-Sub Broche</th>
<th>Socket B2 Port #5 D-Sub Broche</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGND 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>/Tx 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>/Rx 5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Rx 6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Tx 8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>- 9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

RS-422 sur D-Sub connecteur avec PCD2.M480

PCD2.M480

<table>
<thead>
<tr>
<th>Affectation RS-422</th>
<th>Socket B1 Port #3 D-Sub Broche</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGND 1</td>
<td>1</td>
</tr>
<tr>
<td>/Tx 3</td>
<td>3</td>
</tr>
<tr>
<td>/Rx 5</td>
<td>5</td>
</tr>
<tr>
<td>Rx 6</td>
<td>6</td>
</tr>
<tr>
<td>Tx 8</td>
<td>8</td>
</tr>
<tr>
<td>- 9</td>
<td>9</td>
</tr>
</tbody>
</table>
4.7.3 **RS-232 avec PCD2.F520/F522**

PCD2.F520:
1 interface RS-232 avec signaux RTS/CTS et
1 interface RS-485, sans séparation galvanique

ou
1 interface RS-232 avec signaux RTS/CTS et
1 interface RS-422 sans signaux RTS/CTS

pour emplacements B / B1/B2
ne convient pas à un modem

PCD2.F522:
au choix
2 interfaces RS-232 avec signaux RTS/CTS

ou
1 interface RS-232 complète avec signaux RTS/CTS, DTR/DSR, DCD

Cavalier pour
2 interfaces RS-232 ou
1 interface RS-232 complète

pour raccordement modem, emplacements B / B1/B2

Les modules PCD2.F520 et PCD2.F522 ne sont pris en charge que par les PCD2.M120/M150/M170/M480.

RS-232 : emplacements B / B1, port #2, pour périphérique

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>Câble</th>
<th>Bornes à vis embrochables B/B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTS</td>
<td></td>
<td>CTS</td>
</tr>
<tr>
<td>RTS</td>
<td></td>
<td>RTS</td>
</tr>
<tr>
<td>RXD</td>
<td></td>
<td>RXD</td>
</tr>
<tr>
<td>TXD</td>
<td></td>
<td>TXD</td>
</tr>
<tr>
<td>SGND</td>
<td></td>
<td>PGND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port # 3</th>
<th>Emplacement B(1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port # 2</th>
<th>RS-232</th>
<th>PCD2.F520 ou PCD2.F522 dans le mode 2 x RS-232</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
RS-232 : emplacements B / B1, port#3, pour périphérique

<table>
<thead>
<tr>
<th>Périphérique</th>
<th>Câble</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTS</td>
<td>CTS</td>
</tr>
<tr>
<td>RTS</td>
<td>RTS</td>
</tr>
<tr>
<td>RXD</td>
<td>RXD</td>
</tr>
<tr>
<td>TXD</td>
<td>TXD</td>
</tr>
<tr>
<td>SGND</td>
<td>PGND</td>
</tr>
</tbody>
</table>

Port #2

Port #3

Emplacement B(1)

PCD2.F522 dans le mode 2 x RS-232

Bornes à vis brochables B1

RS-232 : emplacement B2, port#4 (M170/M480 uniquement) pour périphérique

PCD2.F520 ou PCD2.F522 dans le mode 2x RS-232

Emplacement B2

PCD2.M170/M480

RS-232 : emplacement B2, port#5 (M170/M480 uniquement) pour périphérique

PCD2.F522 dans le mode 2 x RS-232

Emplacement B2

PCD2.M170/M480
RS-232 sur D-Sub connecteur avec PCD2.M170

<table>
<thead>
<tr>
<th>Port #3</th>
<th>Port #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGND</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RxD</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CTS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>RTS</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>TxD</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>TxD</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>TxD</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>TxD</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Les lignes de commande DTR/DSR et DCD ne sont pas disponibles sur ces interfaces. Si elles sont nécessaires, par exemple pour raccorder un modem, l'utilisation du module PCD7.F120 en A (port# 1) ou PCD2.F522 (en mode complet RS-232) en B1/B2 est recommandée.
4.7.4 Interface RS-232 complète avec PCD2.F522 (pour modem)

Interface RS-232 complète en B / B1, port#2, pour périphérique

<table>
<thead>
<tr>
<th>D-Sub Périphérique 25-pol</th>
<th>Câble</th>
<th>Emplacement B1(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 1 DCD</td>
<td>39</td>
<td>DCD</td>
</tr>
<tr>
<td>6 6 DSR</td>
<td>38</td>
<td>DSR</td>
</tr>
<tr>
<td>20 4 DTR</td>
<td>37</td>
<td>DTR</td>
</tr>
<tr>
<td>7 5 SGND</td>
<td>36</td>
<td>PGND</td>
</tr>
<tr>
<td>5 8 CTS</td>
<td>35</td>
<td>CTS</td>
</tr>
<tr>
<td>4 7 RTS</td>
<td>34</td>
<td>RTS</td>
</tr>
<tr>
<td>3 2 RXD</td>
<td>33</td>
<td>RXD</td>
</tr>
<tr>
<td>2 3 TXD</td>
<td>32</td>
<td>TXD</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>PGND</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Interface RS-232 complète en B2, port#4 (M170/M480 uniquement) pour périphérique

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emplacement B2</td>
<td>40 PGND</td>
<td>TXD</td>
<td>2 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41 TXD</td>
<td>RXD</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42 RTS</td>
<td>RTS</td>
<td>4 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 CTS</td>
<td>CTS</td>
<td>5 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44 PGND</td>
<td>SGND</td>
<td>7 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 DTR</td>
<td>DTR</td>
<td>20 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46 DSR</td>
<td>DSR</td>
<td>6 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47 Reserve</td>
<td>DCD</td>
<td>8 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 DCD</td>
<td>PGND</td>
<td>8 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49 PGND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interface RS-232 complète en B1, port#2, pour modem externe (DCE)

<table>
<thead>
<tr>
<th>DCE (ETCD)</th>
<th>D-Sub m, 25-pol. (Modem, z.B. Zyxel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD 8</td>
<td>DCD Reserve</td>
</tr>
<tr>
<td>DSR 6</td>
<td>DSR</td>
</tr>
<tr>
<td>DTR 20</td>
<td>DTR</td>
</tr>
<tr>
<td>SGND 7</td>
<td>PGND</td>
</tr>
<tr>
<td>CTS 5</td>
<td>CTS</td>
</tr>
<tr>
<td>RTS 4</td>
<td>RTS</td>
</tr>
<tr>
<td>RXD 3</td>
<td>RXD</td>
</tr>
<tr>
<td>TXD 2</td>
<td>TXD</td>
</tr>
<tr>
<td>SGND</td>
<td>PGND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emplacement B1</th>
<th>39 PCD2.F522 dans le mode 1 x RS-232 full</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 DCD</td>
<td></td>
</tr>
<tr>
<td>37 TXD</td>
<td></td>
</tr>
<tr>
<td>36 RTX</td>
<td></td>
</tr>
<tr>
<td>35 CTS</td>
<td></td>
</tr>
<tr>
<td>34 SGND</td>
<td></td>
</tr>
<tr>
<td>33 RXD</td>
<td></td>
</tr>
<tr>
<td>32 TXD</td>
<td></td>
</tr>
<tr>
<td>31 PGND</td>
<td></td>
</tr>
<tr>
<td>30 DCD</td>
<td></td>
</tr>
</tbody>
</table>
Interface RS-232 complète avec PCD2.F522 (pour modem)

Interface RS-232 complète en B2, port #4 (M170/M480 uniquement), pour modem externe (DCE)

Le cavalier du module doit être en position 1 interface RS-232 complète.
4.8 Ethernet TCP/IP

PCD7.F655 *
Module de communication intelligent pour la connexion à Ethernet-TCP/IP

* Les modules Ethernet PCD7.F650 et PCD7.F651 ne sont plus vendus.

Pour plus de détails, reportez-vous au manuel 26/776 « Ethernet-TCP/IP ».
4.9 Profibus

PCD7.F700
pour la connexion comme client/serveur Profibus FMS

PCD7.F750
pour la connexion comme Profibus DP maître

PCD7.F770
pour la connexion comme Profibus DP esclave

PCD7.F772
pour la connexion comme Profibus DP esclave, avec interface avec séparation galvanique RS-485

Tous les modules ne sont pas pris en charge par chaque Saia PCD®. Les possibilités de combinaison sont présentées dans les tableaux «4.2 Panorama des modules de communication embrochables PCD1» et «4.3 Panorama des modules de communication embrochables PCD2».

