SOC*

SAIA BURGESS CONTROLS

T,

oL
,a’ %
A

\7

Saia PG5z

Saia PG5® Instruction List Language

Manual 26/733

Saia-Burgess Controls AG

1 Introduction 13
O R B - = B I 01 PP PPRP 14
1.2 Condition Codes [cc] and Arithmetic Status Flags............cccoveiiiiiiiiiiiic e 16
1.3 SYMDBDOI NAMES. ..ottt e b e sab e e s nreesneeena 17
1.4 SCOPE OFf SYMDOIS......oiiiiiiiiiie e snneea 18
1.5 TYPed SYMDOIS.....ccoueiiiie e e 20
1.6 NUMEIC CONSTANTSciiiiiiiiiie ittt b e e nn e e s ne e e sneeeen 21
1.7 Time Constants (for [0ading TIMEerS).........ccuiiiiiiiiiieiiei e 23
08 T - o = SRR 23
R N = ST I = o SRS 24
1.10 USING SYMDOIS 1N TEXES....ceiueeeiiieeiiieeritee ettt ettt e b e sneeeen 26
1.11 Data BIOCKS DBi......oooiiiiiee ettt e e e e e e e e e nnnaee e e nnees 27
1.12 Extended Data BIOCKS DBX.........coiiiiiiiiiiiieiiiie et 28
1.13 INformation BIOCKS IB.........cccuuiiiiiiiiiie ettt 32
0 R] 0 4 =T o 1SS 33
1.15 StringS, STR @Nnd @STR()..eeeeeueeeiieeiiiieeiiie ettt sr e e snneeens 33
1.16 RESEIVEU WOTUS.......eiiiiiieiiiie ettt ettt ettt e b e s nnn e e s neeesnneeea 38
1.17 Pre-defined SYMDOIS.cooiuiiiiiiiie e 39
1.18 INIIAlIZING DALA.....ccoueeiiiiie ittt 41
1.19 Dynamic Address AllOCALION.........cocuiiiiiiiiiie e 43
1.20 Storing Variable Length Text in IBs and DBXs UsiNg @O0..........ccccceveiieeiiieenineenne 45
2 R (@] = 3 N1 SRRSO PRPRORRTIN 45
1.22 1L Programiming TIPS,ueeeueeeiueeeaieeeriteeesiteeassseeasieeesseeesseessnseessssesssnseessssessnsseesas 48

2 BitInstructions 63
2.1 STH - StArt HIgN ..o 63
2.2 STL - SEAM LOW .eeiiiiieeiiiciiiiii ettt et e e e e s st e e e e e e e et eeeaeeeasasnnnnneeaaeeeeannnes 64
2.3 ANH = AN HIGN. ...ttt 65
P2 S N\ | IR Yo To I I PR TS 66
2.5 ORH - OF HIgN...oo o 66
AL T ©] I o 1o USRI 68
2.7 XOR - EXCIUSIVE QRiiiiee ettt ettt e e et e e e et e e e e enraea e e snneaeeeanns 69
2.8 ACC - AcCumMUIALOr OPEIatiONScccueieiieieiieeeriieeriee et 70
2.9 DYN-Dynamic EAge DEteCHION........c.cieiiiieiiiieriie et 70
2.10 OUT - Set Element From ACCUMUIALON............cooiiiiiiiiieiiie et 72
2.11 OUTL - Set Element From Inverted ACCUMUIALOT............c.ceeiiiiriiiiiiiee e 73
2.12 SET - SELEIBMENT.....ciiiiiiii ettt e e e e e e e e e nraeeeennneaeeeanns 73
2.13 RES - RESELEIBMENL....cuiiiiiiiieiiei et 74

Saia PG5® Instruction List, 2013-10-25

Saia-Burgess Controls AG

4

2.14 COM- Complement EIEMENL.........coiiiiiiiiiiii e 74
2.15 SETD - Set Element Delayed............ccoo i e 75
2.16 RESD - Reset Element Delayed.............cooueiiiiiiiiiiiie e 76
Register Instructions 78
3.1 AND - AN REQISTEIS. ...ttt 79
I = 1 I =1 0 o DRSO 79
3.3 BITIR - Bit IN TEVEISEU.......eeiiiiiieiieie ettt 80
34 BITO - BIt OUL...ciiiiiiiiiie ettt ne e s an e e s e e 81
3.5 BITOR - Bit OUL REVEISEM.......cciiieieiiiieiiee et e 82
3.6 COPY - COPY DALAL....ccciuieieeiiiiiie ettt e e s e e e e ane 83
3.7 DEC - Decrement RegiSter Or COUNLETc.ciiiiiiiiieeeiiee et 84
R I B (€] I B (o | | PPN 85
3.9 DIGIR - Digit IN REVEISEU........eeieiiiieiiiie ittt 86
3.10 DIGO - DigIt OUL.....eeieieieiiiieeeeie ettt e s e sss e ans e e s saneesneeesneeeennes 87
3.11 DIGOR - Digit OUt REVEISEA........eeieiiiieiiiieiiie et s 88
3.12 DSP - Load Display REQISTEN..........cciiiieiiiieiiieeriee et 89
3.13 EXOR - EXCIUSIVE-Or REJISIEIScooiiiiiiieieiie ettt 90
.14 GET - GOEDALA.......eeeeeeiiieie ettt s e 91
3.15 INC - Increment RegiSter OF COUNTETcoiuiiiiiieeiiieereee et 93
3.16 LD - Load 32-Dit VAIUE.........oeiiiieiieieiiie et 94
3.17 LDH - Load High Word (Upper 16 DItS).........cccueieiiiiiriieeriee et 96
3.18 LDL - Load Low Word (Iower 16 DItS).........coiieiiiiiiiiiii e 97
3.19 MOV - MOVE DALA.....cceiiiiiiiieeiiiiie ettt s e e s e e e s e e e e e 97
3.20 NOT - Complement REGISTEN..........coiiieiiiieriee et 98
3.21 OR - OF REQISTEIS. ...ttt ettt e et nae e s ne e sne e 99
.22 PUT = PUE DALA.eeeeee it e e e e nnnee s 100
3.23 ROTD - Rotate REQIStErS DOWNN..........uiiiiiieiiiieiiie ettt 102
3.24 ROTL - Rotate RegISter Left........c.cooiiiiiiiiieiiii e 102
3.25 ROTR - Rotate Register RIGNt...........coiiiiiii e 103
3.26 ROTU - Rotate RegISIErS UP.....coiiiiiiiieiiiieriee ettt 104
3.27 SHID - Shift REQIStErS DOWN......ccuiiiiiiiiiiii ettt 105
3.28 SHIL - Shift REgIStEr LEft......cccueieiiiieiee et 106
3.29 SHIR - Shift Register RIGNt..........ccuioiiiiiiiiieiie e 107
3.30 SHIU - Shift REQISTEIS UP....cciitiiiiiiieiiiie ittt snee e 108
3.31 TFR - TranSfer DAtaL........cueeiiueieiiiieeiee ettt 109
3.32 TFRI- Transfer Data INAIFECT..........ccoiiiiiiiieiie e 110
Index Register Instructions 113

Saia PG5® Instruction List, 2013-10-25

Saia-Burgess Controls AG

4.1
4.2
4.3
4.4
4.5

SEl - Set INAEX REJISTEN........oiiiiie et
INI - Increment INAeX REJISTEN.........coiiiiiiiii e
DEI - Decrement INdeX REQISTEN...........coiiiiiiiiiiiiie e
STI- StOre INAEX REQISTEN......ccueiiiiiie it
RSI - ReStore INdeX REQISTENoiiiiiieiiiieriie e

5 Integer Instructions

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

ADD - A REQISTEIS.ueiiiiiiiieiiie ettt ae e s ne e
CMP - COMPAre REJISTIEIS. ...ttt
DIV - DiVIAE REQISTEN......cutiieiiii ettt snee e
MUL - MUIIPIY REQISTEI'S. ..ottt
SQR - SQUAIE ROOL.........eiiiiiiiiei et
SUB - SUDEIACt REQISTEIS......cciiiiiiiiie ittt
UDIV - Unsigned Divide REQISTENcciuiiiiiiiiiiieeiiee et
UMUL - Unsigned Multiply REQISTEI'S..........eiiiiiiiiiii e

6 Floating Point Instructions

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

DFPE - IEEE DoUDIE TO FIOAL........ccicueiiiiiiiiiie e
EFPD - IEEE Float TO DOUDIE.........ccociiiiiiie e
FABS - Floating Point ADSOIULE.............cooiiiiiiii i
FADD - Floating POINt AQ.........coouiiiiiiieiii e
FATAN - Floating Point ArC TANQGENL..........eviiiiiiiiieeiee et
FCMP - Floating PoiNt COMPAIE..........cooiiiiiiiiieiiie ettt
FCOS - Floating POINt COSINE.........coiiuiiiiiiieiiie et
FDIV - Floating POINt DIVIAE........c...oiiiiiiiiiii et
FEXP - Floating Point EXponential.............coocuviiiiiiiiiiiiie e
FLN - Floating Point LOGarithm..............coiiiiiiiie e
FMUL - Floating Point MURIPIYcooiiiii e
FPI1 - Floating POINt t0 INTEOET.........cooiiiiiiiii e
FSIN - Floating POINt SINE........cooiiiiiiiiieiiie e
FSQR - Floating Point SQUAre ROOL...........coocuiiiiiiiiiii e
FSUB - Floating PoiNt SUDIIACT..........c.eiiiiiiiiiiiiee e
IFP - Integer to FIoating POINt...........oooiiiiiiiiiii e

7 Bloctec Instructions

7.1
7.2
7.3
7.4

CCOB - Continue Cyclic Organization BIOCK............c.ccceeiiiiinieeiieeeiee e
CFB - Call FUNCHION BIOCK..........eiiiiiieiiiee e
COB - Cyclic Organization BIOCK............cocuiiiiiiiiiii e
CPB - Call Program BIOCK...........cccuiiiiiieiieieiiie e

Saia PG5® Instruction List, 2013-10-25

Saia-Burgess Controls AG

7.5 CPBI- Call Program BIoCK INAIFECL..........c.ceeiiiiiiiiiiriieeee e 141
7.6 ECOB - End Organization BIOCK...........c.cuiiiiiiiiiiieniie e 141
7.7 EFB - End FUNCHON BIOCK........ciiiiiiiiiii et 142
7.8 EPB - End Program BIOCK.........cocuiiiiiiiiiiei e 142
7.9 EXOB - End Exception Organization BIOCK.............ccccoiiiiiiiiiiiiiie e 143
7.10 FB - FUNCHON BIOCK.......cciiiiiiiiiei et e 143
7.11 NCOB - Next Cyclic Organization BIOCK..............cccoriiiiiiiiiic e 144
7.12 PB - Program BIOCK............ooiiiiiiiieiii et 145
7.13 RCOB - Restart Cyclic Organization BIOCK.............cccccoiiiiiiiiiiii e 145
7.14 SCOB - Stop Cyclic Organization BIOCK.............ccceeriiriiiiiiiie e 146
7.15 XOB - Exception Organization BIOCK.............cccoiiiiiiiiiiii e 147
8 Graftec Instructions 148
8.1 CSB - Call Sequential BIOCK...........ccoiiiiiiiiiiii e 148
8.2 ESB - End Sequential BIOCK...........ccoiiiiiiiiiiii e 149
8.3 EST - ENU SEP ittt 149
8.4 ETR - EN TrANSIHION.....cciiiiiiiiieiieie sttt ettt 150
8.5 IST - INItIAI STEP.....eeeeeiiie et 150
8.6 RSB - Restart Sequential BIOCK.............oociiiiiiiiii e 151
8.7 SB - Sequential BIOCK...........ccuiiiiiieiiiieiiee e 152
8.8 ST = Sl ittt 152
8.9 TR = TIANSIION. ..ttt ettt ettt et e e sie e e e se e e s nreesbeeesnnneens 153
9 Communications Instructions 154
S8 R 1Y oo [TP TOPRPRPRR 154
0.2 IMOOE D .. ba e nr e ne e nneeen 155
0.3 MOOE MMA......ei ettt ettt h e e bb e e e bt e s nr e e eneeeeneeean 155
.4 SEIIAI-S-BUS.......eiiieie et ne e eneeen 156
0.5 PrOfi=S-BUS.....itie ettt enee e 156
0.6 ELNEI-S-BUS......oiiiie e 157
9.7 PrOfIDUS-DIP.......oiieeee et 159
9.8 Channel NUMDET ..o e 159
9.9 SASI - Assign Serial INterfacCe.........cooiuiiiiiiieiie e 160
9.10 SASII - Assign Serial Interface INAIFECL...........coeeiiiiiiii e 161
9.11 SASIText (Mode D & MMA).......cooiieiiiieeieee ettt 162
9.12 SASITEXE (MOUE C)....ee ettt ettt se e s ne e e sneeeans 166
9.13 SASITeXt (Seri@l S-BUS).....cciiuiiiiiiieiiii et 172
9.14 SASITeXt (Profi-S-BUS)ccoiiiiiiiieiiei e 181
9.15 SASI TeXt (EtNEI-S-BUS).....ccciiieiieieiiiie ettt 186

Saia PG5® Instruction List, 2013-10-25

Saia-Burgess Controls AG

9.16 SASI Text (ProfibuS-DP).......ccuiiiiieiii et 192
.17 BSASL.BENDSASL... .ottt aee e 198
9.18 UsiNg SYMDOIS iN SSAST TEXES.....ceiueiiieeiiieeieesiee ettt 199
9.19 SASIMOUE OFFottt eneeen 200
9.20 SASI Mode OFF 0n S-Bus PGU Slave..........cccooiiiiiiiiiiieeeiee e 200
9.21 SRXD - Receive Character (MOAe C)........cooiuiiiiieieiiie e 201
9.22 STXD - Transmit Character (MOAe C).........cccuieiieiiiiiieriie e 202
9.23 STXT - Transmit TeXt (MOAE C)......ceiiuiiiiiiieiiii et 202
9.24 Texts Containing Data (MO C)........cuuiiiiiieiiiieriee e 204
9.25 Text Output FOrmats (MOAE C)......oeeiiiiiiiiieiiee ettt 207
9.26 SRXM - Receive Media (MOdE S-BUS)........cocouiiiiiiiiiiiiiiie e 210
9.27 SRXM - Recieve Media (MOAE D).........coiuiiiiieieiiiieniee et 215
9.28 SRXM - Receive Media (MO MMA).........cooiiiiiiiiieiiie et 216
9.29 SRXMI - Receive Media Indirect (MOde S-BUS).........ccceeeiiiiiiieiiiiee e 217
9.30 STXM- Transmit Media (MOde S-BUS)........cccouieiiiiiiiiieiee e 218
9.31 STXM- Transmit Media (MOAE D).........cocueiiiiiieiiiieiiee e 222
9.32 STXM - Transmit Media (MOde MMA).........cooiiiiiiiieriie e 223
9.33 STXMI - Transmit Media Indirect (Mode S-BUS).........ccoorieiiiieiiiiee e 224
9.34 SICL - Serial INpUt CONLrol LINE.......ccoiuiieiiiieiiie e 225
9.35 SOCL - Serial Output CONtrol LINE.........ccceieiiiieiiii e 226
9.36 SCON - Control Communication (Profibus-DP)..........ccccccviiiiiiiiiiiiiee e 227
9.37 SCONI - Control Communication Indirect (Profious-DP)..........cccccevieiiiieiiiieens 238
10 Control Instructions 239
10.1 JR - JUMP REIALVE. ..o 239
10.2 JIPD - JUMP DIFBCL.....eiiiiiieiieee ettt 240
10.3 JP1- JUMP INAIFECT......eiiiiiiiiiie ettt 241
10.4 HALT - Halts Program EXECULION..........c.ceiiuieiiiieiiiieiieeesieeesiee e sieeessee e 242
11 Definition Instructions 243
11.1 DEFVM - Define Volatile Memory (FIags).........ccveueieiiiieiieieriee e 243
11.2 DEFTC - Define TIMerS/COUNLEIS.c..eiiiiieaiiie ettt 244
11.3 DEFTB - Define TIMEDASE..........oiiiiiiiiii e 244
11.4 DEFTR - Define Timer RESOIULION...........coocuiiiiiiiiiieieeeiee e 246
11.5 DEFTMP - Define Temporary Data SiZe.........ccccooiiieiiiiieiiiieniee e 247
12 Special Instructions 249
12.1 ALGI - ANAIOGUE INPUL......eiiiiiieiiie et 249
12.2 ALGO - ANAIOGUE OULPUL......eeeieieeiiieeitieesitee ettt e e e 250

Saia PG5® Instruction List, 2013-10-25

Saia-Burgess Controls AG

13

14

15

12.3 CSF - Call SyStem FUNCHON........coiiuiiiiie e 250
12.4 DIAG - Read XOB DiagnOSTIC......cccuriiirieiiiieeiiie sttt e e 251
12.5 EXTB/EXTW - Sign EXIENSION.ccouiiiiiiiiiie i 252
12.6 LOCK - LOCK SEMAPNOIE.......cciuiiiiiiieiiiie ettt 253
12.7 NOP - NO OPEIALION.uiiiiiiieiiieeeitie ettt e e s e e snn e eneeesneeas 254
12.8 OUTS - Set Element from ACCU SIOW..........coouiiiiiiiiiiienieieriee e 254
12.9 PID - PID Control AlQOthM..........ooiiiiiiii e 255
12.10 RDP - Read Peripheral...........coceiiiiiiiiii e 259
12. 11 RTIME - REAA TIME....ci ittt et 259
12.12 STHS - Start HIgh SIOW.........cooiiiiiiiieie e e 261
12.13 SYSCMP - SYStEM COMPAIE.....ccuurieeeiireeeeeaiereeeaasrreesasreeeesannreeesanreeessanreeeesanes 261
12.14 SYSRD - SYStem REAA..........coiuiiiiiiiiiie e 262
12.15 SYSWR - SYSTEIM WOttt 269
12. 16 TEST - TESEHAIAWAIE.cccueiieiiiieeiie e 275
12.17 UNLOCK - UnIoCK SEMapPhOre.........ccoiiiiiiiieiie e 278
12. 18 WRP - Write Peripheral..........cocuiiiiiiiiie e 279
12.19WTIME - WIIEE TIME ittt e e 279
Media Pointer Instructions 281
13.1 XLA - LOAA AQUIESS....ciiiiieiiiie ettt nin e eeneeas 281
13.2 XLD - LOAA DALAL.......eeiieieeiiiee ittt ene e enee s 282
13.3 XST - SEOrE DALA. .. .cceiureiieiiiiiie et s e e e e e e e e e 283
Declarations 285
14.1 PUBL - PUBC......eiiiiiiiee e 285
14.2 PEQU - PUDBIIC EQUALE..........ueiiiiiieiiie ettt s 286
14.3 EXTN = EXEEINAL....ciiiiiiiiie ettt as 286
14.4 EQU - EQUALE........ooiiiiiiiiie ittt e st e e s s e e s s e e e e e anre e e e e e 287
145 DEF - DEIINE....coueiiieie ettt 288
14.6 LEQU, LDEF - Local SYMDOIS.........ccooiiiiiieiiiiii e seee e 288
14.7 GEQU, GDEF - Global Macro SYmbOIS...........c.cceeiiiiieiiiiiiee e eeiee e 290
14.8 DOC ittt ettt bbb et e e bt be e ente e teeenb e e nbeeenaeenean 291
14.9 TEQU - TempPorary DataL.........ccoiiuiiiiiiiiiieiiiee e 291
Expressions 294
15.1 ArithmetiC INteger OPEIratOrS.coocuiiiiiieiiiie ettt 294
15.2 BitwiSe BINAry OPEIatOrSccccueieiiiiiiiieeiitieaitie et et et e s sise e snneesneeesneeas 294
15.3 COMPAriSON OPEIALOISccuvieitieeiiiieeritee et ettt ettt sbe e ssbe e saee e e aneeeeneeesneeas 295
15.4 Operator PrECEUBNCE........cccuuii ittt 295

Saia PG5® Instruction List, 2013-10-25

Saia-Burgess Controls AG

16

17

$ Directives 296
16.1 BATTR .ottt ettt sttt et e bt e s et e e be e e m b e e be e aateebeeambe e beeenbeenneeaneeeneas 297
16.2 BCHARSET ...ttt ettt ettt st e e sbe e nbe e be e embeenbeeanaeeneas 297
16.3 $COBSEG .. SENDCOBSEG, $XOBSEG .. SENDXOBSEG..........ccceeirvirneenne. 298
16.4 BDINLDFILE ...ttt ettt st be et e et eeme e e naeesneeenneas 299
16.5 BERROR.....oiie ettt sttt naeeneas 300
16.6 BFATAL. ..ttt ettt ettt e e bt e a b e e bt e eat e e bt e nbe e te e enb e e naeeanaeeneas 301
16.7 $FBPARAM .. SENDFBPARAM.......ociiiiietie ettt 301
16.8 BFOR .. SENDFOR......ooiiiiiieie ettt sae e anee e 304
16.9 BGROUP ...ttt ettt be et e e be e ene e e nae e naeeneas 306
16.20 BIFXXXK .. BENDIF ..ottt ettt et s sae e e eeas 307
16. 1L BIFB, BIFNB.....ceieiee ettt ettt e e st e e sbe e mbe e beeenbeesbeeaneeenneas 310
16.12 BIFE, BIFNE ...ttt ettt st sbe et e e beesnb e e saeeaneeenneas 311
L6. 13 BIFEXIST ...ttt ettt ettt ettt ettt et e b e e s b e et e smt e e ebe e e mee e beeenbeenbeeaneeeneas 312
16.14 BIFLINKED.......coiiieiii ittt ettt sttt st e b e mteebe e eme e e naeeaneeeeeas 313
16. 15 BINCLUDEottt ettt st e e sbe e mte e be e enbeenbeeaneeeneeas 313
16.26 SINIT .. SENDINIT......oiiiieiieiiieiie ettt sbe e e e e sbe e ene e e saeeaneeeneeas 314
16.17 BIPADDS ...ttt et b ettt et e be e nbe e te e enr e e ae e anaeeneas 315
LB. 18 BLIB .ottt ettt et h e bt et e be e e nte e teeene e e nbeeanaeenean 316
16.19 SLIST, SNOLIST, SEJECTeiiiiiiieiie ettt eeas 316
16.20 SNOXINIT .. BENDNOXINIT ...ttt eeneeeneeas 317
16.21 BONERROR.......ceieiii ittt ettt ettt e st e e sbe e s mbeenbeesmbeenbeeaneeenneas 318
16.22 BPCDVER ...ttt ettt st sbe et e et et e b naeeneas 319
16.23 BREPORT ...ttt ettt et e st e e bt e mbe e be e embeenaeeanaeenneas 320
16.24 BSASI .. BENDSASL.....eiiiieieeiee ettt ae e be e sne e saeeanaeeneas 320
16.25 $SFPARAM .. BENDSFPARAM.......coiiiiiieiii ettt neeas 321
16.26 SSKIP .. BENDSKIP.......coiuiiiiieiii ittt ae et e e saeeeneeeneeas 324
16.27 SSERIALNO........eeieiie ittt ettt ettt b et e et e st e sbe e ambe e beesneeenaeeaneeenneas 324
16.28 BSTATIONttt ettt et b e e et e e sat e e sbe e embe e beeembeenbeeaneeeneas 325
16.29 STITLE, SSTITLE.ci ittt st ee et s saeeaneeenneas 325
16.30 SUSE, SIFUSED, SIFNUSED..........coiiiiiieiii e neeas 325
16.3L BWARNING......coeeieiie ittt ettt b et et e st e e sbe e emteenbeesmeeenaeeaneeenneas 327
16.32BWRFILE. ...ttt ettt st be et e et e emb e e naeesneeeeeas 327
16.33 $XOBSEG .. BENDXOBSERG.......cuiiiiiiiieiie i eniee e siee sttt saeesnee e 329
16.34 Using SYmMDbOIS iN SAITECHIVES.......cc.uieiiiiiieiie et 330
@ Operators 332
17.1 @ADDS() - Returns the media address in PCD internal format........................ 332

Saia PG5® Instruction List, 2013-10-25

Saia-Burgess Controls AG

18

19

20

21

17.2 @ARRAYSIZE() - Returns the size of an array..........ccccevceeeieiinee s,
17.3 @ATTR() - Returns a symbol's attribute String...........ccccocveereiiiieieiiee e,
17.4 @ATYPE(), @NTYPE() - Returns the data type (ASCIl or numeric)..................
17.5 @CHK() - Checksum of TeXt OF DB.......ccccoiiiiiiiiiieeeee e
17.6 @DFPHI() and @DPFLO() - Separate IEEE Double into DWORDs.................
17.7 @IEEE() - Convert to [EEE FIOAL............coouiiiiiiiiee e
17.8 @IFP() and @FPI() - Integer to FFP Float and FFP Float to Integer..................

17.9 @IFPE() and @EFPI() - Integer to IEEE Float and IEEE Float to
Q1 (=To =] S PP PR S PPPTPPPRRPRT

e T2 O 1| [[9To =T 1Y = o] o TP UPR SRR
18.3 $IFB, SIFNB - If bIank / if NOt DIANKoeeeeeeeeeee et
18.4 LEQU, LDEF - Define local macro data.......cceeeeeiviiiiiieieiieeeeiccciiieeeee e,
18.5 GEQU, GDEF - Define global macro data.............cccueveeeiiieeeiiiiiie e eeiieee e

File Formats

19.1 MaKE Fle (LM@K)...cciueiiiiiie ittt nae e
19.2 LiStING FIE (LIST) c.ueeeiiiieiieee e e
19.3 MaAP FlE (LM@P).. . eei ittt b e

Error and Warning Messages

20.1 Assembler Errors L1000+ccouuiieiiiieeeeeiiies e e esieee e e saee e e e saea e e s e e e s snneeeeannnneaens
20.2 Assembler Warnings 15004uuiiiiiiiiiiieiieeesiee st
20.3 LIiNKEr Errors 2000+cccuiieeeiiiieeeeeiieee e ssieeeeessitee e e e snaeeeeasssaeaesssnseaeessnsneeeeannnneaens
20.4 Linker Warnings 2300ccoiuuieiiiieiieeeiieeesieeesiee e siee s e ssaessssaessnseesneeesneeeens

Miscellaneous

21.1 ANSIand DOS CharaCter SEIS.......coeuuieeeeee et e e e e aeennn
o A (@] = 3 I 1] TR

345

346
348
349
351
352

354

354
355
359

361

361
380
383
391

Saia PG5® Instruction List, 2013-10-25

Saia-Burgess Controls Ltd.

11

Saia-Burgess Controls AG Introduction

1 Introduction

This document describes the Saia PG5 Instruction List language (IL), and the Saia PG5® Build
Utility's messages and file formats.

The Build Utility - Assembling and Linking
The Saia PG5® Build Utility (S-Asm) processes one or more source files (.src) containing Instruction

List code (IL), and creates a binary object file (.obj) and and optional listing file (.Ist) for each source
file. If there are no errors, it then links the object files together to produce a binary PCD-executable file
(.pcd) and an optional map file (.map). The list of source file names, the .PCD file name and options
switches are passed to the Build Utility in a make file (.mak). For new PCD models, a file called
"PROGRAM.SPCD" is also created which contains the user program in a form that can be
downloaded into the PCD's file system.

LIBEARY
FILES

SOURCE
FILES sze

mankFTLE P35 BUILD
: UTILITY

Notation

The following notation is used in the descriptions of instruction list statements in this document:
Optional statements are shown enclosed in [square brackets] , data descriptions are shown in
italics, upper case characters must be entered as shown.

For example:

synbol EQU [type] val ue [; coment]
symbol is the symbol name, EQU must be entered as shown, t ype is optional, so is ; conment .

Instruction format
Each instruction line has the form:

[label :] [mmenonic] [operand] [;comrent]

Each field must be separated by one or more spaces or tabs as a delimiter, except for the comment
field where the ";" character is the delimiter. Each line must end in a carriage return and/or linefeed

character (e.g. Enter).

Instruction Presentation

Description What the instruction does and its operands.
Format Shows how the instruction is used and gives the type and range of each
operand.

Saia PG5® Instruction List, 2013-10-25 13

Saia-Burgess Controls AG

Introduction

An [X] after the mnemonic means that indexed addressing is possible
by adding the optional X to the mnemonic

(e.g. STHX, | NCX).

For indexed addressing, indexed operands are marked with "(i)".

Example A typical example of the instruction.

Flags Shows which Status flags are affected (ACCU, N, P, Z, E).
See also A list of other instructions or topics which may be useful.
Practical Optional diagram and small program containing the instruction.
example

Typographic Conventions

[] Square brackets enclose optional text or data. For example: [;comments]
means that ";comments" is optional and need not be present.

[X] An [X] after the mnemonic means that indexed addressing is possible by
adding the optional "X to the mnemonic (e.g. STHX, INCX).

(1) When indexed addressing is used, see [X] abowe, the indexed operands are

marked with "(i)"

< > Angle brackets enclose texts or expressions which should not be typed
verbatim, but replaced by the relevant text or expression.

The "|" character means OR, e.g. [T| t] means an optional T ort can be

entered, but not both.

11 Data Types

These are the data and block types used in IL programs.

Type Description
Input
Output

Flag

Timer
Counter
Register

K constant

BIBBRIg =70 "o

Initial Step
Step
Transition
Text

Data Block
Semaphore
String

312
_|

g X
os)

4
Py

Cyclic Organization Block
Exception Organization Block
Program Block

Function Block

SB Sequential Block

Range

OO0 O0OO0O0O0OO0O0O0OO0O0O0O0O0O0O0 O

..8191

..8191
..8191/14335/16383
.450

.1599
..4095/16383
.16383

.15

31

.299

.999

.31/95
..1999/6999
..1999/6999
..1999/6999
..7999/8191
..7999/8191
.99

In addition to the types, some attributes can be specified:

R FLOAT

Notes

} /Os share same addresses
} (Note 1)
Volatile/Nonwolatile (Note 7)

Volatile, set to 0 at start-up (Note 2)

Nonwolatile (Note 2)
Nonwolatile (Note 3)

(Note 4)

(Note 5)
(Note 5)
(Note 5)
(Note 5)

} Texts/DBs share same addresses

} (Note 6)

New in PG5 V2.1

Register containing a Motorola Fast Floating Point number (FFP)

Saia PG5® Instruction List, 2013-10-25

14

Saia-Burgess Controls AG Introduction

Data Types

R | EEE Register containing an IEEE Floating Point number (single)

F VOL Volatile Flag, required for dynamic address allocation so address is allocated from
"Dynamic Volatile Flags" range.

TEXT RAM Text in Extension Memory (RAM), required for dynamic address allocation so
address is allocated from "Dynamic RAM Texts" range.

DB RAM Text in Extension Memory (RAM), required for dynamic address allocation so
address is allocated from "Dynamic RAM Data Blocks" range.

Inputs and Outputs
Inputs and Outputs are \ia interface modules which are plugged into the PCD. The address range of

the module depends on which slot it is plugged in to.
Input states can only be read. Outputs can be turned on (set to 1 or High), and turned off (reset to 0 or
Low), and their state can also be read.

Flags
Flags are 1-bit data which can be treated in the same way as Outputs, e.g. they can be set or reset,

and their state can be read. See Note 7 below.
Tip: If you need a large number of Flags but don't need to access them very fast, think about using
bits of Registers or bits in DB elements. In IL these can be accessed easily using Macros.

Timers and Counters

Timers and Counters are unsigned 31-bit values (0..2'147'483'647 in decimal), they can hold only
positive values. Timers and Counters share the same address range from 0..1599. The number of
Timers is defined by the instruction DEFTC. The default value is 32 Timers from addresses 0 to 31,
and 1568 Counters from addresses 32 to 1599)

The only difference between a Timer and a Counter is that a Timer is decremented according to the
timebase defined by the instruction DEFTB, The default value is 1/10th sec (100ms). The DEFTC and
DEFTB instructions are generated from the device's Build Options in the Project Manager.

When a Timer or Counter contains a non-zero value its state is High (H or 1), when its content is zero
its state is Low (L or 0)

Registers
A Register is a 32-bit data store which can hold data in binary, decimal, hexadecimal, or floating point

or IEEE units. You can perform arithmetic operations on Registers, or transfer data to or from: Inputs,
Outputs, Flags, Timers, Counters, DBs or other Registers. See Note 3 below.

Constants

The IL language supports integer constants (13, 16 or 32 bits), 32-hit floating point values (Motorola
FFP or IEEE Float), or 64-bit IEEE Double values. See Numeric Constants. For instructions which
can have a data address or a constant as an operand, use the K data type. The K type of constant is
restricted to 14 binary bits, for an example, see ADD.

Texts
Texts are strings that can be stored in the PCD for transmission over a communications line, or sent
to a display terminal.

Data Blocks (DBs)

A Data Block is block which contains an array of 32-bit data vakues, which can be transferred to and
from Registers, Timers and Counters.

Texts and DBs share the same addresses. 0..3999 are in Text/DB memory which may be read-only
Flash or EPROM memory. Texts/DBs 4000..8191 are in Data Memory (also known as Extension
Memory), which is always RAM (read-write). In some PCD types this partition can be defined using
the Project Manager's Build Option "First writeable Text/DB number".

Strings

Saia PG5® Instruction List, 2013-10-25 15

Saia-Burgess Controls AG Introduction

12

Data Types

Strings are new in version 2 of the PG5, see Strings. STR and @STR() for more details.

NOTES

1. The max. number of I/Os depends in the PCD type. Each module's I/O address depends on the
module's slot position. See your PCD's hardware manual for details.

2. Timers and Counters share the same address space. The low addresses are always Timers, the
rest are Counters.
The number of Timers is defined by the Project Manager's Build Options (or by DEFTC). Timers are
‘wlatile' and are all set to O on start-up.
Counters are 'nonwolatile’, their values are not lost when the PCD is powered off and on, except for
PCD types without a backup battery.

3. Old PCD models have Registers 0..8191. New systems (PCD3, PCD2.M480, PCD1.M2xxx etc)
have Registers 0..16383.
For FW wersions before 1.20.0, only Registers 0..8191 can be used for indirect addressing (see
TERI etc).
FW wersions from 1.20.0 can use all Registers for indirect addressing, providing the Build Option
"Use 16-bit addressing” is Yes.
All Registers are nonwolatile.

4. XOBs hawe fixed purposes according to the XOB number, see XOB.

5. Graftec: New PCD systems support SBs 0..95, and ST/TRs 0..5999. Older systems support SBs
0..31 and ST/TRs 0..1999.

6. Texts and DBs 0..3999 are in Text/DB memory, which may be read-only Flash or EPROM
memory.
Texts/DBs 4000 and abowve are always in writeable RAM memory (data memory). New systems
support Texts/DBs 0..8191.
The PCD1 has up to 5999, and older PCD2s support up to 5999. For other PCD models refer to the
hardware manual.

7. Old PCD models have Flags 0..8191. New PCD systems from firmware version 1.14.3 support
Flags 0..14335.
Flags 0..16383 are supported by PCDs with FW version 1.20.0 or later, providing the Build Option
"Use 16-bit addressing” is Yes.

Condition Codes [cc] and Arithmetic Status Flags

Arithmetic Status Flags
The arithmetic status flags are affected mostly by the Integer and the Floating Point instructions

which are set according to the result of each instruction.
The Error flag is set High by any instruction which is executed with invalid data or fails in some other
way.