Pour éviter les réflexions, chaque segment doit être terminé aux extrémités. Conformément à la norme Profibus, ceci ne doit pas avoir lieu sur l’appareil. Les boîtiers d’extrémité PCD7.T160 ainsi que les connecteurs Profibus DP D-Sub 9 points disponibles dans le commerce conviennent parfaitement (sur les M170/M480 uniquement).

Pour plus de détails, reportez-vous au manuel 26/765 «Profibus DP» ou 26/742 «Profibus FMS».
4.9.1 Profibus DP maître, module PCD7.F750

PCD1.M120/M130 et PCD2.M120/M150
Le bus doit être raccordé directement au module PCD7.F750.

PCD2.M170/M480
Le bus peut être raccordé au connecteur D-Sub. L’affectation des broches est conforme à la norme Profibus. Alternativement le Profibus peut être attaché au bornes à vis embrochables.

<table>
<thead>
<tr>
<th>Emplacement</th>
<th>B1 Port#9</th>
<th>B2 Port#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de raccordement</td>
<td>D-Sub 9 pôle</td>
<td>Bornes à vis embrochables 10 pôle</td>
</tr>
<tr>
<td>Signal</td>
<td>Numéro de pin</td>
<td>Numéro de raccordement</td>
</tr>
<tr>
<td>RTS/CNTR-P</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>PGND</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>RxD/TxD-N</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>RxD/TxD-P</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>DP GND</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>DP +5 V</td>
<td>6</td>
<td>39</td>
</tr>
</tbody>
</table>
Cartes de communication

Profibus DP maître

PCD2.M480

<table>
<thead>
<tr>
<th>Emplacement</th>
<th>B1 Port#9</th>
<th>B2 Port#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de raccordement</td>
<td>D-Sub</td>
<td>Bornes à vis embrochables</td>
</tr>
<tr>
<td>Signal</td>
<td>9 pôle</td>
<td>10 pôle</td>
</tr>
<tr>
<td>Numéro de pin</td>
<td>Numéro de raccordement</td>
<td>Numéro de raccordement</td>
</tr>
<tr>
<td>RTS/CNTR-P</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>PGND</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>RxD/TxD-N</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>RxD/TxD-P</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>DP GND</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>DP +5 V</td>
<td>6</td>
<td>39</td>
</tr>
</tbody>
</table>
4.9.2 Profibus DP esclave, module PCD7.F770

PCD1.M120/M130 et PCD2.M120/M150

PCD7.F770 avec PCD2.M170
Le bus peut être raccordé au connecteur D-Sub. L’affectation des broches est conforme à la norme Profibus. Alternativement le Profibus peut être attaché au bornes à vis embrochables.

<table>
<thead>
<tr>
<th>Emplacement</th>
<th>B1 Port#9</th>
<th>B2 Port#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de raccordement</td>
<td>D-Sub 9 pôle</td>
<td>Bornes à vis embrochables 10 pôle</td>
</tr>
<tr>
<td>Signal</td>
<td>Numéro de pin</td>
<td>Numéro de raccordement</td>
</tr>
<tr>
<td>RTS/CNTR-P</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>PGND</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>Rx/D/TxD-N</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>Rx/D/TxD-P</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>DP GND</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>DP +5 V</td>
<td>6</td>
<td>39</td>
</tr>
</tbody>
</table>
PCD7.F772 avec PCD2.M170

Comme PCD7.F770 cependant par module un interface série RS-485 en plus

<table>
<thead>
<tr>
<th>Emplacement</th>
<th>B1 Port#3</th>
<th>B2 Port#5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de raccordement</td>
<td>Bornes à vis / vis embrochables</td>
<td>Bornes à vis / vis embrochables</td>
</tr>
<tr>
<td>Signal</td>
<td>Numéro de raccordement</td>
<td>Numéro de raccordement</td>
</tr>
<tr>
<td>/RX-/TX</td>
<td>32</td>
<td>42</td>
</tr>
<tr>
<td>RX-TX</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>PGND</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>
4.9.4 Profibus FMS, module PCD7.F700

PCD7.F700 avec PCD2.M120/150
Le bus doit être raccordé au PCD2.

<table>
<thead>
<tr>
<th>Emplacement</th>
<th>B1 FMS Client/Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de raccordement</td>
<td>Bornes à vis emboîchables</td>
</tr>
<tr>
<td>Signal</td>
<td>Numéro de raccordement</td>
</tr>
<tr>
<td>DP GND</td>
<td>38</td>
</tr>
<tr>
<td>RxD/TxD-P</td>
<td>37</td>
</tr>
<tr>
<td>RxD/TxD-N</td>
<td>36</td>
</tr>
<tr>
<td>PGND</td>
<td>35</td>
</tr>
</tbody>
</table>
PCD7.F700 avec PCD2.M170
Le bus peut être raccordé au connecteur D-Sub. L’affectation des broches est conforme à la norme Profibus. Alternativement le Profibus peut être attaché au bornes à vis embrochables.

<table>
<thead>
<tr>
<th>Emplacement</th>
<th>B1 FMS Client/Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de raccordement</td>
<td>D-Sub 9 pôle Numéro de pin Bornes à vis embrochables 10 pôle Numéro de raccordement</td>
</tr>
<tr>
<td>Signal</td>
<td>RxD/TxP-D 3 37 RxD/TxN-P 8 36 PGND 1 35 DP GND 5 38</td>
</tr>
</tbody>
</table>

Le module n’est pas doté de résistances de terminaison. L’utilisation d’un boîtier d’extrémité externe est recommandée (par ex. PCD7.T160).
4.10 LonWorks® (noeuds LON configurables librement)

PCD7.F800/F802

PCD7.F800
pour la connexion au réseau LonWorks® (topologie libre FTT-10)

PCD7.F802
pour la connexion au réseau LonWorks® (topologie libre FTT-10), avec port série supplémentaire RS-485, sans séparation galvanique

Tous les modules LON ne sont pas pris en charge par chaque Saia PCD®. Les possibilités de combinaison sont présentées dans les tableaux « 3.1 Vue d’ensemble des possibilités de communication du PCD1 » et « 3.2 Vue d’ensemble des possibilités de communication du PCD2 »

Pour plus de détails, reportez-vous au manuel 26/767 « LON ».

PCD1.M120/M130 et PCD2.M120/M150 LonWorks® PCD7.F80x en B / B1

Important :
Le blindage du câble et les bornes 0 ou 1 du module LON doivent être reliés à la masse « PGND » du
LonWorks® PCD7.F80x sur PCD2.M170

B1
PCD7.F80x

B2
PCD7.F80x

D-Sub
Broche
LonWorks®

1 -
2 -
3 LON A
4 -
5 LON GND
6 -
7 -
8 LON B
9 -

B1 ou
B2

Interface série RS-485 sur PCD7.F802 en B1

Câble

PCD7.F802

Borne à vis embrochables B1

39 39
38 38
37 37
36 36
35 -
34 34
33 33
32 32
31 31
30 -

Port #3

RS-485
RX-TX
PGND

interface série RS-485 sur PCD7.F802 en B2

PCD7.F802

Emplacement B2

Borne à vis embrochables B2

40 -
41 PGND
42 -
43 RX-TX
44 /RX-/TX
45 -
46 RS-485
47 RS-485
48 /RX-/TX
49 -

Câble

PGND
PGND
RS-485
RS-485
PGND
RX-TX
RX-TX

PCD2.M170

PGND
PGND
4.11 **Connection module for MP-Bus PCD2.T500**

![Connection module for MP-Bus PCD2.T500](image)

- **Coupleur pour automates PCD1 et PCD2**
- **Enfichable dans un emplacement de module d’E/S**
- **2 canaux de transmission RS-232 ou TTL**
- **2 canaux de raccordement des actionneurs, chacun regroupant 8 capteurs/actionneurs MFT/MFT2**
- **Connexion d’un très grand choix de capteurs: passifs, actifs, capteur 2 points sur actionneur**
- **Surveillance intégrée du fonctionnement de l’actionneur**
- **Contrôle de fonctionnement simplissime**

4.11.1 **Signaux de communication**

L’échange des données, en asynchrone, s’effectue au rythme de 1200 impulsions par seconde. L’automatisme tient lieu de «maître» du réseau, tandis que les actionneurs sont des «esclaves» qui ne communiquent que sur l’initiative du maître.