P Positive High if result of an arithmetic instruction is positive

N Negative High if result of an arithmetic instruction is negative
(the P flag is always the inverse of the N flag)

Z Zero High if the result of an arithmetic instruction is 0

E Error High if an instruction fails to execute, for example on

overflow, underflow or conversion error

Accumulator

The Accumulator (ACCU) is set High or Low (1 or 0) mostly by the Bit instructions.

It can be set to a specific state, or to the state of an arithmetic status flag, using the ACC instruction.
The ACCU is often used to control a sequence of bit instructions where each instruction depends on
the result of the previous one. This normally begins with a start instruction, e.g. STH, and ends with
an action instruction, e.g. OUT. The intermediate result of each bit instruction is stored in the ACCU.
The final ACCU state is the result, which can be written to a Flag or Output.

NOTE

Saia PG5® Instruction List, 2013-10-25 16

Saia-Burgess Controls AG Introduction

13

Condition Codes [cc] and Arithmetic Status Flags

Many instructions are ACCU dependent, and are executed only if the ACCU is High (1). This is
indicated in the instruction description.

Condition Codes [cc]

Condition codes [cc] define the Status flag states which allow execution of the instruction. If the
condition is false, the instruction is not executed. For example a jump instruction JR Z will not be
executed unless the Zero status flag is High (1).

Code Description

blank No condition code

H If Accumulator = H (1)

L If Accumulator = L (0)

P If Positive flag = H (Negative flag = L)

N If Negative flag = H

z If Zero flag = H

E If Error flag = H

C Complement used with the ACC instruction only

Symbol Names

Symbol names are names which are assigned to PCD data like Inputs, Outputs, Flags, Registers,
Texts, or to code blocks like COBs, PBs and FBs.

Symbols can be up to 80 characters long, and are not case-sensitive unless they contain accented
characters. Vbt or On is the same as MOTORON, but FUHRER is not the same as f iihr er .

Symbol names are assigned types and values using EQU or DEF declarations, and also the more
recent LEQU, LDEF an PEQU declarations.

Symbols can also have group names, defined by the $SGROUP directive, which adds a prefix to each
symbol. Groups can be used to define unique symbol names if similar code is repeated several times,
for example inside a MACRO which defines public symbols and is used several times in a program, or
for an instance of an FBox.

These are the rules for symbol nhames:

e Symbols cannot begin with a digit (0-9), and must be two or more characters in length.
e Symbols must use the standard Window's ANSI character set. These characters allowed:
A-Z
a-z
0-9
_ (underscore)
Accented characters with ANSI character codes, but see the NOTES below.
e Symbols cannot begin with an underscore " ", this is resened for internal symbol names.
e Resernved Words cannot be used as symbol names.
e The assembler pre-defines some internal symbols, see Pre-defined Symbols, new symbols cannot
be defined using these names.
e Symbols can have group names, either using $GROUP statements or by using a dot "' to separate
each group name, e.g. G oup0. Groupl. Synbol Os
e Group names starting with one character, e.g. "S." are reserved for system symbols and should not
normally be defined by user programs in case there are conflicts.
e Sub-group names may be instruction mnemonics, e.g. TEST, but only if the symbol name is
defined in full as shown below, because the $SGROUP directive does not allow the group name to be
a resenved word.

Saia PG5® Instruction List, 2013-10-25 17

Saia-Burgess Controls AG Introduction

14

Symbol Names

GroupO0. Test. Symbol EQU R

NOTES

* In some cases it may be advisable to awid using accented characters in symbol names. S-Asm
supports them, but they can cause problems if a program file is transferred to another PC with a
different operating system (Windows 2000/NT/XP/Vista/7 etc) or with different language support
installed. Some characters are not translated properly by the operating system, and the file will not
assemble.

¢ The DOS-based PG3 and the 16-bit PG4 used the old "OEM character set”, which may not be
compatible with the PG5 if accented characters have been used. The current version of the PG5
uses the ANSI character set for program files. Fupla programs will be converted automatically from
the OEM to the ANSI character set. IL programs can be converted using the IL Editor's "Convert
from OEM to ANSI" command.

¢ From PG5 wersion 2.0.200, Fupla supports Unicode and has a selectable ANSI code page for
symbol translation.

Scope of Symbols

A symbol's "scope" defines its visibility to other blocks and files, and the lifetime of the data that the
symbol references. IL programs can have symbols with several scopes.

The Symbol Editor has a column for the scope of a symbol, and it supports Public, External and
Local (local to the file). The Symbol Editor does not support "Local to the block" or "Temporary data"
scopes, which can be used only from IL programs - see below.

Public

Public symbols are declared with PUBL or PEQU. They can be referenced from any file in the
program. Public symbols also be exported, renumbered etc. Unless explicitly declared public,
symbols have scope only within the file in which they are defined. They cannot be referenced from
other files. Public symbols can also be declared in global $include files, see "Global symbol files"
below.

Tip: Do not make symbols Public unless they really will be accessed from other files, or you need the
features which are only available to Public symbols.

NOTE

All data and block nhumbers R TC 1O F COB XOB PB FB SB IST ST TR TEXT DB are global, even if
their symbols (if used) are not explicitly declared PUBLic.

For example, R 100 ca be accessed directly from any file or part of the program, without using a
symbol name.

This is a common source of programming errors because the user may accidentally access the same
data using different symbol names from more than one place in the program.

This can be checked by using SPM's Build Option "Warn on symbols with same type and address".
WARNING

If a block uses fixed data addresses, and the data needs to be retained between each block call (i.e.
it is not re-initialized every time), then you cannot call the block from more than one COB (more than
one task) because the data will be valid for only one task, not for both, unless the code has been
specially written to support this. This is another common source of programming errors. Blocks which
are shared by more than one task must use different static data for each task, either by using
Register Indirect addressing, by passing the addresses as FB parameters, or clever use of the Index
Register.

External

A symbol whose actual type and value is defined in another file can be declared as an external
symbol using EXTN. In Symbol Editor, use the "External" scope.EXTN declarations can be placed in
the referencing IL file, or in an include file which defined the "interface" to another IL file.

Symbols which are declared Public are know as "Global" symbols. An IL file's global symbols can be

Saia PG5® Instruction List, 2013-10-25 18

Saia-Burgess Controls AG Introduction

Scope of Symbols

thought of as the "interface" to the IL file, just like an FBox's inputs and outputs. The local symbols
are only accessible from inside the same file.

Source File

* Local Symbols >
Global g g Global
Symbols ———» —— Symbols
(Usually » » (Usually
External Public)

— —

— —

Local to the file

Symbols which are declared with DEF or EQU (without PUBL) can be used only in the file in which
they are defined.

In Symbol Editor, use the "Local" scope.

Local to the block or macro

Symbols declared with LEQU and LDEF are local to the block or marco in which they are defined.
They cannot be referenced from outside the block or macro, and cannot be made Public.

This scope is not supported by the Symbol Editor.

Local symbols which can be re-defined (DEF)
Normally a symbol can have only one declaration, otherwise a "multi-defined symbol" error occurs.
But often you may want to re-define a symbol's value so it can be used as a reference or loop counter.
This can be done using DEF. For example, if you wanted to increment a symbol's value each time a
macro was called, you could declare the macro like this:

MyMacr o MACRO

Ref Count er DEF Ref Counter + 1

ENDM
Ref Counter DEF O

MyMacr o() ;increments Ref Counter
MyMacr o() ;increments Ref Counter

Temporary data

Register and Flag data which is needed only while a block executes does not need to use the normal
Registers or Flags. Insetad, temporary Regsietrs or Flags can be used, which disappear at the end of
the block. These are for use as workspace data.

(For those familiar with high-level languages like "C", temporary data would be on the "stack",
whereas the normal Registers and Flags can be thought of as being on the "heap".)

Temporary data are declared using TEQU. It can only be declared inside a block (COB, PB, FB, ST or
TR).

Symbols declared with TEQU cannot be accessed from outside the block - they only exist while the
block is running.

Temporary data is not supported by the Symbol Editor.

Global symbol files

Another way to define public symbols is to put them in a global include file. This is how it was done in
PG5 V1.x, but PG5 V2 has introduced a safer way to do it.

Global include files are still supported by PG5 V2, but only for supporting programs written with PG5

Saia PG5® Instruction List, 2013-10-25 19

Saia-Burgess Controls AG Introduction

15

Scope of Symbols

V1.x which used the Global.sy5 file, or for symbol files generated from Excel files or other code
generators.

In PG5 V2, we encourage you to use the Public/External mechanism - which is now available in
Symbol Editor, and declare the Public symbols in the files which create them, and the External
symbols in the files which reference them.

This keeps the symbols in the files which create them, instead of having the symbols defined in
different file. The file can then be copied or moved without losing the symbol definitions - better
"encapsulation”.

Global symbols files are not compatible with the new "background build" because any changes to the
file means that ALL the program's files must be re-assembled and linked. This will be very slow.

Tip: We recommend that you only use global symbol files for symbol names which will not be
regularly changed. Do not use global symbols files unless they are really necessary. Some old PG5
V1.x users put all their symbols into the old Global.sy5 file. This is not recommended anymore
because it is not compatible with the new background build, any changes to a global include file
means that ALL files must be compiled, assembled and linked, which can be a long procedure.

Forward and backward references

EXTN, EQU and PEQU symbols can be both forward and backward referenced, they can be declared
anywhere in the source file, and referenced from anywhere in the file - unless they are used in $IF
statements where they must be defined before they are used. Symbols defined with DEF or LDEF
have scope from the definition point to the end of the source file (unless re-DEFined), allowing
backward references only.

Scope of Labels
Labels (symbol names for program line numbers) are usable only within the code block or macro in

which they are defined, they are local to the block or macro.

Typed Symbols

When a symbol is EQUated, DEFined or declared as external EXTN (or PEQU LDEF, LEQU, GDEF,
GEQU), a data type is normally assigned to the symbol.

If symbols are given a type then the type is checked whenewer the symbol is used and provides added
security. It is invalid to use a symbol with an invalid type in an instruction, or to mix symbols of
different types in an expression. PUBLic symbols retain their type information which is checked by
the Linker in the same way.

If a symbol has a type, it is not necessary to use the type in the instruction, but if a type is used then
it must match the symbol's type. For example:

INPUT EQU | 1 ;declare "INPUT" as Input 1
STH | NPUT :sane as "STH | 1"

STH | INPUT ;sane as above, but synbol "INPUT" *nust* be an | nput
STH F INPUT ;eerror! Type "F'" does match "I NPUT" synbol's type

(Note: if you use S-Edit with the Symbol Editor, it will automatically remove the unwanted type when
S-Edit processes the line.)

Permitted symbol types are (see Data Types for address ranges):

Type Description

I Input

O Output

IO Input or Output (both use the same numbering)

Saia PG5® Instruction List, 2013-10-25 20

Saia-Burgess Controls AG Introduction

1.6

Typed Symbols

F Flag

R Register

T Timer

C Counter

T| C Timer or Counter (both use the same numbering)
K Constant (13-bits unsigned)
CoB Cyclic Organization Block
XOB Exception Organization Block
FB Function Block

PB Program Block

SB Sequential Block

ST Step (or Initial Step)

TR Transition

SEMA or S Semaphore (for LOCK and UNLOCK) (obsolete)
TEXT or X Text

DB Data Block
DBX Extended Data Block

I B Information Block
= Function Block parameter number (not for EXTN symbols)

A symbol can also have type "label" if it is declared as a label.
The symbol's type appears in the TYPE field of the cross reference list in the listing file.

For dynamic Flags (without an address), there is also a VOL attribute which declares the Flag as
olatile' so that its address will be assigned from the volatile flags segment (see Software Settings), e.

g.
MWFl ag EQU VOL F ;a volatile flag

For dynamic Texts and DB addresses, there is a RAM attribute so that the address will be selected
from RAM Text or RAM DB segments (see Project Manager's Build Options), and is not stored in
Flash or EPROM memory which is read-only, e.qg.

MyText EQU RAM TEXT ;this is a RAM text

Tip: New PCD types hawe a Build Option which defines the first writable Text/DB.

Numeric Constants

The default base for numeric constants is decimal. All constants are stored as 32-bit signed integers
(one Register), except Double with is 64 bits (2 Registers).

The following types of numeric constants are available:

Decimal constants
Decimal values have the range -2'147'483'648 to +2'147'483'647 (signed 32-bit).

Binary and hexadecimal constants
Binary or hexadecimal bases can be used by post-fixing the number with a base indicator character:

Y,yorQq Binary, e.g. 1001Q, 11111111q

Horh Hexadecimal, e.g. OFFH, 07f h

A hex value must always begin with a digit (0..9), otherwise it could be interpreted as a symbol if it
begins with A..F.

Binary and hex constants have the range 0 to OFFFFFFFFH.

Note that OFFFFFFFFH is -1 decimal and 80000000H is -2147483648 decimal.

Character constants
These can be entered by enclosing the characters in single quotes, one to four characters can be

Saia PG5® Instruction List, 2013-10-25 21

Saia-Burgess Controls AG Introduction

Numeric Constants

entered.

Each character uses 8 bits, so 4 characters fills a 32-bit integer,

eg.'A 'ab' '?" 'abcd 'f'

Decimal values for non-printable characters can be defined inside angle brackets, e.g. ' <10><13>" .
To enter the < > and ' characters, enclose these in angle brackets too, e.g. ' <<><>><' >' |

K Constants

These are any decimal, binary or character constant which fits into 13 binary bits (range 0..3FFF hex,
0..16383). These are used in Integer instructions where the operand must have a data type (IL
operands are 16-bit values and the upper 3 bits define the data type, leaving 13 bits for the value).

Floating point constants, "Motorola Fast Floating Point" FFP
Floating point values must contain a decimal point . ', and/or an 'E' (or 'e") followed by an exponent, e.
g..23, 1.234, 1E10, 1le-10.
Floating point constants cannot be used in expressions, IL expressions doing arithmetic operations
with floating point values will generate an error. The range for FFP numbers is:

+5.42101E-20 .. +9.22337E+18 (6 significant digits)

-2.71056E-20 .. -9.22337E+18

IEEE floating point constants, Float and Double (new)

Recent PCD firmware now supports IEEE Floating Point values, and contains instructions for
processing these formats. Float (32-bit) and Double (64-bit) values are supported. A Float values uses
a single Register, a Double value uses two consecutive Registers. To declare an IEEE float value,
terminate the number with the letter | (without the | it is assumed to be a Motorola Fast Floating
Point value).

Synbol EQU 1. 2|
Double values cannot be assigned directly to symbols, instead they must be loaded into a Register
using the @DFPHI() and @DFPLO() operators, which return the upper and lower 32-bits of the 64-bit
double value. These operators can also be used to convert FFP and Float values to double - in the
example below, Symbol can be an IEEE float or Motorola Fast Floating Point value.

LD R O
@FPHI (Synbol) ;the upper 32 bits of the double val ue
LD R 1

@FPLO(Synbol) ;the lower 32 bits of the double val ue

The range for Float is: +/-1.1754943e-38 to +/-3.4028234e+38 (7 significant digits)
The range for Double is: +/-2.2250738585072014e-308 to +/-1.7976931348623158e+308 (15
significant digits)

$ constants

'$' is assigned the value of the program line offset from the start of the current code block (COB, XOB,
PB, FB, SB, IST, ST or TR). It can be used for creating a jump label for relative jumps (JR). $ cannot
be used inside a $INIT or $xxxSEG segment. $ constants can also be made PUBLic, whereas labels
cannot because labels are always local to the block in which they are defined.

For example:
Label EQU $;offset fromstart of block
LD R O
Label
Tip: You can define labels directly using a colon, so $ is not really needed anymore.
Label :
JR Label

Saia PG5® Instruction List, 2013-10-25 22

Saia-Burgess Controls AG Introduction

1.7

1.8

Time Constants (for loading Timers)

Time Constants (for loading Timers)

Timers are decremented at a rate defined by the DEETB instruction (Define TimeBase). Timers are
loaded with the number of "ticks" whose duration is defined by DEFTB.

The values loaded into Timers will therefore need to be changed if the DEFTB timebase is changed.
To overcome this problem, the "time" data type can be used to declare Timer load values. If a time
value is used, then the linker calculates the actual Timer load value according to the DEFTB timebase
— changing the DEFTB timebase adjusts all the "time" values.

Time (duration) values can be in seconds or milliseconds. The maximum time that can be stored in a
time value is 2147483 seconds (24.8 days).

Format: T#nnnS| MS

where: T# (or t#) Introduces the time data type
nnn The time value in seconds or milliseconds, range

10..2147483647 milliseconds, 1..21483 seconds

S| M5 S = value is in seconds, MS = in milliseconds

Examples:

Del ayTi me EQU T#100MS ;100 milliseconds

OneDay EQU t #86400s ; 86400 seconds

NOTE

The Timer load values calculated by the linker are rounded up to the next DEFTB tick, DEFTB defines
the resolution of the Timers. For example, for DEFTB 100 (100 x 10ms = 1000ms), the lowest Timer
value would be 1000ms (1 second), therefore "T#10ms" would be rounded up to 1000ms. For a
DEFTB value of 1 (1 x 10ms) the lowest timer value would be 10ms for "T#10ms", which produces a
Timer load value of 1.

Labels

Description
Labels are symbol names given to locations in a program (program lines), which are used as

destinations for jump instructions or to provide debug information.

Characters allowed in labels are the same as those of symboals.
Labels can appear anywhere in the source file, but should be within a code block (COB, PB etc.), and
must not be inside a multi-line instruction.

The value assigned to a label is its offset within the code block where it is defined.

All labels are local to the block in which they are defined, the same label can be used many times in
a the same source module, providing it is always in a different block.

Jumps to labels defined in another block are not allowed.

Labels cannot be public, since all labels are local to the block in which they are defined, and jumps
between source modules are not allowed.