4.11.2 **Les commandes et signalisations du PCD2.T500**

Connexions pour mini-console de paramétrage MFT de BELIMO®

Lorsque le capot de l’automate est ôté, les branches A et B peuvent être équipées de fiches «jack» autorisant le raccordement d’une mini-console de paramétrage MFT de BELIMO®. Dès que l’appareil est branché, la communication bascule automatiquement sur celui-ci; l’automate en est aussitôt averti pour éviter toute coupure de transmission.

Il ya les dispositifs de paramétrage suivantes de BELIMO®:
- **Dispositif d’essai MFT-H** Avec sa propre alimentation / batteries
- **Outil PC MFT-P** Avec l’adaptateur ZIP-RS-232

Touches de test

Chaque branche a sa touche de commande permettant de tester la communication
avec tous les actionneurs raccordés.

Voyants de diagnostic

À gauche de ces touches, deux voyants (celui de gauche pour la branche A, celui de droite pour la branche B) affichent le résultat du test. En cas de défaut de communication entre l’actionneur raccordé et le maître Saia PCD®, la diode clignote. Le nombre de clignotements correspond à l’adresse de l’actionneur sur le bus; ces clignotements se répètent 5 fois de suite.

Voyants de fonctionnement

Ces voyants, visibles capot fermé, indiquent les états suivants :

<table>
<thead>
<tr>
<th>Voyant</th>
<th>Éteint</th>
<th>Allumé</th>
</tr>
</thead>
</table>
| 0 | Canal 1 = Branche A
 Canal 2 = Branche B |
| | | Canal 1=Branche B |
| 1 | Branche A en service | Branche A hors service |
| 2 | Émission de signaux sur branche A |
| 3 | Émission ou réception de signaux sur branche A |
| 4 | Branche B en service | Branche B hors service |
| 5 | Émission de signaux sur branche B |
| 6 | Émission ou réception de signaux sur branche B |

Adresse de base

Le PCD2.T500 peut se loger dans n’importe quel emplacement de module d’E/S du PCD1/PCD2. Signalons que l’adresse de base de cet emplacement est indispensable à la connexion logicielle du module (boîtes de fonctions). Néanmoins, pour faciliter le câblage, il est conseillé de choisir un emplacement au voisinage des ports de transmission.

4.11.3 Raccordement et câblage
La tension d'alimentation du PCD1/PCD2 sert habituellement à alimenter le PCD2.T500. Vous pouvez toutefois lui préférer une source externe pour alimenter le module et/ou les actionneurs. Cette tension doit présenter les particularités suivantes :

- 24 VCC ±20 % lissée ou
- 19 VAC ±15 % redressée double alternance avec condensateur de lissage 10000 µF/40 V

4.11.4 Possibilités d'alimentation

Alimentation commune automate/actionneurs

![Diagramme d'alimentation commune automate/actionneurs](image1)

Alimentation 24 VCC individuelle de l'automate et des actionneurs

![Diagramme d'alimentation 24 VCC individuelle](image2)

Alimentation séparée des actionneurs en 24 VCA

![Diagramme d'alimentation séparée des actionneurs](image3)
4.11.5 Possibilités de configuration du PCD2.T500

Exemple de configuration n° 1 sur PCD1.M1xx

- Automate de base PCD1.M1xx
- Coupleur doté d’un interface RS-232 (PCD7.F120 en A) et de 2 branches MP-Bus
- Passerelle vers autres réseaux amont

Exemple de configuration n° 2 sur PCD2.M170

- Automate de base PCD2.M170
- Coupleur A doté d’un interface RS-232 et de 2 branches MP-Bus
- Coupleur B doté de 2 interfaces RS-232 et de 2 branches MP-Bus
- Passerelle vers autres réseaux amont

Échange de données avec DDC-PLUS

Tout coupleur, qu’il s’agisse du PCD2.T500 ou du PCD7.F180, doit communiquer avec le maître par un port série RS-232. Sur le PCD2.T500, il faut câbler ce port en manuel à partir de l’interface de communication Saia PCD® choisie.

Le coupleur PCD2.T500 possède deux branches «A» et «B» qui peuvent opérer sur 1 ou 2 interfaces RS-232, celle du port n° 1 (bornes 2 et 3) concernant la première branche et celle du port n° 2 (bornes 0 et 1) la deuxième branche.

Si votre application ne dispose que d’une interface RS-232 sur le Saia PCD®, il est possible d’exploiter les deux branches (soit 16 actionneurs max) sur cette liaison, moyennant un multiplexage qui permet de basculer d’une branche à l’autre. Une réserve: plus le nombre d’actionneurs regroupés sur une seule interface RS-232 est élevé, plus la charge pesant sur chaque branche est lourde.

En cas de multiplexage, il faut additionner les temps de transmission de tous les actionneurs sur les deux branches pour obtenir le temps de cycle total (Cf. exemples ci-dessous).
4.11.6 Temps de transmission sur le bus MP

Chaque instruction est transmise sur le bus en environ 150 millisecondes. Signalons qu’une commande comporte toujours une demande et une réponse, soit 2 instructions. Les exemples suivants concernent aussi bien les servomoteurs pour clapets que les servomoteurs pour vannes.

1. Exemple pour 1 servomoteur MFT(2)
 - Le maître envoie une consigne au MFT(2) – 1ère instruction.
 - Le maître lit la valeur réelle fournie par le MFT(2) – 2ème instruction.

La transmission comprend donc 2 instructions de 150 ms et dure environ 300 ms.

2. Exemple pour plusieurs servomoteurs MFT(2)
 - Le maître envoie une consigne à chacun des MFT(2) numérotés 1 à 8, soit 8 instructions au total.
 - Le maître lit les valeurs réelles issues des MFT(2), soit 8 instructions au total.

La transmission comprend donc 16 instructions de 150 ms et totalise près de 2,4 s.

4.11.7 Calcul des longueurs de ligne

Raccordement du bus MP
- Le réseau est constitué d’un câble à 3 fils (transmission MP et alim 24 V).
- Il ne nécessite aucun câble spécial ou résistance de terminaison.

<table>
<thead>
<tr>
<th>Tableau des longueurs de bus MP</th>
<th>Alim</th>
<th>Longueurs de ligne maxi (section conducteur 1,5 mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation totale [W]</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Longueur de ligne maxi (m)*</td>
<td>24 VCC</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>24 VCA</td>
<td>200</td>
</tr>
</tbody>
</table>

* Toutes ces valeurs sont approximatives et peuvent varier selon les conditions locales.
- Les longueurs de ligne sont limitées par la puissance totale de tous les servomoteurs MFT/MFT2 raccordés, le type d’alimentation (24 V CA ou 24 V CC sur le bus), la section des conducteurs.
- Le choix de sections de conducteur plus élevées permet d’accroître la longueur du bus MP.
- Il est possible d’atteindre la longueur maxi de 800 m avec des servomoteurs alimentés en local sous 24 VCA, par un transformateur séparé.

Pour un complément d’informations sur les longueurs de ligne et la connectique du bus MP, veuillez contacter la société BELIMO Automation.
4.11.8 Longueur maxi sous 24 VCA

Longueurs de ligne maximales

Les puissances de dimensionnement [VA] de tous les MFT / MFT2 utilisés doivent être additionnées; la lecture des différentes courbes du diagramme ci-dessus permet de déterminer les longueurs de câble correspondantes.

Exemple: 1 × NM.., 1 × AM.., 1 × AF.. et 1 × NV... sont raccordés au bus MP.

Puissance de dimensionnement totale: 3 VA + 5 VA + 10 VA + 5 VA = 23 VA

Puissance de dimensionnement totale des servomoteurs MFT2 [VA]

On obtient alors les longueurs de câble suivantes:
- Câble avec conducteur de section Ø 0.75 mm² : longueur 25 m
- Câble avec conducteur de section Ø 1.0 mm² : longueur 33 m
- Câble avec conducteur de section Ø 1.5 mm² : longueur 50 m
- Câble avec conducteur de section Ø 2.5 mm² : longueur 85 m

4.11.9 Longueur maxi sous 24 Vcc

Longueurs de ligne maximales

Exemple: 1 × NM.., 1 × AM.., 1 × AF.. et 1 × NV.. sont raccordés au bus MP.