'$' can be used to create untyped symbols containing the offset into the code block, which may be
made public or can be referenced from another block (by the LD or RCOB instructions).

Example
PUBL LAB1 ; LAB1 is declared public
LAB1L EQU $:LAB1 is offset fromstart of block

Saia PG5® Instruction List, 2013-10-25 23

Saia-Burgess Controls AG Introduction

19

Labels
LAB2: STH 1 O ;LAB2 is a label for a wait |oop
JR L LAB2
Texts TEXT or X
Description
Texts are arrays of characters, entered as strings enclosed in double quotes ". . . ". Texts can

consist of one or more lines of text, each line must be opened and closed with double quotes.

Depending on the PCD type, some Texts are writable and some Texts are read-only. Writable texts
can be overwritten, but cannot have their length changed at runtime. Writable Texts are in the Data
Segment (also known as Extension Memory). Read-only Texts are stored in the Text Segment. For
older PCDs the partition between these segments is fixed, Texts 0..3999 are read-only and Texts
4000 an abowe are writeable. Some recent PCD types allow the partition to be adjusted using Project
Manager's Build Option "First writeable Text/DB number".

Texts 0..3999 are stored in the standard NUL-terminated string format - they must contain a NUL
character (00 in hex) at the end, and only at the end. Texts 40000 and above can contain NUL
characters anywhere, so with a bit of clever programming these can be used to support variable-length
Texts.

The maximum number of characters allowed in a single Text is 3072 characters (3K).

Any character can be entered into a Text, except Texts 0..3999 do not allow the NUL character
(numerical code 0) because this is used as the end-of-text character.

Symbols can be used in Texts, so you do not have to use absolute addresses, see Using Symbols in
Texts.

Format

TEXT nunber [[I|ength]] "text line 1" [; comment]
"text line 2"
“text line n"

The Text number and length can be any expression or symbol combination. The length is an optional
text length, which must be enclosed in square brackets, e.g. [10], [MaxText Len] . The text length
defines texts for use with the PUT and GET instructions, which can copy blocks of Registers to and
from Texts. If the length is present, then text in double quotes can be omitted, and the text is filled
with space characters. If both the length and text are defined, the text is padded with space
characters up to the given length.

Examples

ONE EQU TEXT 1

TWO EQU X 2 ; X and TEXT (data types) are the sane
TEXT 0 [100] ; Defines TEXT O as 100 spaces

TEXT ONE [5] "123" ; Defines TEXT ONE as "123

TEXT TWO "123 " ; Text TWO is the sane as text ONE

Special characters
To place the <, > and " characters in a text they must be enclosed in angle brackets: <<>, <>>, <" >

. In fact, the character value between angle brackets can be any expression, even containing user-

Saia PG5® Instruction List, 2013-10-25 24

Saia-Burgess Controls AG Introduction

Texts TEXT or X

defined symbols, providing the value produced is in the range 0..255. Special characters can be
entered as ASCII codes in decimal, or as standard ASCIl mnemonics, enclosed in angle brackets, e.
g. "<CR><LF>" or"<10><13>".

The ASCII mnemonics are:

Mnemonic Dec Hex Mnemonic Dec Hex
<NUL> 0 OOH <DLE> 16 10H
<SOH> 1 01H <DC1> 17 11H
<STX> 2 02H <DC2> 18 12H
<ETX> 3 O3H <DC3> 19 13H
<EQOT> 4 04H <DC4> 20 14H
<ENQ> 5 O5H <NAK> 21 15H
<ACK> 6 O6H <SYN> 22 16H
<BEL> 7 07H <ETB> 23 17H
<BS> 8 O8H <CAN> 24 18H
<HT> 9 09H 25 19H
<LF> 10 OAH <SuB> 26 1AH
<\VT> 11 OBH <ESC> 27 1BH
<FF> 12 OCH <FS> 28 1CH
<CR> 13 ODH <GS> 29 1DH
<SC> 14 OEH <RS> 30 1EH
<S| > 15 OFH <US> 31 1FH

 127 7FH

Examples using special characters

TEXT 100 "<13><10>" ; THHS IS CARRI AGE RETURN, LI NE FEED
TEXT 101 "<CR><LPF>" ; SAME AS TEXT 100 ABOVE
TEXT 102 "<">Hell o worl d!<">" ; TEXT 1S "Hello world!™

EndCOrF Text EQU 2

TEXT 103 "<EndOf Text >" ; SAME AS " <2>"
TEXT 104 "<EndOf Text +1>" ; SAME AS " <3>"
NOTES

Texts and Data Blocks share the same numbering. For example, if TEXT 10 is defined, then DB 10
cannot be defined, and vice versa.

Texts 0..3999 are stored in Text memory, which can be RAM, EPROM or Flash EPROM,
depending on teh PCD type. Texts 4000..8191 are only available on a PCD with Data (Extension)
memory, which is always battery-backed RAM. The PCD2.M1xxx supports only Texts/DBs
0..5999.

For Texts 0..3999, the first character of a text CANNOT be <253>, <254> or <255> (OFDh, OFEh or
OFFh). These characters are reserved to indicate that the text is in a special format (binary LAN
text or Data Block).

The PCD2.M480, PCD3 and all recent PCD models (NT systems) support Texts/DBs up to 8191.
An empty text (" ") does not create a text in a .PCD file, but it does define the Text number for the
assembler and linker, thus preventing that text from being re-defined. Howewer, the PCD treats an
empty text as though the text doesn't exist.

The $SASI..SENDSASI directives can be used to delimit Texts which are to be specially processed
by the assembler.

Saia PG5® Instruction List, 2013-10-25 25

Saia-Burgess Controls AG Introduction

Using Symbols in Texts

110 Using Symbols in Texts
Texts can also contain references to symbols. The symbol's value or address and optionally the type
of the symbol is inserted into the Text. The symbol is written outside the Text which is in double
quotes, and must be separated from this or other symbols by a comma.

After the symbol, an optional field width and prefix type can be given.

For example:

TEXT MyText "The value of Symbol 3 is: ", Symbol 3, "<CR>"

Symbols in texts hawe this format:

symbol [.[[-][O]width][t]|T|lc|C s]|s]]

symbol The symbol name. This can actually be any expression which includes a symbol,

for example: Mot or On+100, | OBase+Of f set etc.
Note: Symbols with Floating Point or IEEE values are not supported.

The dot immediately after the symbol indicates that a field width and/or prefix is
present.

- If the width (see below) begins with - (a minus sign) then the displayed data is left-
justified in the field. The default is right-justified.

0 If the width begins with a 0, leading zeros are inserted to pad the field to width
characters. If width is preceded by a - sign, the data is left justified in the field and
no leading zeros are inserted, even if the width begins with 0.

wi dt h The field width, the number of digits or spaces for the number (1..20). If the number
is longer (e.g. width=3, number=1234), then the width is automatically increased
so the number is not truncated.

torT Optional prefix type t or T. Ift, the value is prefixed with the symbol's type in lower
case (o, f, r, pb, xob etc.). If T, the symbol's type is in upper case (O, F, R, PB,
XOB etc.).

corC Indicates that the value is to be inserted into the text as an ASCII character. Only

the least significant 8 bits of the value are used.
e.g. CharSym EQU ' A

Text 100 "Character is ", CharSymC ;"Character is A"
sorS Inserts the symbol name into the text rather than the type/value of the symbol.

Synmbol 4 equ R 123

TEXT 100 "Synbol nane is: ", Synbol4.s

This is particularly useful in Macros, where the symbol can be a macro parameter.
These additional formatting characters are for use in IBs and DBXs only (not in Texts):

dorD Inserts the symbol's media type and address as a decimal ASCIlI number with
the same format as a PCD operand.
Regl equ R 1
Fl g2 equ F 2

DBX
@: ;for variable length texts
Regl.h, " ", Regl.d ;"8001 32769"
Flg2.h, " ", Flg2.d ;"4002 16386"
EDBX
h or H Inserts the symbol's data type and address as a hex ASCII number with the

Saia PG5® Instruction List, 2013-10-25 26

Saia-Burgess Controls AG Introduction

111

Using Symbols in Texts

same format as a PCD operand, see example abowe.

More examples of texts containing symbol references:

Fl ag EQU F 123
Qutput EQU O 32

Reg EQU R 999
Char EQU ' ABCD
Block EQU DB 100

TEXT 0 "$", Flag. 04T ; "$F0123"
TEXT 1 Flag ;123"
TEXT 2 "DIAG ", Qutput.T, ",", Reg.T
; "Dl AG G832, R999"
TEXT 3 "55:", Flag. T, "-", Flag+7, ":", Qutput.T, "-", Cutput+7

; "55: F123-130: G32- 39"
TEXT 4 "FLAG NUMBER: *", Flag.-8, "*"

;" FLAG NUMBER: *123 *
TEXT 5 "Char is ", Char.c :"Char is D"
TEXT 6 "Block is ", Block.T :"Block is DB100"

Texts can also contain formatted absolute addresses. This is useful in Macros so the parameter can
be either a symbol or an absolute address.

Note that there must be a space between the type and the address, e.g. use R 100 not R100 (which
would be interpreted as a symbol).

For example: TEXT TOTO "ABCDE$", R 100.04T
generates TEXT TOTO " ABCDE$R0100"

Symbolsin SASI texts

Di agFl ags EQU F 500
Di agReg EQU R 4095

X0B 16
SASI 1
3999

TEXT 3999 "UART: 9600, 7, E, 1, MODE: MC0; "
"DIAG ", DiagFlags.T, ",", DiagReg. T, ";"

This creates the text:
"UART: 9600, 7, E, 1; MODE: MCO; DI AG F500, R4095; "

Data Blocks DB

Description
A "data block" is a block which contains and array of 32-bit data values.

The values can be transferred to and from Registers, Timers and Counters. The PUT instruction
transfers data from Registers into a Data Block, and the GET instruction transfers all the data from a
Data Block into a block of Registers. The number of Registers copied depends on the DB length,
which is defined in the DB declaration. The TER (TRansFer) instruction transfers single elements to or
from a DB.

Saia PG5® Instruction List, 2013-10-25 27

Saia-Burgess Controls AG Introduction

1.12

Data Blocks DB

DBs numbered 0..3999 can hold up to 383 values (0..382). these are stored in the Text memory
segment, which may be Flash or EPROM, so they may be read-only. Access to these DBs is much
slower than DBs 4000..8191.

DBs numbered 4000..8191 are always in RAM memory (Extension or "Data” Memory), and can
contain up to 16384 values (0..16383). Access to these DBs is much faster than DBs 0..3999.

Because DBs 4000 and abowe are in RAM, their data will be lost if the battery fails or if the PCD does
not have a memory backup battery. The SYSWR and SYSRD instructions can be used to save and
restore these DBs (and the Texts) to/from flash memory, see function codes 3000..3002 and
3100..3102.

Eormat
DB number [[length]] [valuel [, value2]...]

The Data Block | engt h must be given, enclosed in square brackets, e.g. DB 10 [100], followed
by an optional list of initial values. If the length is empty [|, then the length is determined from the
number of values. Either the length and/or one or more values must be given. If only the length is
supplied, the data is initialized to zeros. For DB 0..3999 length can be 1..383, for DB 4000..8191 the
length can be 1..16384.

Values can be decimal, hex, floating point or ASCII, or can be any expression or symbol combination
producing an integer or floating point value.

Examples

DB 100 [10] ;DB 100 HOLDS 10 | TEMS,
cALL SET TO O

DB 101 [4] 1,2,3,4.1 :DB 101 HOLDS 4 | TEMS,
:SET TO 1, 2, 3 AND 4.1

DB 102 [4] 1,2,3 DB 102 HOLDS 4 | TEMS,

; SET TO 1, 2, 3, O
DB DATA[LEN] VALL,,,4H ;DB DATA HOLDS "LEN' | TEMS,
; SET TO VAL1, 0O, O, 4

Notes

e At present, data blocks 0..3999 are stored in "text memory". If the first character of a text is OFFh
(255), then it is treated as a data block. The data is encoded in a special way, so that NUL (0)
bytes do not occur in the text. Data blocks 4000..7999 are stored in "data memory" in binary, and
are not encoded. These can contain the NUL character.

e [f the PCD contains flash or EPROM main memory, then Data Blocks 0..3999 cannot be written to.
Data blocks 4000..7999 reside in the PCD’s data memory (always RAM).

¢ Data Blocks share the same numbering as Texts. For example, if DB 10 is defined, then TEXT 10 is
unavailable, and vice versa.

e The PCD2.M480, PCD3 and all later PCD models (NT systems) support Texts/DBs 0..8191.

e The @LEN() and @CHK() special operators can be used in Data Blocks, but only if the symbol
they reference in not an external or dynamic address.

Extended Data Blocks DBX

Description
Extended Data Blocks (DBXs) are normally not created by users, they are generated by an editors

code generator such as the S-Net Configurator or CAN Configurator.

The standard Data Block (DB) is an array of 32-bit Register values. This is not suitable for holding
data in other formats, such as bytes, words and strings. To solve this problem, the Extended Data
Block (DBX) has been introduced. DBXs are numbered 0..3999, and are stored in the read-only Text

Saia PG5® Instruction List, 2013-10-25 28

Saia-Burgess Controls AG Introduction

Extended Data Blocks DBX

segment. They can hold any type of data.

At present, DBXs cannot be accessed by the user program, they are used only by the firmware to
hold internal binary configuration data such as the Profibus configuration. It is up to the PCD's
firmware to correctly interpret the contents of a DBX

Each DBX number has a specific use which is hard-wired in the firmware. For example, DBX 3 holds
the LON configuration, DBX5 is for TCP/IP, DBX 12 is for the CAN configuration.

There is no dynamic allocation of DBX numbers. The linker does not support the DBX data type, this
means that if a symbol is defined as a DBX (e.g. MyDbx EQU DBX 100), the symbol cannot be
made Public. However, DBX symbols can be used in include files.

To make DBXs as wersatile as possible, each element in the DBXis assigned a data size in bytes,
see below. The default data size is 4 bytes, so that the default DBX behaves like a DB which contains
32-bit elements.

Format

DBX nunber ;can be synmbol or absolute value, 0..3999
@i ze: data size declaration

dil, d2, d3, ;data, each one is size bytes

@i ze: d4, d5 ;nmore data, different data size

EDBX end of DBX

The DBX can store any size of data. Each data item is preceded by its size in bytes, using the form:
@i ze:

where size is the data size in bytes, preceded by an ampersand @and separated from the data by a
colon : .

After the size follows a list of data values, separated by commas. Each item uses the same size,
until the next size declaration. Commas must be used to separate data items on the same line, they
are not needed if there is only one item per line.

All values are stored in the DBX in Motorola format (MS byte first).

If the size is larger than the data value it is padded to the correct length. For text in double quotes
"...", spaces are padded to the right of the text and a NUL (00) is used as the last character. For
numeric data, zeros are padded to the left of the data. For example:

@: "No" ; 4E 6F 20 20 00 hex

@: 12H ;00 00 00 00 12 hex

To remove the padding spaces from the end of a text, put one or more NUL characters <0> in the
text, e.g.
@: "No<O0>" ; 4E 6F 00 20 00 hex

If the text is the exact length-1 then the NUL is not needed because the last character of a text is
always 00:
@: "1234" ;31 32 33 34 00 hex

If the length of the data is larger than the current size, an error is generated. For text data, the length
should include the added NUL.

Symbols can be used to declare data in a DBX The symbol's value is converted to a binary value in
the same format as a PCD instruction operand. These are for use by PCD firmware.

Saia PG5® Instruction List, 2013-10-25 29

Saia-Burgess Controls AG Introduction

Extended Data Blocks DBX

If the data size is @, the symbol's value is stored in ASCII, and a text format can be used, e.g.
Syml. 04T, see Using Symbols in Texts and Storing variable length text in IBs and DBXs using @O0.

Media addresses
Media addresses are converted to the PCD firmware format, which is a 16-bit binary representation
that contains the address and the media type code (mc). Note that Register addresses are multiplied
by 4 before adding the mc (8000h). This format is for use only by the PCD firmware which processes
a DBX
IMPORTANT
Only the first media address in an expression is converted to the firmware format. Subsequent
symbols in an expression are NOT converted. For example:

Regl EQU R 1

Flg2 EQU F 2

DBX 10

@: Regl ;result is 8004h (registers nunbers are x4)
Fl g2 cresult is 4002h

0+Regl cresult is 1

0+Fl g2 cresult is 2

EDBX

Media addresses can be represented as ASCII strings instead of binary values by using the d or h
text format characters (these can be used only in a DBX or IB). The address is in the same format as
a PCD instruction operand, and includes the mc. For example:

Regl EQU R 1

Flg2 EQU F 2

DBX
@: ;for variable length texts
Regl.h, " ", Regl.d ;"8004 32772" (register nunbers are x4)
Flg2.h, " ", Flg2.d ;"4002 16386"
EDBX
NOTES

e The @LEN() and @CHK() special operators can be used in a DBX, but only if the symbol they
reference in not an external or dynamic address, and the Text or DB they reference does not
contain any external data.

e DBX numbers are from 0..3999, which means that they are stored in Text/DB memory only, they
cannot be defined in Extension Memory at present. Therefore they are always read-only.

e DBXs are always multiples of 4 bytes in length. If the DBXis shorter then it is padded with 1, 2 or 3
bytes of NULs (0s).

Conditional Directives
Conditional directives $I F. . $NDI F etc. and Macros can be used inside DBXs. Macros can be very
useful, particularly if DBXs are coded by hand:

byte macro data
@.: data
endm

word nmacro data
@: data
endm

dword macro data
@: data
endm

Saia PG5® Instruction List, 2013-10-25 30

Saia-Burgess Controls AG

Introduction

string macro data

@: data
endm

DBX 0
byte 255

word Offffh
dword F 100
string "This is a string<0>"

EDBX

Example

DBX example for a Profibus data structure:

DBX Profi busDB
;vid_par

@z:"SAl A",

o
k=)

RPN RRRARRARE

1234

45

4567

10

66

6789

0

0
OFFFFFFFFH
0

0
OFFFFFFFFH

i pb_typ_thbl

@

" PCD1.