Consommation totale: 1.3 W + 2.5 W + 6.0 W + 3.0 W = 12.8 W

Consommation totale des servomoteurs MFT2 [W]

La longueur de câble, par rapport à la puissance effective, s’applique à une alimentation CC (tension d’alimentation minimale: 24 VCC)

On obtient alors les longueurs de câble suivantes:
- Câble avec conducteur de section 0.75 mm² : longueur 60 m
- Câble avec conducteur de section 1.0 mm² : longueur 80 m
- Câble avec conducteur de section 1.5 mm² : longueur 115 m
- Câble avec conducteur de section 2.5 mm² : longueur 200 m

4.11.10 Longueur maxi sous 24 VCA (in situ)

L’alimentation en local des actionneurs en 24 VCA par un transformateur séparé permet d’accroître considérablement ces longueurs de ligne, quelle que soit la puissance des actionneurs raccordés:

<table>
<thead>
<tr>
<th>Section du conducteur</th>
<th>Longueur de ligne maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 mm²</td>
<td>800 m</td>
</tr>
<tr>
<td>1.0 mm²</td>
<td>800 m</td>
</tr>
<tr>
<td>1.5 mm²</td>
<td>800 m</td>
</tr>
<tr>
<td>2.5 mm²</td>
<td>800 m</td>
</tr>
</tbody>
</table>
5 Modules d’entrées/sorties (E/S)

Tous les modules d’E/S pour les séries PCD1 et PCD2 sont décrites dans le manuel 27-600.
6 **Système de câblage et adaptateurs**

6.1 **Câbles de raccordement rapide (avec connecteur côté Saia PCD®)**

Le raccordement rapide et facile des modules d’E/S du Saia PCD® passe par un câble préfabriqué. Côté automate, le connecteur est prêt à l’emploi : il suffit de l’enfiler pour raccorder. Côté procédé, la connectique est constituée soit de connecteurs pour câble plat raccordés à l’adaptateur bornier ou à l’embase à relais, soit de câbles repérés, selon leur section, par numéro (0,5 mm²) ou code couleur (0,25 mm²).

Pour les détails voir le manuel système de câblage et adaptateurs no. 26-792.
7 **Entretien**

Les composants PCD1 et PCD2, à l’exception de quelques unités centrales (PCD1.M130 et PCD2.Mxxx) dont la pile doit être changée de temps en temps, ne nécessitent pas d’entretien.

7.1 **Changement de pile sur les UCs PCD1.M130 et PCD2.Mxxx**

Quand est-il nécessaire de changer la pile ?

L’unité centrale contrôle la tension de la pile. Le voyant „Battery“ s’allume et le XOB 2 est appelé si

- la tension de la pile est inférieure à 2,4 V ou supérieure à 3,5 V.
- la pile est déchargée ou s’est interrompue.
- il n’y a pas de pile.

La pile doit être changée dans ces trois cas. Nous vous recommandons de changer les piles lorsque le Saia PCD® est sous tension afin d’éviter toute perte de données.

<table>
<thead>
<tr>
<th>Type d’UC</th>
<th>Tampon</th>
<th>Marge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD1.M110</td>
<td>Super Cap (soudé et sans entretien)</td>
<td>30 jours ¹ ²</td>
</tr>
<tr>
<td>PCD1.M120/M125</td>
<td>Super Cap (soudé et sans entretien)</td>
<td>7 jours ³</td>
</tr>
<tr>
<td>PCD1.M130/M135</td>
<td>Pile au lithium CR 2032</td>
<td>1 à 3 ans ³</td>
</tr>
<tr>
<td>PCD2.M110/M120</td>
<td>2 x piles alcalines de format LR03/AAA/AM4/Micro</td>
<td>1 à 5 ans ³</td>
</tr>
<tr>
<td>version matérielle < H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M110/M120</td>
<td>Pile au lithium CR 2032</td>
<td>1 à 3 ans ³</td>
</tr>
<tr>
<td>version matérielle >= H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.M150/M170/M480</td>
<td>Pile au lithium CR 2032</td>
<td>1 à 3 ans ³</td>
</tr>
</tbody>
</table>

¹) Le PCD1.M110 ne dispose pas d’une horloge matérielle. La marge est donc plus grande que celle du PCD1.M120.
³) Plus la température ambiante est élevée, plus la marge est courte.

Les unités centrales PCD1.M110 et M120 sont équipées de condensateurs tampons soudés. Elles ne nécessitent donc pas d’entretien.

Vérifiez la polarité des piles :

- la polarité des piles alcalines est indiquée sur le socle.
- Insérez les piles boutons CR2032 de manière à ce que la borne plus soit visible.
Conséquences d'un changement de batterie trop en retard:

- Tous les contenus de RAM sont perdus, c'est-à-dire
 - ressources (registres, indicateurs, temporisateur, compteur ...)
 - d'extension de mémoire (texte / DB ≥ 4000)
 - program utilisateur dans le cas de RAM

- L'horodateur nvol (Real Time Clock) perd la date du jour
 - La date et l'heure peut être écrite avec le «SAIA en ligne Debug» dans PG5.
 - Après avoir changé la batterie
 - Pour ce faire, la commande suivante doit être écrite:

 Write clock dd/mm/yy hh:mm:ss [week-of-year [day-of-week]] CR

7.2 Mise à jour du firmware

7.2.1 Mise à jour du firmware des PCD2.M110/M120

Les versions du firmware des PCD2.M110/M120 sont souvent rétrocompatibles avec le matériel. Les anciennes UCs peuvent être équipées d’un nouveau firmware afin qu’elles bénéficient de nouvelles fonctions. Nous ne pourrons malheureusement pas garantir cette fonction à l'avenir. Elle a cependant déjà aidé de nombreux clients et nous nous efforcerons de la maintenir aussi longtemps que possible.

A ce stade, les restrictions suivantes s’imposent :

- La version matérielle D1 de juillet/août 1995 ne fonctionne qu’avec la version $34 du firmware. Aucune mise à jour du firmware n’est possible avec ces automates.
- L’utilisation de cartes de communication intelligentes, telles que Profibus DP, LON et Ethernet, ne nécessite que des versions minimales du matériel et du firmware. Note : ce thème est traité dans les manuels consacrés aux cartes de communication.

Le firmware des PCD2.M110/M120 est stocké dans deux EPROMs. **De nouvelles puces pour firmware peuvent être gravées à tout moment avec un graveur EPROM (par ex. Galep-4).** Vous pouvez télécharger la version actuelle du firmware sur le site www.saia-support.com. Des puces pour firmware vierges sont disponibles sous la réf. de commande 4 502 7126 0 (deux puces doivent être commandées par UC).

7.2.2 Mise à jour du firmware du PCD2.M150

Les versions du firmware du PCD2.M150 sont souvent rétrocompatibles avec le matériel. Les anciennes UCs peuvent être équipées d’un nouveau firmware afin qu’elles bénéficient de nouvelles fonctions. Nous ne pourrons malheureusement pas garantir cette fonction à l'avenir. Elle a cependant déjà aidé de nombreux clients et nous nous efforcerons de la maintenir aussi longtemps que possible.

Le firmware du PCD2.M150 est stocké dans deux Flash EPROMs. **De nouvelles puces pour firmware peuvent être gravées à tout moment avec un graveur EPROM (par ex. Galep-4).** Au contraire des M170/M480, aucune mise à jour par téléchargement n’est possible. Vous pouvez télécharger la version actuelle du firmware sur le site www.saia-support.com. Des puces pour firmware vierges sont disponibles sous la réf. de commande 4 502 7341 0 (deux puces doivent être commandées par UC).
7.2.3 **Mise à jour du firmware des PCD2.M170/M480**

Les versions du firmware des PCD2.M170/M480 sont souvent rétrocoupables avec le matériel. Les anciennes UCs peuvent être équipées d’un nouveau firmware afin qu’elles bénéficient de nouvelles fonctions. Nous ne pourrons malheureusement pas garantir cette fonction à l’avenir. Elle a cependant déjà aidé de nombreux clients et nous nous efforcerons de la maintenir aussi longtemps que possible.

Le firmware des PCD2.M170/M480 est stocké dans un Flash EPROM soudé sur la carte mère. Il est possible de mettre à jour le firmware en téléchargeant une nouvelle version dans le PG5. La procédure est la suivante :

- Établir une connexion entre le PG5 et l’UC, comme pour le téléchargement d’une application (selon les capacités, en série avec un câble PGU, modem\(^1\), USB, Ethernet).
- Ouvrir le configurateur en ligne et passer hors connexion.
- Dans le menu Tools, sélectionner « Update firmware », puis sélectionner, à l’aide de la fonction Parcourir, le chemin vers le fichier de la nouvelle version du firmware. Prendre gare à ne sélectionner qu’un fichier à télécharger.
- Lancer le téléchargement.
- Après le téléchargement, l’alimentation du Saia PCD\(^2\) doit être maintenue pendant 2 minutes. L’UC pourrait autrement se bloquer, auquel cas il faudrait la renvoyer à l’usine.

1) Une connexion par modem n’est pas toujours fiable et peut parfois nécessiter une intervention sur site. Les autres possibilités de connexion sont préférables.
A.1 Icônes

<table>
<thead>
<tr>
<th>Icône</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄️</td>
<td>Dans les manuels, ce symbole indique au lecteur des informations supplémentaires qui sont contenues dans ce manuel ou dans d'autres manuels ou documents techniques. En règle générale, il n'existe pas de lien direct avec ces documents.</td>
</tr>
<tr>
<td>⚡️</td>
<td>Ce symbole informe le lecteur du risque de décharges électrostatiques en cas de contact avec les composants. Recommandation : toucher au moins la borne négative du système (armoire du connecteur PGU) avant d’entrer en contact avec les composants électroniques. Il est préférable d’utiliser un bracelet antistatique de terre avec le câble relié à la borne négative du système.</td>
</tr>
<tr>
<td>🚨</td>
<td>Ce signe accompagne les instructions qui doivent impérativement être observées.</td>
</tr>
<tr>
<td>Classic</td>
<td>Les explications jointes à ce signe ne concernent que pour la série Saia PCD® Classic.</td>
</tr>
<tr>
<td>xx7</td>
<td>Les explications jointes à ce signe ne concernent que pour la série Saia PCD® xx7.</td>
</tr>
</tbody>
</table>
A.2 Définition des interfaces séries

A.2.1 RS-232

Désignation des lignes de signaux :

<table>
<thead>
<tr>
<th>Lignes de données</th>
<th>TXD</th>
<th>Transmit Data</th>
<th>Emission de données</th>
<th>RXD</th>
<th>Receive Data</th>
<th>Réception de données</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignes de signaux et de liaison</td>
<td>RTS</td>
<td>Request to send</td>
<td>Demande d’émission</td>
<td>CTS</td>
<td>Clear to send</td>
<td>Prêt à émettre</td>
</tr>
<tr>
<td></td>
<td>DTR</td>
<td>Data terminal ready</td>
<td>Terminal prêt</td>
<td>DSR</td>
<td>Data set ready</td>
<td>Etat prêt</td>
</tr>
<tr>
<td></td>
<td>RI</td>
<td>Ring indicator</td>
<td>Appel entrant</td>
<td>DCD</td>
<td>Data carrier detect</td>
<td>Correspondant prêt</td>
</tr>
</tbody>
</table>

Signaux vers RS-232

<table>
<thead>
<tr>
<th>Type de signal</th>
<th>Etat logique</th>
<th>Valeur de consigne</th>
<th>Valeur nominale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaux de données</td>
<td>0 (space)</td>
<td>+3 V à +15 V</td>
<td>+7 V</td>
</tr>
<tr>
<td></td>
<td>1 (mark)</td>
<td>-15 V à -3 V</td>
<td>-7 V</td>
</tr>
<tr>
<td>Signaux de contrôle</td>
<td>0 (off)</td>
<td>-15 V à -3 V</td>
<td>-7 V</td>
</tr>
<tr>
<td></td>
<td>1 (on)</td>
<td>+3 V à +15 V</td>
<td>+7 V</td>
</tr>
</tbody>
</table>

L’état de repos pour les signaux de données est “mark”. pour les signaux de contrôle est “off”
A.2.2 **RS-485/422**

Signaux vers RS-485 (RS-422)

<table>
<thead>
<tr>
<th>5V</th>
<th>Emetteur inactif</th>
<th>mark</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>4V</td>
<td>VOZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3V</td>
<td>/TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2V</td>
<td>TX</td>
<td></td>
<td>VOL</td>
</tr>
<tr>
<td>1V</td>
<td>VOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOZ = 0,9 V min à 1,7 V
VOH = 2 V min (avec charge) à 5 V max (sans charge)
VOL = -2 V à -5 V

En état inactif, RS-422 est en position “mark”.

RS-422 :

<table>
<thead>
<tr>
<th>Type de signal</th>
<th>Etat logique</th>
<th>Polarité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal de données</td>
<td>0 (space) 1 (mark)</td>
<td>TX positif vers /TX /TX positif vers TX</td>
</tr>
<tr>
<td>Signal de contrôle</td>
<td>0 (off) 1 (on)</td>
<td>/RTS positif vers RTS RTS positif vers /RTS</td>
</tr>
</tbody>
</table>

RS-485 :

<table>
<thead>
<tr>
<th>Type de signal</th>
<th>Etat logique</th>
<th>Polarité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal de données</td>
<td>0 (space) 1 (mark)</td>
<td>RX-TX positif vers /RX-/TX /RX-/TX positif vers RX-TX</td>
</tr>
</tbody>
</table>

Tous les fabricants n’utilisent pas les mêmes brochages. Les lignes de données doivent donc, dans certains cas, être croisées.

Pour garantir le fonctionnement sans erreur d’un réseau RS-485, le réseau doit être fermé aux deux extrémités. Les câbles et les résistances de terminaison doivent être choisis conformément au manuel 26/740 « Composants de réseau RS-485 pour la gamme Saia PCD® ».
A.2.3 **TTY/boucle de courant**

Signaux vers TTY/BC

<table>
<thead>
<tr>
<th>Raccordement 11</th>
<th>Raccordement 13</th>
<th>Raccordement 16</th>
<th>Raccordement 18</th>
<th>Raccordement 12</th>
<th>Raccordement 14</th>
<th>Raccordement 17</th>
<th>Raccordement 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>TA</td>
<td>TC</td>
<td>TG</td>
<td>RS</td>
<td>RA</td>
<td>RC</td>
<td>RG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type de signal</th>
<th>Valeur de consigne</th>
<th>Valeur nominale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant pour L logique (space)</td>
<td>-20 mA à + 2 mA</td>
<td>0 mA</td>
</tr>
<tr>
<td>Courant pour H logique (mark)</td>
<td>+12 mA à +24 mA</td>
<td>+20 mA</td>
</tr>
<tr>
<td>Tension à vide à TS, TR</td>
<td>+16 V à +24 V</td>
<td>+24 V</td>
</tr>
<tr>
<td>Courant de court-circuit à TS, RS</td>
<td>+18 mA à +29,6 mA</td>
<td>+23,2 mA</td>
</tr>
</tbody>
</table>

L’état de repos des signaux de données est “mark”. L’utilisateur choisira le mode de connexion « actif » ou « passif » à l’aide de ponts à placer sur les bornes à vis.

Le débit max. des TTY/boucles de courant 20 mA est 9 600 bps.
A.3 Protocoles sur les ports séries

A.3.1 Protocoles pris en charge par le firmware

<table>
<thead>
<tr>
<th>Panorama des protocoles et prise en charge par le firmware des diverses UCs</th>
<th>Objectif</th>
<th>Pris en charge par</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGU avec broche 6 (DSR) du connecteur PGU sur « 1 » (P800, Full Protocol)</td>
<td>Programmation, débogage, a été remplacé dans les nouvelles versions par une fonction équivalente avec mode Parité S-Bus.</td>
<td>× ✓ × ×</td>
</tr>
<tr>
<td>PGU avec broche 6 (DSR) du connecteur PGU sur « 1 » logique (mode Parité, Full Protocol)</td>
<td>Programmation, débogage</td>
<td>✓1) × ✓1) ✓1)</td>
</tr>
<tr>
<td>PGU S-Bus sur le port PGU, avec broche 6 (DSR) du connecteur PGU sur « 0 » logique (mode Données, Parité ou Coupure, Full Protocol)</td>
<td>Programmation, débogage, visualisation. Permet aussi d’accéder via une passerelle aux stations d’un autre réseau S-Bus.</td>
<td>✓2) ✓2) ✓2) ✓2)</td>
</tr>
<tr>
<td>S-Bus série sur port série quelconque (mode Données, Parité ou Coupure)</td>
<td>Echange de données avec d’autres automates ou avec des E/S déportées. Portait auparavant simplement le nom S-Bus.</td>
<td>✓3) ✓3) ✓3) ✓3)4)</td>
</tr>
<tr>
<td>Mode D (version réduite du P800)</td>
<td>Echange de données sur connexions point par point</td>
<td>✓5) ✓5) ✓5) x</td>
</tr>
<tr>
<td>mode Caractère (MC1 à MC5)</td>
<td>Envoi de caractères ou de textes sur des ports séries, base de la création de protocoles propres dans le programme utilisateur</td>
<td>✓6) ✓6) ✓6) ✓6)</td>
</tr>
</tbody>
</table>

1) Requiert l’utilisation du câble de programmation PCD8.K111
2) Requiert une configuration appropriée dans les paramètres matériels
4) Le mode Coupure n’est pas pris en charge, le mode Parité n’est pas possible sur le port 1.
5) obsolète, pour les applications récentes, remplacer par le mode Données Serial-S-Bus.
6) Le mode MC5 (RS-485 avec libération immédiate de la ligne de données après l’émission du dernier caractère) requiert au minimum les versions du firmware suivantes :
 - PCD1 : V080
 - PCD2.M110/M120 : V090
 - PCD2.M150 : V0C0
 - PCD2.M170 : V010

A.3.2 Protocoles implémentés dans le programme utilisateur

Il est possible (avec de très bonnes connaissances en programmation LIST) d’implémenter n’importe quel type de protocole en se basant le mode Caractère.