;can be synbol

mLoo", "", ;12-char

0, 34, 67, 89, 97, 105, ;

120, 134, 149, 150

;pb_type I|ist

;Strings with @ size are NUL term nated by
;specifically adding the NUL <0> at the end,
; See Storing variable |length text
@:5, @:22, @:"This is a description<0>"
@a::5, @:19, @: "Another

; spare
;ram fl ag

name_| en
acc_pro_sup
versi on_ov

add_obj head

s_type_nbr
add_s_type
s_obj _beg
s_obj _nbr
add_s_obj
d_obj _beg
d_obj _nbr
add_d_obj
d_pro_beg
d_pro_nbr
add_d_pro

; 4-byte val ues
add_typel..add_type_n

absol ute val ue

in | Bs and DBXs using @.

@6, @:3, @:"huh<0>"

; pb_obj _tbl

@
0

28

;4-byte val ues

add_obj x+0
add_obj x+1

descri pti on<0>"

Extended Data Blocks DBX

Saia PG5® Instruction List, 2013-10-25

31

Saia-Burgess Controls AG Introduction

1.13

Extended Data Blocks DBX

56 ; add_obj _x+2

; pb_obj ect Iist

; pb_object 1

@: o ; spare

@: 4 ; obj code
@: 1 ;type_ind
a: 1 ;obj _len
@: 8 ; nb_el enent
@.: OAFH ; passwor d
a: 1 ;acc_group
@: 0034H ;acc_right
@: 000083COH ;add_nedi a
@a: o ; name

@: 01 ;media_len
@: o ; spare

@: 8 ; count

@: 1234 ;W_i nd_add
@: 1235 ;r_ind_add

; pb_obj ect _2, as above but condensed wi t hout comments
@:0,4, @:1,@:1,8,0AFH, 1, @: 0034H, @: 000083C0OH
@:0,01,0, @: 8, @: 1234, 1235

; ot her pb_objects can foll ow
EDBX
Information Blocks IB

Description
Information Blocks (IBs) are not normally coded by users, they are generated by an editor's code

generator.

IBs are similar to DBXs, and are declared in the same way, except that | B. . El B is used instead of
DBX. . EDBX. Up to 4000 IBs can be defined, numbered 0..3999.

The only two differences between DBXs and IBs are that IBs are not downloaded into the PCD when
the .PCD file is downloaded, and the default data size for IBs is 0 (@O for variable length texts)
instead of 4 for DBXs.

IBs are stored in a hidden segment in the .PCD file. This segment can be read from the .PCD file only
by specially written PC software, it cannot be accessed by the PCD itself.

IBs are always multiples of 4 bytes in length. If the IB data is shorter then it is padded with 1, 2 or 3
bytes of NULs (0s).

The linker does not support the IB data type, this means that if a symbol is defined as an IB (e.qg.
Mylb EQU IB 100), the symbol cannot be made public. Howeer, IB symbols can be used in include
files

Format
See DBX.

Example
IB O

Saia PG5® Instruction List, 2013-10-25 32

Saia-Burgess Controls AG Introduction

1.14

1.15

Information Blocks IB

"This is sone text with a NUL term nator<0>"
"This is nore text with a carriage return termn nator<CR>"
Regl. 004T ;"RO001" see Using synbols in texts
Fl g2. h ;"4002"
El B

See also Storing variable length text in IBs and DBXs using @0.

Comments

Description
Comments can appear anywhere in the source file (except after some directives such as $TITLE,

$ERROR, $REPORT). Comments begin with a semicolon character ; and can be any length, but for
symbol comments only the first 80 characters are used.

The comments appearing after symbol declarations (PEQU, EQU and DOC etc) are stored in the
symbol table in the PCD file.

All characters after the ; are ignored until the start of the next line.
Comments can contain any characters.

Format
; conment

Tip: Comments in Macro definitions which are preceded by two semicolons ; ; are removed when the
macro is expanded, this saves a bit of memory and makes the object files slightly smaller. (On an old
PC with 640KB RAM this feature was useful, but if you have a new PC with 64MB RAM, it is not
really significant anymore.)

See also
$SKIP..$SENDSKIP

Strings, STR and @STR()

Description
A string is a bit like a macro parameter, except the string name can be used anywhere in the IL

program, not just inside a macro. The string is replaced with the actual text during the pre-processing
pass of the assembler. Some new FBox Adjust parameters are strings - not symbols or values, but
simply some textual information. A string is not a Text (as in Texts and Data Blocks), but it can be
used to define Texts, see the example below.

Defining a string
Strings can have names and can be defined using DEF, EQU, LDEF, GEQU or GDEF, and the data

type STR. The string's text is enclosed in double quotes "...".
string_name DEF| EQU| LDEF| GEQU| GDEF STR "string"

The quotes are removed when the string is referenced using the @STR() operator, which is described
below.

String symbol names are kept in a separate symbol table - the string table, so their names will not
clash with normal symbol names. String symbol names are valid from the point of definition to the end
of the file. Forward references are not allowed, strings must be defined before they can be used.

Saia PG5® Instruction List, 2013-10-25 33

Saia-Burgess Controls AG Introduction

Strings, STR and @STR()

String definition - the quotes are removed when it is referenced using @STR()
MyString DEF STR "Strings are cool”

If you want to keep the quotes, use two pairs of quotes as in this example - @STR() removes only
the outer quotes.
MyString DEF STR ""Keep the quotes"" ; @TR() renoves only the outer quotes

Referencing a string

Strings can only by referenced using the special operator @STR(), or in the $IFDEF or $IFNDEF
conditional directives. The @STR() operator is replaced by the string itself, without the quotes (unless
a double pair of quotes was used when the string was defined). See the examples at the end of this

page.
MyString DEF STR ""Keep the quotes"" ; @TR() renoves the outer quotes
@TR(MyStri ng) ;evaluates to "Keep the quotes”

Note: No space is allowed between @STR and the (, you must use @TR(.

@STR() can be used directly in these directives for text output: SREPORT, $WARNING, $WRFILE
etc. It is not necessary to enclose this operator in @...@ characters to enable it to be evaluated
unless it is a macro parameter (see below), using @5TR() alone is the same as using: @&$STR()
@ @STR() operators are resolved after macros have been expanded, and before the code is
assembled. This allows string names to be passed as macro parameters, and allows @STR() to
reference a string defined outside the macro, or in a caller macro (see GDEF). For example:

Stringl DEF STR "Strings"

String2 DEF STR "confusing"

SWRFI LE "Test.txt" @TR(Stringl) are very @TR(String2)!
The text written to file Test.txt is:

Strings are very confusing!

String names can be derived from other string names, but you must still use STR otherwise S-Asm
will not look in the string table:
DerivedString EQU STR MyStri ng

String names can be used in $IFDEF or $IFNDEF to see if the string name has been defined or not,
you must also use STR to indicate it's a string, otherwise S-Asm will look in the symbol table instead
of the string table:

$| FDEF STR MyStri ng

$ENDI F
Tip: The results of the string replacement can be seen in the Listing file. Examine the listings while
learning to use @STR().

Using strings as macro parameters
It is usually best to pass a string name rather than the string itself as a macro parameter. But you
can also pass an actual string "hello" or an @STR() expression, but strings with two pairs of quotes
" " are not supported as direct macro parameters. Note also that actual strings cannot contain
a" character.
Special handling is needed for macro parameters in the $WRFILE, $SREPORT, $ERROR, $WARNING
and $REPORT directives because these directives assume that what follows is text to be output as it
is, without any processing. Using a parameter name on its own will not work, so you must indicate it
is to be processed by enclosing it in @. . . @
@STR() is not replaced in a MACRO definition, it is replaced only when the macro is expanded.
@STR() is replaced after the macro parameters are replaced.
For example, here '‘param' is the macro parameter which is passed as @STR("...") :

MyMacro MACRO par ani

Saia PG5® Instruction List, 2013-10-25 34

Saia-Burgess Controls AG Introduction

Strings, STR and @STR()

$REPORT This is the string: @param@
ENDM

MyMacr o(@TR(" Goodbye, world."))

@STRLEN(string _nane) can be used to get the length of a string. This returns -1 if the
string_nane is empty, and so can be used to detect empty macro parameters.

$1 FTYPE can be used to determine if a symbol name is a string name:
$1 FTYPE string_name = STR

$ENDI F
Referencing macro parameters inside a string
From PG5 V2.1.300 (S.SYS.SasmVers >= 21300), macro parameters can be referenced from inside
a atring by using " @par am@ . Without this, the macro parameter 'par ant is not replaced. For
example:

DenoMacr o MACRO paranD, paraml

Stringl EQU STR "Macro paraneters are: ' @paranD@ and ' @paranli@ "

$RPEORT @TR(Stringl)
ENDM

Defining a TEXT from a string
Texts must be enclosed in quotes "...", so you can either declare the string with two pairs of quotes
(the outer pair are removed) and not enter the quotes in the TEXT, or you can declare the string with a
single pair of quotes (which are removed) and put the quotes into the TEXT. The example below shows
both methods.

Stringd0 EQU STR ""Part 1"" ;string with "quotes"”

Stringl EQU STR "Part 2" ;string without quotes

TEXT 100 @TR(String0), "@TR(Stringl)"
The resulting Text is:

TEXT 100 "Part1", "Part 2"

Notes
e String names are not affected by $GROUP, but they can hawve a dot in the string name, for
example:
G oupO0. String0 EQU STR "I'm a groupi e"
$GROUP Gr oupO
Stringl EQU STR "I"mnot in a group"
$ENDGROUP
® Strings cannot be Public, the string table is local to each file.
e There is no cross-reference list for strings.
e String names are not shown in Project Manager's 'Data List' view.

Notes for library developers
Strings have been introduced in PG5 V2.0, S-Asm ersion 2.0.150. They are not supported by earlier
versions. This means that any libraries or FBoxes which use strings must check the S-Asm version
number using the pre-defined symbol S.SYS.SASMVERS:
$I F S. SYS. SASMERS < 2000150
$FATAL MyLibrary requires PG5 version 2.0.150 or |later
$ENDI F

Tip: Library dewelopers can also use an entry in the Library Information File (.saialin) to prevent
installation of the library if the PG5 doesn't support it, see section [AppVer si on] .

Pre-defined System Strings

Saia PG5® Instruction List, 2013-10-25 35

Saia-Burgess Controls AG Introduction

Strings, STR and @STR()

These strings are pre-defined for use in IL programs:

STR. PG5Reqgi st er tRegistered user name of Saia PG5® package

STR. PCUser Nanme Name of the user who is logged onto the PC.

STR. PG5Ver si on Version number of PG5, e.g. "2.0.100"

STR. Proj ect Name The name of the project

STR. Devi ceNanme The name of the device (program name)

STR. PcdType The PCD type, e.g. "PCD3.M5540"

STR. Progr anVer siProgram version for the Device Properties dialog box, e.g. "1.0"
STR. Program D The unique program ID

STR. Fi | eNane The name of the source file.

STR. AppLanguage Language selected for applications, "en", "fr", "de", "it" etc.
STR. Li bLanguage Language selected for libraries, "en”, "fr", "de", "it" etc.

See also
@ATTR() References a symbol's attribute string.
@STRLEN() Gets the length of a string

Examples

;Defining a string

;use EQU, DEF, LDEF, LEQU, GDEF or GEQU

;use new STR type

; cannot be PUBL

;string nanes are stored in a separate String Table
StringNameO EQU STR "This is a string"”

; String nanmes can al so be derived froman existing string nanme
StringNamel EQU STR StringNaneO

;String nanes are not affected by $GROUP
; but you can give thema group nane like this
Group0. String0 EQU STR "String theory is history"

; To reference a string, use the @TR() operator

;the entire operator is replaced by the string with the quotes renoved
;Strings are replaced by the preprocessor after nacros

; have been expanded but before the line is assenbl ed

TEXT 100 " @TR(Stri ngNane0) "

; To keep the quotes, define a string with two pairs of quotes
;the outer quotes are renoved

StringName2 EQU STR ""String with quotes""

TEXT 102 "@TR(Stri ngName0), ", @TR(StringNane2)

; @TR() will also work for absolute strings

;S0 a string nane or the string itself (in quotes) can be used

;the outer pair of quotes are renoved

TEXT 101 "@TR("String without quotes")", @TR(""String with quotes"")

; String concatenation

;sinmply use nore than one @TR() on the line

; but don't forget the quotes around the new string!
BigString EQU STR "@5TR(St ri ngNane0) @GTR(St ri ngNanel) "

; String nanmes or absolute strings can be passed as nacro paraneters

Saia PG5® Instruction List, 2013-10-25 36

Saia-Burgess Controls AG Introduction

Strings, STR and @STR()

StringMacro MACRO text Num Paranml, Paran®
TEXT Text Num " @TR(Paranil) ", @TR(Parant)
ENDM

StringMacro(200, "String w thout quotes”, ""String with quotes"")
StringMacro(201, StringNaneO, StringNane2)

;Strings can be used in $I FDEF
;use STR so S-Asm knows it nust look in the string table
$1 FDEF STR StringNane0

$REPORT StringNane0 is defined as "@TR(StringNane0)"
$ENDI F

;In fact, strings can be used anywhere
String4 EQU STR "R 123"

FB O

LD @TR(String4)

666
EFB

;Using strings in $WRFILE (we use $REPORT for the denp)
:there is no need for @.. @
$REPORT "Testl.txt" @TR(StringNanme0), @TR(StringNane2)

;Only the new version of PG5 can be used, this should be checked
;in the IL code
$I F S. SYS. SASMVERS < 2000150
$FATAL MyLibrary requires PG5 2.0.150 or later
$ENDI F

; Can al so use [AppVersions] in .saialin when installing the library

; Synbol Attributes
;defined with $ATTR and referenced with @ATTR()
; GATTR() can be used in exactly the sanme way as @TR()

$ATTR MaxTenp=120
$ATTR M nTenp=- 20
Symbol WthAttribute EQU R 100 ;synbol's comment

COB 0

0
LD R 100

@ATTR(Synmbol WthAttri bute, MaxTenp)
LD R 101

@ATTR(Synmbol WthAttri bute, M nTenp)
ECOB

; There are also pre-defined attribute nanes

; Type | Value | Expression | Comrent | Synbol
; attribute names are not case sensitive
Synbol 110 EQU R 100+10 ; Conment for Synbol 110

$REPORT @\TTR(Synbol 110, Type) = R

Saia PG5® Instruction List, 2013-10-25 37

Saia-Burgess Controls AG Introduction

Strings, STR and @STR()

$REPORT @ATTR(Synbol 110, Value) = 110
$REPORT @ATTR(Synbol 110, Expression) = 100+10
$REPORT @ATTR(Synbol 110, Comment) = Comment from Synbol 110

; Strings can be declared from synbol attributes

; but don't forget the quotes!

AttributeString EQU STR "@ATTR(Synbol Wt hAttri bute, Conment)”
;Strings can also be created froma synbol nane

;using the pre-defined attribute: Synbol

StrSynbol 110 EQU STR " @ATTR(Synbol 110, Synbol)"

I NC @TR(StrSynbol 110) ;sane as: | NC Synbol 110

; Strings can be passed fromone nmacro call to another
macr o2 MACRO paranil, paran?

$REPORT @par anil@ and @par an2@
endm

macrol MACRO paranil, paran?

macr o2(par aml, parant)
endm

macr ol(@TR("hello0"), @TR("goodbye"))
; That's all fol ks

116 Reserved Words
The following words are resened, and cannot be used as symbol names.

Note: Some of these resened words cannot be used because they are single characters, and
symbols must be more than one character long.

Assembler declarators
PUBL EXTN DOC EQU DEF MACRO LEQU LDEF GEQU GDEF PEQU
TEQU OEQU XEQU ENDM EXITM IN | NOUT

Medium control codes and data types
| O I]OF T C TIC R K M X DB TEXT ST TR PB FB

SB COB XOB IST S SEMA EDB DBX EDBX |IB EIB VOL RAM
BOOL |INT U NT FLOAT |EEE DOUBLE STR

MOV instruction special codes
Q B WL D

Condition codes
H L P Z N E

New condition codes (reserved for future use)
GI' LE GE LT EQ NE VC VS GIU LEU GEU LTU CC CS

Instruction mnemonics

Saia PG5® Instruction List, 2013-10-25 38

Saia-Burgess Controls AG Introduction

Resened Words

To see the full list of all reserved words, you can look in the IL Editor's syntax checking files, called
SeditSyntaxn.dat. These are text files which contain the full list of reserved words and mnemonics.

They can be found in the "Local Directory”, see Project Manager's "Tools / Options / Directories” for
the Local Directory path.

Pre-defined symbols
Symbols which are defined by the system.

Symbols which begin with an underscore
Symbols beginning with an underscore are reserned for use as internal symbols or in libraries.

117 Pre-defined Symbols

Symbols Generated by S-Asm
The assembler defines some useful symbols internally. These can be referenced by the user program

as normal symbols.

ArraySi ze. <synbol > For every symbol which is defined as an array, another symbol is
automatically generated which is assigned the size of array. The symbol
name is prefixed with _ArraySi ze .
For example:
Synmbol EQU R [10]
This generates the internal symbol:
ArraySi ze. Synbol EQU 10
If the array symbol is Public, yhen the _ArraySize_ symbol will also be
public.

Tip: You can see these in Project Manager's "Data List" view by
checking the "Internal Symbols" option in the Data List Filter.