Ainsi, nos partenaires système ont, pour un grand nombre de protocoles, permis à nos automates de communiquer avec les composants des fabricants les plus divers, par ex. Modbus, M-Bus, etc.

Veuillez vous reporter à la page Links du site www.sbc-support.com pour obtenir des liens vers les partenaires système.
A.4 Codes de commande

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automates de base pour 4 modules d’E/S PCD2 ou modems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD1.M110</td>
<td>jusqu’à 64 E/S, 1 port, 17 Ko de RAM, 16 MHz</td>
<td>920 g</td>
</tr>
<tr>
<td>PCD1.M125</td>
<td>jusqu’à 64 E/S (avec C100), jusqu’à 4 ports, 128 Ko de RAM, 16 MHz</td>
<td>920 g</td>
</tr>
<tr>
<td>PCD1.M135</td>
<td>jusqu’à 64 E/S (avec C100), jusqu’à 4 ports, 128 Ko de RAM, 25 MHz</td>
<td>920 g</td>
</tr>
</tbody>
</table>

Automates de base pour 8 modules d’E/S PCD2 ou modems		
PCD2.M110	jusqu’à 128 E/S, 2 ports, 128 Ko de RAM, 16 MHz	860 g
PCD2.M120	jusqu’à 255 E/S (avec C100), jusqu’à 4 ports, 128 Ko de RAM, 16 MHz	920 g
PCD2.M150	jusqu’à 255 E/S (avec C100), jusqu’à 4 ports, 128 Ko de RAM, 25 MHz	920 g
PCD2.M170	jusqu’à 511 E/S (avec PCD3.LIO), jusqu’à 6 ports, 1 Mo de RAM, 25 MHz	950 g
PCD2.M480	jusqu’à 1023 E/S (avec PCD3.LIO), jusqu’à 8 ports, 1 Mo de RAM, toute dernièrerge technologie µC, 162 MHz (230 Mips)	950 g

Boîtiers d’extension		
PCD2.C100	pour 8 modules d’E/S supplémentaires	560 g
PCD2.C150	pour 4 modules d’E/S supplémentaires	350 g

PCD3.RIO/LIO		
PCD3.C100	pour 4 modules d’E/S PCD3	350 g
PCD3.C110	pour 2 modules d’E/S PCD3	180 g
PCD3.C200	pour 4 modules d’E/S PCD3, alimentation 24 VCC intégrée	350 g
PCD4.C225	Module bus de couplage avec 2 emplacements de module pour modules d’E/S de la gamme PCD4	200 g
PCD3.T760	pour 4 modules d’E/S PCD3, Profinbus DP, alimentation 24 VCC intégrée	380 g
PCD3.T765 1)	comme PCD3.T760 + possibilité d’implémenter des modules logiciels spécifiques à l’utilisateur (plug-in)	380 g

Modules de bus d’E/S PCD4		
PCD4.C220	avec 2 emplacements de module supplémentaires	375 g
PCD4.C260	avec 6 emplacements de module supplémentaires	1100 g

Câbles de liaison pour boîtier d’extension ou module de bus de couplage		
PCD2.K100	Longueur 0,5 m (montage vertical avec boîtier C1.., écartement max. 150 mm)	65 g
PCD2.K110	Longueur 0,7 m (montage horizontal avec boîtier C1..)	70 g
PCD2.K106	Longueur 0,7 m (PCD2.Mxx0 ∈ PCD3.LIO)	68 g
PCD3.K010	Connecteur (PCD3.LIO ↔ PCD3.LIO)	40 g
PCD2.K120	Longueur 2 m (pour module de bus de couplage)	200 g
PCD8.K111	Câble de raccordement à un PC avec connecteur 9 points (PC ↔ PGU)	200 g

Extensions mémoire		
4 502 7013 0 2)	Puce RAM de 128 Ko/1 Mbit	12 g
4 502 7175 0 2)	Puce RAM de 512 Ko/4 Mbits	12 g
4 502 7126 0	Puce EPROM de 128 Ko/1 Mbit	12 g
4 502 7223 0	Puce EPROM de 512 Ko/4 Mbits	12 g
4 502 7141 0	Puce Flash EPROM de 128 Ko/1 Mbit	12 g
4 502 7224 0	Puce Flash EPROM de 512 Ko/4 Mbits	12 g
PCD7.R400	Carte Flash de 1 Mo pour PCD2.M170/M480, pour sauvegarde	6 g

1) Sur demande.
2) Risque de perte de données en cas d’emploi de RAM d’origine tierce.
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartes de communication</td>
<td>pour emplacement A</td>
<td></td>
</tr>
<tr>
<td>PCD7.F110 3)</td>
<td>avec interface RS-422/RS-485 (sans séparation galvanique)</td>
<td>8 g</td>
</tr>
<tr>
<td>PCD7.F120 3)</td>
<td>avec interface RS-232 (convient à un modem)</td>
<td>8 g</td>
</tr>
<tr>
<td>PCD7.F121 3)</td>
<td>avec interface RS-232 (convient à un modem)</td>
<td>8 g</td>
</tr>
<tr>
<td>PCD7.F130 3)</td>
<td>avec interface boucle de courant 20 mA</td>
<td>8 g</td>
</tr>
<tr>
<td>PCD7.F150 3)</td>
<td>avec interface RS-485 (avec séparation galvanique)</td>
<td>8 g</td>
</tr>
<tr>
<td>PCD7.F180 3)</td>
<td>MP-Bus Belimo (basé sur RS-232)</td>
<td>8 g</td>
</tr>
<tr>
<td>Modules métiers</td>
<td>pour emplacement B(1)</td>
<td></td>
</tr>
<tr>
<td>PCD2.F520 3)</td>
<td>avec ports série RS-232 et RS-422/RS-485 (peut aussi être installé en B2)</td>
<td>35 g</td>
</tr>
<tr>
<td>PCD2.F522 3)</td>
<td>au choix, 2 × RS-232 ou 1 × RS-232 (convient à un modem)</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.F530 3)</td>
<td>avec affichage 6 chiffres et ports séries RS-232, RS-422 et RS-485</td>
<td>45 g</td>
</tr>
<tr>
<td>Connexions bus de terrain</td>
<td>pour emplacements B(1) et B2</td>
<td></td>
</tr>
<tr>
<td>PCD7.F700 3)</td>
<td>Couplure Profibus FMS</td>
<td>45 g</td>
</tr>
<tr>
<td>PCD7.F750 3)</td>
<td>Couplure Profibus DP (maître)</td>
<td>45 g</td>
</tr>
<tr>
<td>PCD7.F770 3)</td>
<td>Couplure Profibus DP (esclave)</td>
<td>45 g</td>
</tr>
<tr>
<td>PCD7.F772 3)</td>
<td>Couplure esclave Profibus DP, avec interface RS-485 à séparation galvanique</td>
<td>45 g</td>
</tr>
<tr>
<td>PCD7.F800 3)</td>
<td>Couplure LonWorks®</td>
<td>45 g</td>
</tr>
<tr>
<td>PCD7.F802 3)</td>
<td>Couplure LonWorks® avec port RS-485 à séparation galvanique</td>
<td>45 g</td>
</tr>
<tr>
<td>PCD7.F655 3)</td>
<td>Connexion réseau avec module Ethernet</td>
<td>45 g</td>
</tr>
<tr>
<td>Modules modem</td>
<td>pour emplacement de module d’E/S</td>
<td></td>
</tr>
<tr>
<td>PCD2.T814</td>
<td>Analogique à 33600 bps (interface RS-232 et TTL)</td>
<td>50 g</td>
</tr>
<tr>
<td>PCD2.T851</td>
<td>Numérique RNIS-TA (interface RS-232 et TTL)</td>
<td>50 g</td>
</tr>
<tr>
<td>Accessoires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piles</td>
<td>Pile au lithium CR2032 (pile-bouton) pour PCD1.M135 et PCD2.Mxx0</td>
<td>10 g</td>
</tr>
<tr>
<td>spécialisée</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capot</td>
<td>Capot pour PCD1 avec découpe pour terminal PCD7.D162</td>
<td>15 g</td>
</tr>
<tr>
<td>4 104 7338 0</td>
<td>Capot pour PCD1 avec découpe pour coupleur RJ45 (TCP/IP)</td>
<td></td>
</tr>
<tr>
<td>4 104 7409 0</td>
<td>Capot pour PCD2.M150 avec découpe pour coupleur RJ45 (TCP/IP)</td>
<td></td>
</tr>
<tr>
<td>4 104 7410 0</td>
<td>Puces pour mise à jour du firmware</td>
<td></td>
</tr>
<tr>
<td>4 502 7178 0</td>
<td>PCD1 (commander 1 unité par UC)</td>
<td>15 g</td>
</tr>
<tr>
<td>4 502 7126 0</td>
<td>PCD2.M110/M120 (commander 2 unités par UC)</td>
<td>15 g</td>
</tr>
<tr>
<td>4 502 7341 0</td>
<td>PCD2.M150 (commander 2 unités par UC)</td>
<td>15 g</td>
</tr>
</tbody>
</table>

Borniers à vis enfichables

| 4 405 4847 0 | 10 bornes (standard) | 17 g |
| 4 405 4869 0 | 14 bornes (pour ..A250) | 9 g |

3) Veuillez consulter les chapitres 4.1 et 4.2 concernant la compatibilité avec l’automate de base.
5) Non recommandé pour les nouveaux produits.
Codes de commande

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules d’entrée TOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.E110</td>
<td>24 VCC, Retard d’entrée typique 8 ms (tension pulsée possible)</td>
<td>35 g</td>
</tr>
<tr>
<td>PCD2.E111</td>
<td>24 VCC, Retard d’entrée 0,2 ms typique (tension lissée obligatoire)</td>
<td>35 g</td>
</tr>
<tr>
<td>PCD2.E112</td>
<td>12 VCC, Retard d’entrée 9 ms typique (tension pulsée possible)</td>
<td>35 g</td>
</tr>
<tr>
<td>PCD2.E116</td>
<td>5 VCC, Retard d’entrée 0,2 ms typique (tension lissée obligatoire)</td>
<td>35 g</td>
</tr>
<tr>
<td>PCD2.E160</td>
<td>24 VCC, Retard d’entrée 8 ms typique (tension pulsée possible, raccordement à un câble 34 contacts)</td>
<td>25 g</td>
</tr>
<tr>
<td>PCD2.E161</td>
<td>24 VCC, Retard d’entrée 0,2 ms typique (tension lissée obligatoire, raccordement à un câble 34 contacts)</td>
<td>25 g</td>
</tr>
<tr>
<td>PCD2.E165</td>
<td>24 VCC, Retard d’entrée 8 ms typique (tension pulsée possible, raccordement à un bornier à ressort 20 contacts)</td>
<td>30 g</td>
</tr>
<tr>
<td>PCD2.E166</td>
<td>24 VCC, Retard d’entrée 0,2 ms typique (tension lissée obligatoire, raccordement à un bornier à ressort 20 contacts)</td>
<td>30 g</td>
</tr>
<tr>
<td>Modules d’entrée TOR, avec séparation galvanique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.E500</td>
<td>110 à 240 VCA, Retard d’entrée typique 10 ms (avec séparation galvanique)</td>
<td>55 g</td>
</tr>
<tr>
<td>PCD2.E610</td>
<td>24 VCC, Retard d’entrée typique 10 ms (tension pulsée possible)</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.E611</td>
<td>24 VCC, Retard d’entrée typique 1 ms (tension lissée obligatoire)</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.E613</td>
<td>48 VCC, Retard d’entrée typique 10 ms (tension pulsée possible)</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.E616</td>
<td>5 VCC, Retard d’entrée typique 1 ms (tension lissée obligatoire)</td>
<td>40 g</td>
</tr>
<tr>
<td>Modules de sortie TOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.A300</td>
<td>6 sorties 24 VCC/2 A</td>
<td>45 g</td>
</tr>
<tr>
<td>PCD2.A400</td>
<td>8 sorties 24 VCC/0,5 A</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.A460</td>
<td>Raccordement par câble 34 points</td>
<td>30 g</td>
</tr>
<tr>
<td>PCD2.A465</td>
<td>Raccordement par bornier à ressort 24 points</td>
<td>35 g</td>
</tr>
<tr>
<td>Modules de sortie TOR, avec séparation galvanique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.A200</td>
<td>4 contacts travail 2 A/250 VCA ou 2 A/50 VCC</td>
<td>60 g</td>
</tr>
<tr>
<td>PCD2.A210</td>
<td>4 contacts repos 2 A/250 VCA ou 2 A/50 VCC</td>
<td>60 g</td>
</tr>
<tr>
<td>PCD2.A220</td>
<td>6 contacts travail 2 A/250 VCA ou 2 A/50 VCC</td>
<td>65 g</td>
</tr>
<tr>
<td>PCD2.A250</td>
<td>8 contacts travail 2 A/48 VCA ou 2 A/50 VCC</td>
<td>65 g</td>
</tr>
<tr>
<td>PCD2.A410</td>
<td>8 sorties 24 VCC/0,5 A, avec séparation galvanique</td>
<td>40 g</td>
</tr>
<tr>
<td>Module d’entrée et sortie TOR combiné</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.B100</td>
<td>2 entrées, 2 sorties à transistors et 4 entrées ou sorties au choix</td>
<td>45 g</td>
</tr>
<tr>
<td>Modules d’E/S multifonctions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.G400</td>
<td>10 entrées TOR 24 VCC, 8 sorties TOR à transistors 24 VCC/0,5 A, 2 entrées ANA 0-10 VCC de résolution 10 bits, 6 entrées ANA Pt/Ni 1000 de résolution 10 bits, 6 sorties ANA 0-10 VCC de résolution 8 bits</td>
<td>79 g</td>
</tr>
<tr>
<td>PCD2.G410</td>
<td>16 entrées TOR 24 VCC, séparation galvanique, fonctionnement en logique positive ou négative, 4 sorties relais, contacts inverseurs à séparation galvanique, 4 entrées analogiques de résolution 10 bits, 4 sorties analogiques de résolution 8 bits</td>
<td>79 g</td>
</tr>
</tbody>
</table>
Codes de commande