BLOCKNUM The number of the current block, or -1 (OFFFFFFFFH) if outside a block.
PB 123
LD R O :sane as LD RO
_ BLOCKNUM_ ; 123
EPB
BLOCKTYP The type of the current block:

-1 = outside block (OFFFFFFFFH)
0=COB,1=X0B,2=PB,3=FB,4=IST,5=ST,6=TR

___SASMVERS NOTE: This has been superseded by S. SYS. SASMVERS, see below.

The version number of the assembler/linker, as a 5-digit decimal integer.
E.g. V1.4.040 = 14040, $1.4.041 = 14041.

__PGVERS The PG programming package version number, 5 = PG5.

__PGBUI LD __ The PG programming package build number (software version), e.g.
V2.0.100 = 20100.

__PCD_UD__ 'Unigue program identifier' data block number. This is used by the
‘download changed blocks' feature to identify the target PCD.

System Symbols
System Symbols all begin with the group nhame "S". There are many system symbols, and new

Saia PG5® Instruction List, 2013-10-25 39

Saia-Burgess Controls AG Introduction

Pre-defined Symbols

system symbols are being added all the time.

Below are just some of the system symbols and system symbol groups, not all symbols are listed
because new System Symbols are being added for every PG5 release.

Tip: To see all the available System Symbols, open the Data List view from Project Manager. Each
system symbol has a description comment.

S. CPU. PcdType Defines the PCD device type configured in the Device Configurator. It is
assigned to a symbol for the PCD type, e.g. S. CPU. PcdType EQU
~ PCD3 Mb540 . This symbol can be used in $IF to generate code
for a specific PCD type.

S. SYS. Sasnver s System symbol which has the value if the version of the assembler/
linker in the new 9-digit format "aaabbbccc”. 'aaa’ is the major version,
‘bbb’ is the minor version and ‘ccc' is the build number. e.g. V2.0.100
would be 002000100.
This can be used in $IF statements for S-Asm feature checks.

Use this version number instead of the old ~ SASMVERS .

S. CPU. xxx System symbols created by the Device Configurator for each PCD
device.

S. PRJ. xxX System symbols created by Project Manager for the entire project. See
tip above.

S. ODM xxX Open Data Mode system symbols created by the Device Configurator.

S. RI O xxx Diagnostic and base address symbols created by the RIO Network

Configurator.

Pre-defined System Strings
Many of the Program Information items are available as strings, see Strings, STR and @STR().
Examine the _devicename.inc file to see what strings are available.

; System Strings

STR. PG5Li censee EQU STR "Matt Harvey"
STR. PG5Devel oper| D EQU STR "007"

STR. PG5Ver si on EQU STR "$2.1.46.1 Patch 1"
STR. Proj ect Nane EQU STR " Proj ect 1"

STR. Devi ceNane EQU STR " Devi cel"

STR. PcdType EQU STR " PCD3. Mb540"

STR. ProgranwVersi on EQU STR "1. 0"

STR. Program D EQU STR " A1DASBCED93BAEF0"
STR. AppLanguage EQU STR "en"

STR. Li bLanguage EQU STR "en"

DO OOmnnnnn

Symbol Prefixes
These internal symbol prefixes are generated by the assembler:

__LEN__xxx Generated by the @LEN(...) special operator, xxx is generated from @LEN's
parameters.

__CHK__ xxx Generated by the @CHK(...) special operator, xxx is generated from @CHK's

Saia PG5® Instruction List, 2013-10-25 40

Saia-Burgess Controls AG Introduction

1.18

Pre-defined Symbols

parameters.

_ G xxx Prefix used for GEQU and GDEF symbols. xxx is the symbol name.

__ADS__ xxX Generated by the @ADDS(...) special operator, xxx is created from the @ADDS()
parameter.

_abs__xxx Dummy symbol for absolute address. xxx is the type and value, e.g.
__abs_F 123, abs_COB_0, _abs TEXT 45.

Library Version Symbols
These symbols allow access to a library version as a symbol. The symbol can be used to determine

which versions of a library were used in the program.

They can also be used with S-Asm's conditional assembly directives $IFxxx. to generate code for a
specific library version.

The new LI BVERS _ symbol group contains the version numbers of all selected libraries.

The symbols are created in include files which make s the symbols available to all files in the
program. The symbols can be seen in Symbol Editor;s "All Symbols" view, or in Project Manager's
"Data List" view.

For example, these are the declarations in the include file "_device.inc":

; Library version synbols

$GROUP __ LI BVERS _

_SAI A D3T76XH100 EQU 001001000 ; D3T76xH100 RIO, V1.01.0

_SAI A D3T76XH110 EQU 001000000 ; D3T76xH110 RIO, V1.0.0

_SAI A D3T76XH150 EQU 001001000 ; D3T76xH150 RIO, V1.01.0

_SAI A D2H110 EQU 002002000 ; PCD2. H110 Counting Module, V2.02.0

_SAI' A_D2H150 EQU 002002000 ; PCD2. H150 SSI Encoder Module, V2.02.0

_SAIA D2H210 EQU 002002000 ; PCD2. H210 Stepper Modtor Positioning, V2.02.0
_SAI A_D2H310 EQU 002001000 ; PCD2. H310 Servo Mdtor Control Module, V2.01.0
_SAI A_D2H320 EQU 002044000 ; PCD2. H320 Motion Control Module, V2.44.0
SAIA W45 EQU 002002000 ; PCD2. W45 Ther nocoupl e Modul e, V2.02.0

_SAI A_VWBX5 EQU 002010000 ; PCD2/ 3. WBx5 Anal ogue | nput Module, V2.10.0
_SAIA W6 X5 EQU 002010000 ; PCD2/ 3. W6x5 Anal ogue OQut put Mdul e, V2.10.0
_SAI A W800 EQU 002002000 ; PCD3. WB00 Anal ogue OQut put Mdule, V2.02.0
_SAI A SFUPBASE EQU 002006100 ; S-Fup Base Library, B2.6.100

$ENDGROUP __ LI BVERS__

Initializing Data

There are seweral occasions when data needs to be initialized. The first time a program has ever been
run (first-time initialization) , or every time a program is started (start-up initialization, on restart or
power-up), or every time a block is run (run-time initialization).

Start-up Initialization
Start-up initialization is done on every power up or restart of the PCD. All wlatile data values are set

to zero, but all non-wlatile data retains the values it had before the power off or restart. Some of this
data will need to be initialized with the correct values before it is used. This is normally done by code
in XOB 16.

Flags can be partitioned into wolatile and non-wolatile sections, using Project Managers Build Options
and the DEFVM instruction. All Registers are always non-\olatile.

Saia PG5® Instruction List, 2013-10-25 41

Saia-Burgess Controls AG Introduction

Initializing Data

At present there is no built-in support for startup initialization, so this must be coded in the start-up
XOB 16 or between the $INIT..SENDINIT directives which defines code that is inserted into XOB 16.

Alternatively, you could use code like that in the Tip example below to initialize the data of a block
the first time the block is called, but using a wolatile flag for each block which is always zero the first
time the block is called. The data is initialized if the Flags is 0, and the Flag is set to 1 once it has
been initialized.

NOTE

In the future, support for startup initialization may provided by the PCD firmware. If it is, then this
syntax may be used for startup initialization:

Symbol EQU R = 100

Tip: Initialization can easily be done by IL code. Values which need to be initialized only once could
be initialized whenever a single wolatile Flag is found to be zero, so the initialization code is run only
the first time the block is called after start-up. A non-wolatile flag could be used for "first-time
initialization data".

FB MyBIl ock

;lnitialize static data on first call
MyBl ock. InitFlag EQU F VOL ;volatile flag, always O on start-up

STH MyBIl ock. I nit Fl ag ; has data been initialized yet?
JR H Al readyl nit ;yes, skip initialization
ACC H ;no, set flag and do initialization

SET MyBI ockl ni t Fl ag
;do start-up initialization here

Al readylnit:
;rest of program
EFB

First-time Initialization

NOTE

Do not use First-time Initialization if the data will be initialized in start-up XOB 16. This is start-up
initialization, and first-time initialization is not needed.

Normally, data is initialized every time the program runs (start-up initialization), usually by code in the
start-up XOB 16 or by code in each block. Volatile data is also set to zero on every restart or power
up of the PCD, so that doesn't need to be initialized if its starting value will be zero. But for non-volatile
data, whose values are not set to zero on power-up or restart, you may want to initialize these only
once and keep the values for the lifetime of the PCD or process (or until the battery runs out).

This could be useful for a permanent counter which might contain, for example, the total number of
hours that a machine has been run, a light has been on, or a door has been open. Such values need
to be initialized only once. This can be done using the first-time initialization data feature. The
initialization values are defined in the EQU or PEQU declaration of the Register, Timer, Counter or
Flag symbol, using ": =":

Mast er Counter EQU C 100 := 0

Registers, Counters and Flags are non-wlatile (for Flags see DEFVM instruction). This means that
they are not initialized and can contain any unknown values when the program runs for the first time.
So they need to be initialized by code in the user program before they are used. This can be done
every time the program starts, or can be done only once when the program is downloaded.

Saia PG5® Instruction List, 2013-10-25 42

Saia-Burgess Controls AG Introduction

1.19

Initializing Data

Project Manager's Download Program dialog box has a checkbox which allows these values to be
downloaded separately. They can be downloaded at the same time as the program, or separately by
using the "First-time initialization data only" checkbox.

First-time initialization values are stored in a record in the PCD file (IB or DBX).

The initialization value can be any expression, even using other symbols, but the value cannot be
External.

Examples of first-time initialization data

Symboll EQU R 100 := 0 ;R 100 initialized to O on downl oad
Symbol 2 EQU R = A _Synbol +4 ; expressions can be used

Arrayl EQU R[5] :=1,2,3,4,5 ;initializes a 5-register array

Fl agSym EQU F =1 ;must be 01 or 1 for Flags

Tip: This can also be done using a single non-volatile Flag, as in the example for startup initialization
abowe.

Run-time Initialization

Work data needs to be initialized every time a block runs. If using temporary data, it is always
initialized to zero. But if using normal Registers and Flags etc, these can contain any values when the
block is called, so they must be initialized before they can be used. This is normally done by code in
the user program which initializes the data just before it is used. So this doesn't normally cause any
problems when downloading changed blocks in Run or in Stop.

Dynamic Address Allocation

In many cases the actual address of data such as a Register or Flag is not important. For example, it
makes no difference to the program which Register is used to hold a temporary value, providing it is
not used by another part of the program while the data it holds is still needed. "Dynamic address
allocation" means that you do not need to assign unique address to every symbol, addresses can be
automatically assigned by S-Asm at build time. This is also known as "Automatic address
allocation".

Once an address has been assigned to a symbol, it will not change for every build. It will remain the
same until the user resets the dynamic address allocator using Project Manager's Device / Clean
Files command. Dynamic addresses are store in the 'Symbol Information' files, see description below.

Data types which can be dynamically assigned are:
Registers, Timers, Counters, Volatile Flags, Nonwolatile Flags, Texts, RAM Texts, DBs and RAM
DBs.

Code block numbers (except XOBs) can also be dynamically allocated.

The range of addresses used for dynamic address allocation for each data type is defined in SPM's
Build Options for each device. The range for code block numbers always starts from 0.

Once the ranges for dynamic address allocation have been defined, symbols can be assigned with
EQUate statements, or in the Symbol Editor, leaving out the address - only the type is required. The
linker will assign absolute values to these symbols from within the dynamic address range. For
example:

Wor kRegl EQU R ; Reserve single workspace el enents

Wor kReg2 EQU R

TenpFl agl EQU F

TenmpCounter EQU C

Saia PG5® Instruction List, 2013-10-25 43

Saia-Burgess Controls AG Introduction

Dynamic Address Allocation

To resene an array of addresses, an optional array size can be given, enclosed in square brackets:
TenRegs EQU R [10] ;Reserve 10 registers
Fi veFl ags EQU F [5] ; Reserve 5 fl ags

This is useful if an offset is used when referencing the symbols, and saves having to assign a symbol
for every element used:
ADD TenRegs
TenRegs+1
TenRegs+2
STH Fi veFl ags+4 ; References the last flag

Dynamically assigned addresses can be used in the same way as symbols with absolute addresses.
They can also be made Public.

In the listing file, automatically assigned symbols are shown with an "A" in the external (E) column,
and "AUTO" in the scope column of the cross-reference listing. They are also shown with AUTO in
Project Manager's "Data List" view.

Volatile Flags
To allocate Flag addresses from the "Dynamic Volatile Flags" range, you must use the F VOL data

type, otherwise the Flag address will be allocated form the "Dynamic Nonwolatile Flags" range. For

example:
Fl agA EQU F VOL ;volatile flag
Fl agB EQU F ;nonvol atile flag

Texts and DBs in Extension Memory (RAM

To allocate Text or DB addresses from Extension Memory (writable RAM), you must use the TEXT
RAM or DB RAM data type, otherwise the address will be allocated from the normal Text/DB memory
(which may be read-only). For example:

Witabl eText EQU TEXT RAM ; Text in Extension Menory

ReadOnl yText EQU TEXT ; Text in Text/DB Menory

WARNING

It is not guaranteed that dynamic addresses will never change, so please do not rely on
these addresses being fixed. Itisrecommended that dynamic addresses are never used if
the address is accessed by an external system or programming tool. Always use a fixed
absolute address (e.g. R 123) which you know will never change.

For example, a supenision system should never access a dynamically addressed symbol by an
absolute address, because if the address changes then the supenision system will be accessing the
wrong data without knowing it!

Dynamic addresses are retained mainly to support the "download changed blocks" and "download in
run" features, so that we don't have to download all the blocks as we would if all the dynamic
addresses were changed by every build. This would change every block that uses them and the whole
program would always have to be downloaded.

Dynamic addresses could be re-assigned without notice if a fatal build error occurs, or if the user
restores or copies a program without the "symbol information files". Certain fatal errors could also
cause the symbol information files to be deleted or not updated, and the "Clean Files" command
could be used at any time. This can happen without notifying the user - he will not know that the
addresses have changed!

Tip: For Public symbols, the actual address can be read by an external system or programming tool
by looking in a text file called "_Global.sy5". This file is updated by every build, and contains a list of
all Public symbols, their types and actual addresses. After every (successful) build, this file could be
read or imported to get the actual addresses. It is also possible to read the symbol table in the PCD
file by using functions in Sasm52.dll from a C, C++ or C# program, see document "PG5 V2 Sasm

Saia PG5® Instruction List, 2013-10-25 44

Saia-Burgess Controls AG Introduction

1.20

121

Dynamic Address Allocation

APl.doc" .

Tip: You can now use temporary data (see TEQU) for R and F values which are only needed when the
block is running.

Symbol Information Files
Once S-Asm has assigned an address to a symbol, the address will usually stay the same even if the

user program is changed. This is done by storing a list of symbols and their assigned addresses in
'symbol information files'. These files are in the 'Sym' subdirectory, and have the file type ".si'.

If the dynamic address range is changed from the Project Manager's '‘Build Options' dialog box, then
all addresses will be re-assigned.

To for all the addresses to be re-assigned, use Project Manager's 'Device / Advanced > / Clean
Files...' command. After many builds, the dynamic addresses may become fragmented because
many symbols have been added or removed. ‘Clean Files' deletes the symbol information files and
causes all the addresses to be consecutively assigned on the next build.

Storing Variable Length Text in IBs and DBXs Using @0

An IB or DBX can store text strings.
The size of 0 (@0) is used to introduce text data. The size of the data is defined by the length of the
string. Text data is entered in the same way as Texts. Characters can also be entered in decimal or
hex by enclosing the value in angle brackets (e.g. " <10><CR><0Dh>"), and the text can contain
symbols and formatting information, see Using Symbols in Texts.

Note that the NUL (0) terminator is not automatically added to the end of the text, if a NUL is required
it must be explicitly added by putting <O> at the end of the text, e.g.

"This is a NUL terni nated text<0>"

; DBX containing variable-length texts

DBX 100

@: "This is line 1, NUL term nated <CR><LF><NUL>"

@: "This is another line 2 <CR><LF><NUL>"
;Only the first @ is needed, the |last @ize is retained
;until another @&@ize is found
"This is line 3<13><10><0>"

EDBX

XOB List

Each Exception Organization Block (XOB) has a specific function.

XOB Description Priority
Power down

Power down in extension rack

Low battery

Task/Temp Data overflow

Parity error on main bus (PCD6 only)
No response from I/O module
External error

System owerload

~N|lo|o|s|w Nk o
Wk k|, |[w|~ |~

Saia PG5® Instruction List, 2013-10-25 45

Saia-Burgess Controls AG Introduction

XOB List

Invalid opcode 4
9 Too many active tasks (GRAFTEC) 1
10 PB / FB nesting depth overflow 1
11 COB supervision time exceeded 2
12 Index register overflow 1
13 Error flag set 3
14 Cyclic XOB 2
15 Cyclic XOB 2
16 Cold Start 2
17 S-Bus XOB Interrupt Request 2
18 S-Bus XOB Interrupt Request 2
19 S-Bus XOB Interrupt Request 2
20 Interrupt input INO / Interrupt input INBO (1) 2
21 Interrupt input IN1 2
22 Interrupt input IN2 2
23 Interrupt input IN3 2
24
25 Time Cyclic Alarm / Interrupt input INB1 (1) 2
26 Time Cyclic Alarm 2
27 Time Cyclic Alarm 2
28 Time Cyclic Alarm 2
29 Time Cyclic Alarm 2
30 RIO connection master slave 1

(1) For PCD1 and PCD2.M1xx, XOBs 20 and 21 are Interrupt inputs INBO and INB1 respectively.

Exception Priorities
There are 4 priority levels for XOBs. Note that XOB priorities are slightly different for the older PCDs.

Level 4 exceptions (highest)
Priority level 4 is the highest priority, only XOBs 0 and 8 can interrupt execution of another XOB.

Level 2 and 3 exceptions
If a level 2 or 3 exception occurs during execution of a lower priority XOB, then it will be run directly
after the end of the current level XOB.