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules d’entrée analogiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.W100</td>
<td>Résolution 12 bits, 4 voies d’entrée 0 à 10 V, -10 à 0 V ou -10 à +10 V</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W105</td>
<td>Résolution 12 bits, 4 voies d’entrée 0 à 20 mA, -20 à 0 mA ou -20 à +20 mA</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W110</td>
<td>Résolution 12 bits, 4 voies d’entrée Pt100 de 2 mA chacune (CEI 751), pour sonde à résistance, Plage de température : -50 à +150 °C</td>
<td>50 g</td>
</tr>
<tr>
<td>PCD2.W111</td>
<td>Résolution 12 bits, 4 voies d’entrée Ni100 de 2 mA chacune (CEI 43 760), pour sonde à résistance, Plage de température : -50 à +150 °C</td>
<td>50 g</td>
</tr>
<tr>
<td>PCD2.W112</td>
<td>Résolution 12 bits, 4 voies d’entrée Pt1000 de 0,2 mA chacune (CEI 751), pour sonde à résistance, Plage de température : -50 à +150 °C</td>
<td>50 g</td>
</tr>
<tr>
<td>PCD2.W113</td>
<td>Résolution 12 bits, 4 voies d’entrée Ni1000 de 0,2 mA chacune (CEI 751), pour sonde à résistance, Plage de température : -50 à +150 °C</td>
<td>50 g</td>
</tr>
<tr>
<td>PCD2.W114</td>
<td>4 voies d’entrée Pt 100 de 0,2 mA chacune (CEI 751), pour sonde à résistance, Plage de température : 0 à +350 °C</td>
<td>50 g</td>
</tr>
<tr>
<td>PCD2.W200</td>
<td>Résolution 10 bits, 8 voies d’entrée 0 à 10 V</td>
<td>35 g</td>
</tr>
<tr>
<td>PCD2.W210</td>
<td>Résolution 10 bits, 8 voies d’entrée 0 à 20 mA</td>
<td>35 g</td>
</tr>
<tr>
<td>PCD2.W220</td>
<td>Résolution 10 bits, 8 voies d’entrée pour sonde à résistance Pt/Ni1000 (2 barres), -50 à +400 °C ou +200 °C</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W220Z02</td>
<td>Module de 8 entrées analogiques, 10 bits, sondes de température NTC10</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W220Z12</td>
<td>Module analogique, 10 bits, 4 entrées 0...10 V et 4 entrées Pt/Ni 1000</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W300</td>
<td>Résolution 12 bits, 8 voies d’entrée 0 à 10 V</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W310</td>
<td>Résolution 12 bits, 8 voies d’entrée 0 à 20 mA</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W340</td>
<td>Résolution 12 bits, 8 voies d’entrée configurables par cavalier : 0 à 10 V, 0 à 20 mA ou sondes à résistance 2 fils Pt1000 pour −50 à +400 °C ou Ni1000 pour −50 à +200 °C</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W350</td>
<td>Résolution 12 bits, 8 voies pour sonde à résistance 2 fils Pt 100 pour −50 à +600 °C ou Ni 100 pour −50 à +250 °C</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W360</td>
<td>Résolution 12 bits, 8 voies pour sonde à résistance 2 fils Pt 1000 pour −50 à +150 °C, résolution < 0,1 °C</td>
<td>40 g</td>
</tr>
<tr>
<td>Modules d’entrée analogiques, avec séparation galvanique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.W305</td>
<td>Résolution 12 bits, 7 voies d’entrée 0 à 10 V</td>
<td>55 g</td>
</tr>
<tr>
<td>PCD2.W315</td>
<td>Résolution 12 bits, 7 voies d’entrée 0 à 20 mA</td>
<td>55 g</td>
</tr>
<tr>
<td>PCD2.W325</td>
<td>Résolution 12 bits, 7 voies d’entrée -10 V à +10 V</td>
<td>55 g</td>
</tr>
<tr>
<td>Modules de sortie analogiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.W400</td>
<td>Résolution 8 bits, Modules simples : 4 voies 0 à 10 V (≥ 3 kΩ)</td>
<td>35 g</td>
</tr>
<tr>
<td>PCD2.W410</td>
<td>Résolution 8 bits, Modules universels : 4 voies configurables par cavalier, 0 à 10 V (≥ 3 kΩ) ou 4 à 20 mA (≤ 500 kΩ)</td>
<td>45 g</td>
</tr>
<tr>
<td>PCD2.W600</td>
<td>Résolution 12 bits, Modules simples : 4 voies 0 à 10 V (≥ 3 kΩ), avec cavalier « mid/low » pour la sélection de remise à zéro</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W610</td>
<td>Résolution 12 bits, Modules universels : 4 voies configurables par cavalier, 0 à 10 V et −10 à +10 V (≥ 3 kΩ), avec cavalier « mid/low » pour la sélection de remise à zéro</td>
<td>45 g</td>
</tr>
<tr>
<td>Module d’entrée et sortie analogique, avec séparation galvanique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCD2.W605</td>
<td>Résolution 10 bits, Modules simples : 6 voies 0 à 10 V (≥ 3 kΩ)</td>
<td>60 g</td>
</tr>
<tr>
<td>PCD2.W615</td>
<td>Résolution 10 bits, Modules simples : 4 voies 0 à 20 V (≤ 500 Ω)</td>
<td>60 g</td>
</tr>
<tr>
<td>PCD2.W625</td>
<td>Résolution 10 bits, Modules simples : 6 voies -10 V à +10 V (≥ 3 kΩ)</td>
<td>60 g</td>
</tr>
</tbody>
</table>
Codes de commande

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Module d’entrée et sortie analogique</td>
<td></td>
</tr>
<tr>
<td>PCD2.W500</td>
<td>Résolution 12 bits, 2 voies d’entrée tension et 2 voies de sortie tension</td>
<td>55 g</td>
</tr>
<tr>
<td>PCD2.W510 ¹)</td>
<td>Résolution 12 bits, 2 voies d’entrée courant et 2 voies de sortie tension</td>
<td>55 g</td>
</tr>
<tr>
<td></td>
<td>Module d’entrée et sortie analogique, avec séparation galvanique</td>
<td></td>
</tr>
<tr>
<td>PCD2.W525</td>
<td>Résolution 14 bits, 4 voies d’entrée et 4 voies de sortie</td>
<td>55 g</td>
</tr>
<tr>
<td></td>
<td>Modules de pesage</td>
<td></td>
</tr>
<tr>
<td>PCD2.W710 ¹)</td>
<td>Résolution 18 bits, 1 système de pesage pour un max. de 4 cellules de pesage.</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.W720</td>
<td>Résolution 18 bits, 2 systèmes de pesage pour un max. de 6 cellules de pesage.</td>
<td>45 g</td>
</tr>
<tr>
<td></td>
<td>Modules de comptage</td>
<td></td>
</tr>
<tr>
<td>PCD2.H100</td>
<td>Module de comptage jusqu’à 20 kHz</td>
<td>40 g</td>
</tr>
<tr>
<td>PCD2.H110</td>
<td>Module de comptage et de mesure universel jusqu’à 100 kHz</td>
<td>42 g</td>
</tr>
<tr>
<td></td>
<td>Modules d’interface SSI pour codeur absolu</td>
<td></td>
</tr>
<tr>
<td>PCD2.H150</td>
<td>Module interface SSI</td>
<td>42 g</td>
</tr>
<tr>
<td></td>
<td>Module de positionnements pour moteurs pas-à-pas</td>
<td></td>
</tr>
<tr>
<td>PCD2.H210</td>
<td>Module de positionnement pour un axe de moteur pas-à-pas</td>
<td>42 g</td>
</tr>
<tr>
<td></td>
<td>Modules de positionnement pour servo-entraînements</td>
<td></td>
</tr>
<tr>
<td>PCD2.H310 ²)</td>
<td>Module de positionnement jusqu’à 100 kHz pour servo-entraînements,</td>
<td>48 g</td>
</tr>
<tr>
<td></td>
<td>1 axe pour codeur 24 VCC</td>
<td></td>
</tr>
<tr>
<td>PCD2.H311 ²)</td>
<td>Module de positionnement jusqu’à 100 kHz pour servo-entraînements,</td>
<td>48 g</td>
</tr>
<tr>
<td></td>
<td>1 axe pour codeur 5 VCC/RS-422</td>
<td></td>
</tr>
<tr>
<td>PCD2.H320</td>
<td>Module de positionnement jusqu’à 125 kHz pour servo-entraînements,</td>
<td>66 g</td>
</tr>
<tr>
<td></td>
<td>2 axes pour codeur 24 VCC</td>
<td></td>
</tr>
<tr>
<td>PCD2.H325</td>
<td>Module de positionnement jusqu’à 125 kHz pour servo-entraînements,</td>
<td>66 g</td>
</tr>
<tr>
<td></td>
<td>2 axes pour codeurs 5 VCC/RS-422 ou codeurs absolus SSI (seulement comme esclave)</td>
<td></td>
</tr>
<tr>
<td>PCD2.H322</td>
<td>Module de positionnement jusqu’à 250 kHz pour servo-entraînements,</td>
<td>66 g</td>
</tr>
<tr>
<td></td>
<td>1 axe pour codeur 24 VCC</td>
<td></td>
</tr>
<tr>
<td>PCD2.H327</td>
<td>Module de positionnement jusqu’à 250 kHz pour servo-entraînements,</td>
<td>66 g</td>
</tr>
<tr>
<td></td>
<td>1 axe pour codeurs 5 VCC/RS-422 ou codeurs absolus SSI (seulement comme esclave)</td>
<td></td>
</tr>
</tbody>
</table>

¹) Version spéciale, sur demande.
²) Selon le codeur, l’alimentation 5 VCC est chargée jusqu’à 300 mA.
A.5 Adresses

Saia-Burgess Controls AG
Bahnhofstrasse 18
3280 Murten / Suisse

Téléphone : +41 26 672 72 72
Télécopie : +41 26 672 74 99

E-mail : support@saia-pcd.com
Page d’accueil : www.saia-pcd.com
Assistance: www.sbc-support.com
Entreprises de distribution international &
Représentants SBC : www.saia-pcd.com/contact

Adresse postale pour les retours de produits par les clients de “Vente Suisse” :

Saia-Burgess Controls AG
Service Après-Vente
Rue de la Gare 18
3280 Morat / Suisse