Level 1 exceptions (lowest)

Any lewvel 1 exception which occurs during another exception will never be handled.

Level 4 Exceptions
Priority level 4 is the highest priority, only XOB 0 and 8 can interrupt execution of another XOB.

XOB 0 Power Down

There can be up to 10ms between the call of XOB 0 and the final loss of power to the PCD to give the
user time to perform some urgent saves of values.

If the XOB 0 is programmed then the message "XOB 0 START EXEC" is written into the History List
at the start of the XOB and "XOB 0 EXECUTED" upon completion of the XOB, this indicates to the
user that the XOB completed before power was lost.

Saia PG5® Instruction List, 2013-10-25 46

Saia-Burgess Controls AG Introduction

XOB List

If the XOB is not programmed then a restart cold is immediately performed upon detection of the
power down. If the XOB is programmed then a restart cold is performed upon completion of the XOB if
there is still power.

XOB 8 Invalid Opcode
XOB 8 is called when the firmware detects an invalid instruction in the user program.

Level 3 Exceptions
If a level 2 or 3 exception occurs during execution of a lower priority XOB, then it will be run

directly after after the current level XOB.
XOB 20/25/11 have been given a higher priority level so that if the XOB is provoked during execution of
a lower or equal priority then it will be executed directly after completion of the current XOB.

XOB 3 Temp/Task Data Overflow

XOB 7 System Overload
The queuing mechanism for the level 3 XOB'’s has overloaded.

XOB 13 Error Flag
XOB 13 is always called when the Error flag is set by an invalid instruction, calculation, data transfer
or communications error.

Level 2 Exceptions

XOB 11 COB Supervision Time exceeded

If the second line of the COB instruction indicates a monitoring time (in 1/100 seconds) and if COB
processing time exceeds this defined duration, XOB 11 is called.

COB processing time is the time which can elapse between the COB and ECOB instructions.

XOB 14 Cyclic XOB

XOB 15

XOB 14 and 15 are called periodically with a frequency ranging from 5 ms to 1000s. This frequency
can be set using the SYSWR instruction.

XOB 16 Cold Start

XOB 16 is the start-up XOB (Cold Start XOB), and is executed when the PCD is switched on, or is
given a cold restart. XOB 16 can initialise any elements before the program begins.

If during the execution of the XOB 16 an error occurs, the XOB 13 is not called.

XOB 17 S-Bus XOB Interrupt Request

XOB 18

XOB 19

These three XOBs are started by a message on the S-Bus network; it is also possible to start them
with the SYSWR instruction.

XOB 20..25 Interrupt Inputs INO..IN3 (NT systems)
Executed on a rising edge of interrupt inputs INO to IN3.

XOB 20 and 25 Interrupt Inputs INBO and INB1 (PCD1 and PCD2M1xx only)

These XOBs are called when interrupt input INB1 (resp INB2) of the PCD1/2 has detected a rising
edge (see PCD1/2 hardware manual for further details).

Level 1 Exceptions

Saia PG5® Instruction List, 2013-10-25 47

Saia-Burgess Controls AG Introduction

1.22

XOB List

Lowest priority. Any level 1 exception which occurs during another exception will never be treated.

XOB 1 Power down in extension rack

The wltage monitor in the supply module of an extension rack (PCD 2 or PCD6) detected an
excessive drop in wltage.

In this case all Outputs of the extension rack are set low within 2ms and XOB 1 is invoked.

If Outputs from this "dead" extension rack continue to be handled (set, reset or polled) by the user
program in any CPU, XOB 4 and/or XOB 5 are also invoked. (Only PCD4).

XOB 1 will be called once up to 250 ms after detection of the error.

SYSWR can be used to change the behavior of XOBs 1 and 2.

XOB 2 Battery failure or low battery

The battery is low, has failed or is missing.

Information in non-wolatile Flags, Registers or the user program in RAM as well as the hardware clock
may be altered.

XOB 2 is called by CPU 0 every 250 ms in the event of this error.

SYSWR can be used to change the behavior of XOBs 1 and 2.

XOB 4 Parity Failure

XOB 4 can only be invoked with PCD having extension racks (PCD6 only).

The monitor circuit of the address bus has noticed a parity error. This can either arise from a faulty
extension cable, a defective extension rack or from a bus extension module, or else it is simply
because the extension rack addressed is not present.

XOB 5 No response from I/O module (1/0 Quit Failure)

The PCD's Input and Output modules return a signal to the CPU which has addressed them. If this
signal is not returned, then XOB 5 is called.

Generally, this occurs if the module is not present, but it can also happen in the case of faulty
address decoding on the module.

This mechanism is not implemented on the PCD1 and 2.

XOB 6 External error
Not used. (Foreseen for intelligent modules of the PCD6)

XOB 9 Too many Graftec tasks
More than 32 Graftec branches were simultaneously activated in a Sequential Block (SB).

XOB 10 More than 7 nested PB/FB calls

PBs and FBs can be nested to a depth of 7 levels. An additional call (calling the 8th level) results in
XOB 10 executing.

The 8th lewel call is not executed.

XOB 12 Index Register overflow
If a program contains an indexed element which falls outside its address range (0 to 8191), then XOB
12 is called.

XOB 30 RIO connection master / slaves

After every message sent from the master to a slave, the connection is tested. If the test is not
answered positively by the slave, the master CPU calls XOB 30.

This is essentially the case when, online, a station is removed from the network or closed down.

IL Programming Tips

Here is a list of tips, tricks and and frequently-asked-questions for IL programmers.

Saia PG5® Instruction List, 2013-10-25 48

Saia-Burgess Controls AG Introduction

IL Programming Tips

Avoid common programming mistakes

1) Always use symbol names, and never mix symbols and absolute addresses for the same
data
Never write code like this:

Symbol EQU R 123

INC Synbol
INC R 123
This may seem obwvious, but we have seen a lot of code like this.

2) Offsets to symbols which are not arrays
If addresses must be consecutive, define an array and use offsets from the array symbol:
Good:
ArrayBase EQU R 100][3]
SynD EQU ArrayBase+0
SymlL EQU ArrayBase+l
Syn2 EQU ArrayBase+2
Not good:
Symbol EQU R 100
Anot her Synbol EQU R 101
INC Synbol
I NC Symbol +1 ;this increments Anot her Synbol, probably a bug
I NC Synmbol +2

Tip: Use the Build Option "Warn on offset to symbol which is not an array" to check for these during
development.

This is often attempted when an array is passed to an FB, but it won't work - you need to use the
Index Register to access arrays passed as parameters to FBs.
Using the Index Register for this is described in one of the tips below.

Fl agArray EQU F [10] ;array of Flags

CFB 0
Fl agArray ; pass the array base to the FB
FB 0
Flagl EQU =1 ;Wong. Flagl is =1, it is not FlagArray

Fl ag2 EQU Flagl+l ;Wong. Flag2 is =2, not FlagArray + 1
EFB

3) When [...] isused on an array symbol, it is assumed to be an array element reference, and
not an array definition
It is not possible to create sub-arrays from an array, for example, this does not work:

BaseArr ay EQU R 100 [10]

Arrayl EQU BaseArray+0[5] ;Arrayl = R 105, it is NOT an array,
;it's the sane as BaseArray+0+5
Array?2 EQU BaseArray+5[5] ;Array2 = R 110, it is NOT an array,

;it's the sane as BaseArray+5+5
In fact, this will cause an "array bounds overflow" error for symbol Array2 because offset 10 is outside
the array, offsets 0..9 are valid.

Saia PG5® Instruction List, 2013-10-25 49

Saia-Burgess Controls AG Introduction

IL Programming Tips

4) Do not use different symbol names for the same data

If using absolute addressing, make sure the address is assigned to (or derived from) one symbol in
one place.

Using different symbol names for the same data will cause maintenance problems and bugs which are
hard to find if you change one symbol but not the other.

Tip: Use the build option "Warn on symbols with same type and value”, but note that this will also
give warnings for array base address symbols with a zero offset.

5) Take care when using DEF, especially for FB parameters
Sometimes FB parameters are defined with DEF statements, because the same symbol can be re-
defined again in the program without any errors.

FB My FB1

Run DEF =1

St op DEF =2

Rewi nd DEF =3

EFB

FB My FB2

St opp DEF =1 ;unnoticed typing error

STH St op ;error! this is the paraneter for FB MyFBl1
EFB

Now, in PG5 V2, you can use LEQU instead of DEF, or even the new $FBPARAM..$ENDFBPARAM
directives.

Or use group names as described below.

This illustrates another common error:

fbcal l EQU FB
fbcal | new EQU FB
sl EQU F 1
CcoB 0
0
CFB fbcal
sl
ECOB
FB fbcal
intl DEF =1
int3 DEF =1 ;different synbol for sane paraneter,
; no war ni ng!
STH intl
our int2 ;error, but no error nessage
EFB
FB fbcal | new
int2 DEF =1
STH intl ;also an error, but no error nessage
ouT int2
EFB

Note that symbols declared with DEF are not affected by $GROUP, but you can use a full symbol
name, with a group part,
e.0. MBIl ock. Par ani. DEF =1

Saia PG5® Instruction List, 2013-10-25 50

Saia-Burgess Controls AG Introduction

IL Programming Tips

Use group names when defining associated symbols
Symbols which are from the same block can be given the same group name:

$CGROUP W/ PB
Bl ock EQU PB
Regl EQU R
Reg?2 EQU R
Fl agl EQU F
PB Bl ock
| NC Regl
| NC Reg?2

STH Fl agl

EPB
$ENDGROUP My PB

This keeps all the symbols together in the Data List and Symbol Editor views:

My PE.Black, PE i} AUTO Untitled1 .src
MyPE.Flagl F 200z ALUTO Untitled1 .src
MyPE.Regl =] 2000 AUTD Untitled1 .srz
MyPE.Regs R 2001 ALTO Untitled1 .src

Or you can use the group name as a kind of structure:

$GROUP MyStruct
lteml EQU R
lteml EQU F
lten8 EQU R
ltemd EQU K 123

$ENDGROUP My St r uct

To access a symbol outside the $GROUP, use '.' at the start
Sometimes the name of a symbol inside a group may be the same as a symbol outside. To be sure
you are accessing the right symbol, precede it with a dot:

Sy EQU R
$GROUP Group0

Syml EQU R ; Group0. Syml

I NC Syml ;increments GroupO. Syml
I NC . Syml ;increments Synml
$ENDGROUP

Use group names for SRXM/STXM data in the remote or slave PCD
Define symbols in other PCDs with a group name which is the name of the remote PCD.

In this way it will never be confused with local data:

$GROUP St ationl00
Symbol 0 EQU R 100

Saia PG5® Instruction List, 2013-10-25 51

Saia-Burgess Controls AG Introduction

IL Programming Tips

$ENDGROUP
STXM 0
1
Synmbol 0 ;local data

St ati on100. Synbol 0 ;renote data

Initializing data with SINIT..$ENDINIT

Each block contains data which must be initialized before the block runs. This is often done in XOB
16. But it is not good practice to separate the initialization code from the rest of the block (bad
"encapsulation™). To solve this problem, you can enclose the initialization code between
SINIT..$ENDINIT, within the block itself. This code is placed at the start of XOB 16.

Note: This has the disadvantage that you cannot download in Run if the initialization code is changed
because XOB 16 is not executed, see next tip.

See also Initializing Data.

FB My FB
Regl LEQU R
Flagl LEQU F

SINIT
;Initialization code
LD Regl
123
ACC H ;in case previous $INIT code reset it
SET Fl agl
$ENDI NI T

: Rest of code

EFB

To execute code the very first time a downloaded or restored-from-flash program is run
When a program is first downloaded or is restored from Flash, RAM Data Block values (DBs 4000 and

abowe) are initialized with the values defined in the user program. This value, e.g. -1, can be checked
by the user program, and then set to a different value. It will then only have the original value the very
first time the program runs. For example:

;Original DB value after download is -1, after 1st run it is set to O
Fi rst Run EQU DB 4000

DB FirstRun [1] -1 ;DB has 1 el enent
TenpReg EQU R ;wor k register
XOB 16

; Check for first tinme the program runs

TFR Fi rst Run ;get DB elenent O into TenpReg
KO
TenpReg
I NC TenpReg ;increments -1 to 0 on first run,
;else increments 1 to 2
ACC Z ;is result 07?
JR L NotFirstRun ;if no, then it is not the 1st run
TFR TenpReg ;set DB value to O
Fi rst Run
KO

Saia PG5® Instruction List, 2013-10-25 52

Saia-Burgess Controls AG Introduction

IL Programming Tips

; Code to be executed the first tinme the programruns goes here
Not Fi r st Run:
EXOB

Initialize static data the first time a block is called

Instead of placing the initialization code in XOB 16 where it can be run only on start-up or restart cold,
it can be coded inside the block itself and executed whenewver a volatile Flag is found to be zero. You
only need to reset this Flag to run the initialization code, and it is always run just once after power-up
or a restart cold. If a first-time initialization value of O is used for the Flag, then it will be set to zero
every time the block is downloaded.

This has the advantage that the initialization code can be changed and downloaded without needing a
restart, and the init code and also be executed

See also Initializing Data.

FB MyBIl ock

;lnitialize static data on first call

;volatile flag, always zero on start-up and on downl oad
;with "first-tine init data”

MyBl ock. InitFlag EQU F VOL := 0

STH MyBl ock. I nitFlag ;has data been initialized yet?
JR H Al readyl nit ;yes, skip initialization
ACC H ;no, set flag and do the initialization
SET MyBI ockl ni t Fl ag
;do start-up initialization here

Al readylnit:
;rest of program
EFB

Segment directives
To insert code into a COB (task) or XOB (exception or interrupt handler), when the block is defined in

another file, you can use the $SCOBSEG or $XOBSEG directives.
For example, this could be useful to define cyclic code to call a function and keep the call with the
code that uses it:

FB Cycl i cFunc

;Call this function every 10 seconds fro COB 0O
$COBSEG 0

STH CyclicFuncCtr

CFB L CyclicFunc
$ENDCOBSEG

: Rel oad the 10 second timer

LD CyclicFuncCtr
T#10S

EFB

Saia PG5® Instruction List, 2013-10-25 53

Saia-Burgess Controls AG Introduction

IL Programming Tips

Array size symbol
For every symbol which is defined as an array, another symbol is automatically generated which is
assigned the size of array. The symbol name is prefixed with _ArraySi ze_.
For example:
Synbol EQU R 10

This generates the internal symbol:

ArraySi ze. Synbol EQU 10
This symbol can also be made Public:

PUBL ArraySi ze_. Synbol
Tip: You can see these in Project Manager's "Data List" view by checking the "Internal Symbols™"
option in the Data List Filter.

Texts/DBs 4000 and above are faster than Text/DBs 0..3999

Texts and DBs 4000 and abowe are accessed in a different way, and they are much faster.

The only problem is that they are in RAM, and could lose their values, whereas Texts/DBs 0..3999
can be in Flash or (E)EPROM.

Sharing Media between COBs and XOBs

FBs or PBs which contain "static" data (Registers, Flags etc whose values are retained between
block calls) could run incorrectly if the block is called from more than one COB (task) or XOB
(interrupt). It may be necessary to maintain different static data for each task or interrupt, otherwise it
can be unexpectedly changed by a different task or by an interrupt.

Therefore blocks which are called from different COBs or XOBs should be carefully written so that
static data is not shared, for example, use an FB parameter to pass the static data.

This can also cause serious problems when calling an FB or PB from a Fupla program with the Call
FB or Call PB FBoxes..

Use the Index Register to access offsets from a base address (e.q. an array or I/O module)
Instead of passing many parameters to an FB call or macro, you can pass an array parameter, and
use the Index Register to access the array.

Always sawe the original Index Register value, and restore it before returning from the FB.

For example:

RegArray EQU R [10]

CFB | ndexDenp

RegArr ay ; pass the base address

FB | ndexDenp

r Savel ndex TEQU R

STI rSavel ndex ;save the index register

SEI KO0 ;start indexing fromO

LDX =1 ;use indexing instructions to access array
0

RSI rSavel ndex ;restore the index register

EFB

Or you can use the parameter to load the Index Register, for example as the base address of an I/O

Saia PG5® Instruction List, 2013-10-25 54

Saia-Burgess Controls AG Introduction

IL Programming Tips

module.
LDL can be used to load a base address into a Register (for transfer to the Index Register), see "FB
Parameters and LDL" below.

When to use Macros, FBs or PBs
There are three kinds of "blocks™ you can use for creating functions or objects, each has different
advantages and disadvantages.

Program Blocks (PBs)

PBs do not allow parameters, and always share the same data, no matter where they are called from.
This makes them unsuitable for calling from more than one switchable COB task (or interrupt XOB),
unless they have been specially programmed. The code of a PB exists only once. A PB is the same
as an FB without parameters. (Actually, PBs are not very useful.)

Function Blocks (FBs)

FBs do allow parameters, but with certain restrictions (e.g. no 32-bit constants). Usually *all* the data
used by the FB should be supplied as parameters, except temporary internal workspace data.

If static data is used then it has the same disadvantages as a PB - it may become unsuitable for
calling from more than one switchable COB task (or interrupt XOB).

The code of an FB exists only once. An FB without parameters is the same as PB.

Macros

Macros can also have parameters, but these are not the same as FB parameters. A macro's
parameter is just a string, and the string is used to replace the parameter reference in the code.
Macro parameters do not hawe a type or a range, they can be anything at all, the only characters they
cannot contain are comment characters *; ', commas ', ' or line feeds.

Macros are typically used to add the equivalent of new instructions, or to awoid repeating the same
code many times but with slight differences.

If you ever find yourself copy/pasting the same code, then this could also be a good time to use a
macro. Instead of repeating the same code many times, create a macro so that the code is defined
just once, and call the macro with different parameters to generate the required code. Then if the code
needs to be changed in the future, it can be done in just one place.

The other big advantage with macros is that you do not need to use the Index Register or Register
Indirect instructions to access data from a base address. If the base address is passed as a macro
parameter, you can access it directly. E.g.

MyMacr o MACRO Modul eBase

STH Modul eBase+0

ANH Modul eBase+1

ANH Modul eBase+2

ANH Modul eBase+3

our Modul eBase+4

ENDM
If this was in an FB, you would need to use STHX etc.

There is no "call" instruction for a macro, so macros are much faster when used within loops.
Macros can call other macros too.The main disadvantage of a macro is that it generates more code.
Macros can significantly reduce code complexity and makes it easier to maintain.

See Macros.

Not enough Flags
Use the Bit Access Macros to access individual bits in Registers or Data Blocks.

Saia PG5® Instruction List, 2013-10-25 55

Saia-Burgess Controls AG Introduction

IL Programming Tips

Or use the Reaister Instructions (AND, OR etc) to test individual bits in Registers.

Not enough Registers
Use the DB Access Macros to access 32-bit values in Data Blocks, or use TFR, PUT, GET, COPY to

transfer data between DBs and Registers.

FB parameters and LDL
If a parameter is used only in a LDL, the media type (mc) is remowved from the call:

CFB 0
F 123 ;F is not needed, it is removed
FB 0
LDL RO ;RO = 123
=1
EFB
But if it is accessed as a Flag, it will generate an error:
FB 0
LDL RO
=1
STH =1 ;error!
EFB

Use a Text to hold program information
At present, the PG5 does not store much information about the user program within the PCD itself.

The file name of the PCD file is stored in a DBX, but that's all.

Howewer, you can easily create a Text which contains all the information you need, such as the
revision number, release date, copyright notice etc.

This can be displayed using the Online Debugger (S-Bug) or easily displayed on a terminal or Web
page.

Use a fixed text number, for example Text O:

; Program I nformation, hard-wired in Text O
TEXT 0 "Version: 123<CR>
"Aut hor: Me<CR><LF>
"Copyright (C) Noware 2007<CR><LF>
"Rel ease date: 27th May 2007<CR><LF>

How to insert a macro parameter into a Text
Especially when writing FBoxes, it might be useful to fill a PCD text with, for example, the name of an
FBox.
This can be achieved by using the ".s" postfix, which places the actual parameter string into the text,
instead of its value.
For example:

Text Macro MACRO param

TEXT 100 "Hello ", params, "!"
ENDM

Text Macr o(wor | d)

The resulting text in the PCD will be:
TEXT 100 "Hello world !"

Saia PG5® Instruction List, 2013-10-25 56

Saia-Burgess Controls AG Introduction

IL Programming Tips

#100123)

The 'K'is needed wherever an operand can be a data type (R T C etc) or a constant (an untyped
number), so the interpreter knows what it is.

The main difference is the range of values for the two types. A K constant can be 0..16383, whereas
16-bit constants can be 0..65535 (unsigned) or -32768..+32767 (signed).

This is because of the structure of the 16-bit operand line. The data type (K) uses 2 bits, leaving 14
bits for the value.
This means that K constants can have a range 0..3FFF hex, which is 0..16383, and they are
unsigned (can only be +we).
ADD K 100 ;2 bits for type + 14 bits for val ue
R 100 ;2 bits for type + 14 bits for address
R 101 ;2 bits for type + 14 bits for address

Some instructions do not need a data type in the operand, and can be used with untyped constants,
such as LD which allows a 32-bit untyped constant (signed or unsigned):
LD R 200
21483647
LD actually uses two operand lines to hold hold the 32-bit value.
You can still use the 'K' type, but it is removed by S-Asm:
LD R 2000
K 123 ;range limted to 0..16383
Untyped constants are normally used for loading Registers using LD.

K constants and 16-bit constants can be passed as FB parameters. If a constant without K is
passed, S-Asm will add the K to the CFB call (adds the type bits 15 and 14), but only if the parameter
is used only in instructions which need the 'K'. For example, this will not work:

CFB 0
123 ;not a K type constant
FB 0
ADD RO
=1 ;this needs the K
R1
LDL R 2
=1 ;this does not need the K

This cannot work because ADD needs to check bits 15 and 14 of the operand to get the type, but LDL
would interpret bits 15 and 14 as part of the number.

Why is the constant type in the assembled code different to my IL code ? (FAQ #100129
The assembler automatically adds (or remowves) the K type from the generated code.

In PCDs instruction set there are two different types of constants: The normal "Constant” (16 or 32
bits, signed or unsigned) and the "K Constant" (14 bits, signed). See the previos tip for details.
Some instructions, like the load instructions LD, LDL and LDH, require a value without a type code.
Only a "Constant” can be used, the "K Constant” can't be used because the type bits (15 and 14)
would be interpreted as part of the number.

Other instructions, like CMP and ADD, must hawe the type code because they can also access R
and C types etc, and interpreter needs to know what it is.

Despite these rules, it is possible to use Constant or K types in your IL code as you want, because
the assembler adds or remowves the K depending on the instruction.

For example, the following IL code: After assembly it looks like this:

Saia PG5® Instruction List, 2013-10-25 57

Saia-Burgess Controls AG Introduction

IL Programming Tips

CwvP RO CVP RO
0 KO
LD R 4 LD R 4
K 4 4

This also works for CFB parameters. It is possible to pass a K constant as a parameter and use it
with an instruction that needs an untyped Constant, or to pass a 16-bit untyped Constant and use it in
an instruction which needs a K constant.

CFB 0
R O
1 ;no K, but paramused in CMP - needs the K type
K2 ;has K, but paramused in LDL - can't have the K type

The assembler replaces K 2 with 2 because the LDL instruction in the FB does not allow a K
constant, and replaces 1 with K 1 because CMP needs the K:

FB 0
cwP =1

=2 ;K is required
LDL =1

=3 ; K not all owed

This does not work if the parameter is used in both with-K and without K contexts. This will generate
an error message "FB parameter has bad context”, see preceding tip for an example.

Do not use slow instructions in XOB 0 (power down XOB) (FAQ #100066)

XOB 0 has max. 10 milliseconds to execute before power fails. Some instructions can take longer
than this, so they cannot be used in XOB 0. For example,

SYSWR 2000..2049 : Write nonwolatile register (user EEPROM)

SYSWR 3000..3001 : Flash copy/erase

SYSWR 3100..3102 : Flash copy/erase

How can | read the PCD's serial number from the user program? (FAQ #100834)

There is a System Function call to do this, which returns the 32-bit serial number in a Register.

In S-Edit, open the Function Selector window and open the "SF System Library", select the
"ReadSerialNum" function.

If you press F1 it shows the help for this function. If you double-click on it, the call is inserted into the
IL code:

CSF S. SF. SYS. Li brary ; Li brary nunber
S. SF. SYS. ReadSeri al Num ; Read PCD serial nunber into Register
;1 ROUT, Rto receive PCD s serial nunber

Fill in the register number, and check the Error flag incase the System Function is not supported:

CSF S. SF. SYS. Li brary ; Li brary nunber

S. SF. SYS. ReadSeri al Num ; Read PCD serial nunber into Register

R 100 ;1 ROUT, Rto receive PCD s serial nunber
JR E Not Supported

(Note: This needs the library's include file to be include in the source file, so the symbols are defined:
$i ncl ude "<$Li bsDi r >\ SF\ SFSysLi b_en.|ib"
S-Edit now does this automatically, so you do not need to add this yourself if you use the Function
Selector.)

Saia PG5® Instruction List, 2013-10-25 58

Saia-Burgess Controls AG Introduction

IL Programming Tips

How to copy Text into another Text (FAQ #100886

There are now a System Function calls for copying Texts and Data Block data.

In S-Edit, open the Function Selector window and look at the "SF DB Access Library". This also
contains functions for copying Texts, which also supports the @ and $ formats.

Select a function and press DF1 to get help on the function.

Note: These functions are only for NT systems or PCD1/PCD models with the latest firmware.
If your firmware version does not support the System Function call, the Error flag will be set.
Minimum FW versions:

D1.M1x5 $A5

D2.M150 $D1

Dx.M170 $21

S1.C6/C8 $B2

D2.M480 $29

D3.Mxxxx $25

Example:

Source Text:

TEXT 100 "Alarmon station 10, @O0100. Modtor over tenperature: $R0110°C. <CR><LF>"
"Pl ease call $L0020"

Register 100 has the value 2

Register 0110 has the value 220

Text 2 "Section B"

Text 20 "John on 044 345 32 32"

The Register 100 contains the pointer to the sub-text.

If the Register 100 has the value 2 then the text 2 is inserted on the position @L0100.

After copying the source text to the destination text, the destination text will be the following:

"Alarm on station 10, Section B. Mdtor over tenperature: 264°C. Please call John or

Is it possible to search an expression within a PCD text? (FAQ #101186)

Can | read a value from a PCD text and copy it into a reqgister? (FAQ #101187
Yes, see the "SF DB Access Library"”, described in the preceding tip.

XOR and OR calculations in IL - surprising results (FAQ #100720)

You may wonder about surprising results when programming in IL with XOR and OR operations.

It's good to know the philosophy behind the behaviour of the ACCU.

Experienced programmers may wonder why the XOR F 1 instruction in the example below sets the
ACCUto 0 (F 0=1 and F 1=0, so 1 XOR 0 should be 1).

And why the ANL F 2 instruction sets the ACCU to 1 (Accu=0 and F 2=1, 0 AND NOT 1 should be
0).

Flag @ Count % Refresh
a123y

Ad@a: 1681846

*sTep
ge@aay STH F 8 [1] A1 Z8 HB P1 EB IX8
*sTep
g@@@eas XOR F 1 [8] A1 Z8 HB P1 EAQ IX8
*»sTep
ga@aas AHL F 2 [1] A1 Z8 HB P1 EAQ IX8

The reason is that XOR and OR operations work like "open parentheses" for logic calculations. If you

Saia PG5® Instruction List, 2013-10-25 59

Saia-Burgess Controls AG

Introduction

IL Programming Tips

want to apply the result of the XOR and OR operation, you have to "close parentheses" by
programming an OUT instructions on a dummy Flag and testing the state of this Flag using STH, as

shown in the example below.

|Flag 8 Count 5 Refresh

| 01234

| 9BE8B: 18118

ABeee3 HOP A1 28 -1 EA IX8
»sTep

aea@ey STH F [1] A1 28 HB P1 EA@ IX8
*sTep

Aeeaes XOR F [9] A1 28 HA P1 EA IX8
*sTep

aeaaes ouT F [1] A1 28 HB P1 EA@ IX8
*sTep

aeapa7 STH F [1] A1 28 HB P1 EA@ IXB8
*sTep

ABaEves AHL F [1] AB 28 HA P1 EA IX8

OUT F 3 gives the correct result for 1 XOR 0. Another OUT instruction after ANL F 2 would produce
the correct result 0 (0 AND NOT 1 = 0).

Handling arrays as FB parameters (FAQ #100724)

When an array is passed to an FB, the array cannot be accessed with code like this:

Fl agArray EQU F [10]
CFB 0

Fl agArray
FB 0
Flagl EQU =1
Fl ag2 EQU Fl agl+l
EFB

;array of Fl ags

; pass the array base to the FB

; Wong.
; Wong.

Flagl is =1, it
Fl ag2 is =2, not

is not FlagArray
Fl agArray + 1

To access an array from inside the FB, you should use the Index Register as in this example:

Fl agArray EQU F [3]

CFB 1
Fl agArray
FB 1

r Savel ndex LEQU R

STI r Savel ndex
Flagl EQU =1
STH Fl agl

SEI K1

STHX Fl agl

SEI K 2

;I ndex register

;save the I ndex Register

; same STH Fl agArray

is 1

;same as STH Fl agArray+1
;I ndex Regi ster

is 2

Saia PG5® Instruction List, 2013-10-25

60

Saia-Burgess Controls AG Introduction

IL Programming Tips

STHX Fl agl ;same as STH Fl agArray+2
SEl rSavel ndex ;restore the Index Register before returning
EFB

How to change the base of a logarithm (FAQ #101238)

The Saia PG5 instruction set does support the natural logarithm Ln (hyperbolic, base e, floating point
instruction ELN).

Logarithms to any other base like 10 (Log10) can be calculated with the method described below.
The Ln of x can be divided by the Ln of the desired base: Log n (x) = Ln(x) / Ln(n)

Example in case the logarithm with the base 10 is needed:

Log10(x) = Ln(x) / Ln(10)

The value of Ln(10) (=2.302585093) can be stored in a constant or variable so it does not need to be
recalculated each time a Log10 is required.

Block select mode in S-Edit (marking columns of text)

The IL Editor S-Edit has a "block select mode" which allows selecting columns instead of lines of
code.

1. Hold down the Alt key.

2. Keeping the Alt key down, click the left button at the start of the text.

3. Drag the mouse cursor to the end and release the left button.

or

1. Click on the left-hand mouse top left-hand corner of the column you want to mark, or mowve the
caret there with the cursor keys.

2. Hold down the Shift and Alt keys.

3. Click the left-hand mouse button on the lower right-hand corner of the area to be marked - the first
click marks the lines.

4. Click a second time - the second click marks the column.

cligno.src *
COB [§]
a
STH Condition ;IF {(Condition is high)
CPB L ShortTime : THEH Call PB ShortTime
CPB LongTime ; ELSE call PB LongTime
ECOBE

Block select mode in S-Edit

How to get a data address at run time

If you need to load the address of a item into a Register, such as a Flag address, another Register's
address, or even a block number, you can simply load the symbol's value into a Register using the LD
instruction. The symbol's type is ignored. This also works for dynamic addresses and Externals. For
example:

Symbol EQU R 123
Bl ock EQU FB 10
EXTN Ext ernal Sym
AddsReg EQU R

LD AddsReg

Symbol ; AddsReg = 123
LD AddsReg

Bl ock ; AddsReg = 10

Saia PG5® Instruction List, 2013-10-25 61

Saia-Burgess Controls AG Introduction

IL Programming Tips

LD AddsReg
External Sym ; AddsReg = External Sym

How to use $USE / $IFUSED

These directives can be used to solve the problem that $IF conditional assembly directives cannot
reference External symbols.

$IF statements cannot reference Externals because the value must be known at assembly time, and
Externals are only resolved at link time.

See the description in this help file: SUSE, $IFUSED. $SINUSED.

If you are still confused, see the next tipple.

Saia PG5® Instruction List, 2013-10-25 62

Saia-Burgess Controls AG Bit Instructions

2 Bit Instructions
Bit instructions work with the Accumulator, Inputs, Outputs, Flags and the state of Timers or
Counters.
STH Start High
STL Start Low
ANH And High
ANL And Low
ORH Or High
ORL Or Low
XOR Exclusive Or
ACC Accumulator Operations
DYN Dynamic (edge detection)
ot Set Element from ACCU
SET Set Element
RES Reset Element
cov Complement Element
SETD Set Element Delayed
RESD Reset Element Delayed

2.1 STH - Start High

Description
The ACCU is set to the logical state of the addressed element. This is the start of a new linkage line.

The previous linkage results are cleared with the start instruction; simultaneously the signal state "H"
of the addressed element I, O, F, T, C will be read and the result stored in the ACCU.

Format
STH X] [=] elenment (i) 1 OF TC

Example
STH | 7 ;ACCU := state of Input 7

Flags
ACCU Set to the state of the addressed IO F Tor C

Status Flags Unchanged

See also
STHS, STL

Note

If a Timer or Counter contains O its state is Low, otherwise its state is High.

Practical example

Saia PG5® Instruction List, 2013-10-25 63

Saia-Burgess Controls AG Bit Instructions

STH - Start High

7 032
o /|
12 % 040

; A mini mum programin the PCD nust consist of one COB

coB 0 ;start of COB
0
STH I 7 ;i f Input 7 is High
out O 32 ;then set CQutput 32
;else reset Qutput 32
STH I 12 ;i f Input 12 is Hight
out O 40 ;then set CQutput 40
;else reset Qutput 40
ECOB ;end of COB
2.2 STL - Start Low
Description
The ACCU is set to the inverted logical state of the addressed element. This is the start of a new
linkage line.

The previous linkage results are cleared with the start instruction; simultaneously the signal state "L"
of the addressed element I, O, F, T, C will be read, inverted and the result stored in the ACCU.

Format
STL[X] [=] elenment (i) 1 OF TC

Example
STL I 9 ;ACCU = inverted state of Input 9

Flags
ACCU Set to the inverted state of the addressed | O F Tor C
Status Flags Unchanged

See also
STH

Practical example

18 4 o——033
Timer T15 034
coB 0 ;start of COB
0
STH | 8 ;1 f Input 8 goes High
DYN F 10 ; (DYN detects rising edge)
LD T 15 ;then load Tinmer with 2 sec
20 ; (20 x 100mns)
STL T 15 ;i f the time has el apsed
our O 33 ;then set CQutput 33

Saia PG5® Instruction List, 2013-10-25 64

Saia-Burgess Controls AG

Bit Instructions

STH
ouT

ECOB

;else reset Qutput 33

T 15 ;i f the tinme has not el apsed

O 34 ;then set CQutput 34
;else reset Qutput 34
;end of COB

2.3 ANH - And High

Description

STL - Start Low

The ACCU is AND linked with the logical state of the addressed element and the ACCU is set to the

result.

ACCU State
L

I ITr

L
H
H

Format
ANH[X] [

Example
ANH | 3

Flags
ACCU

Status Flags

See also
ANL

Result

T -

=] element (i) ;1 OF TC

:ANDs the ACCU with the state of
ANHX | 128 ;ANDs the ACCU with Input (128 + |ndex)

Set according to the result
Unchanged

Practical example

| '3

T m
o O

| -

|3
|5

coB

STH
ANH

ECOB

16 Voaz ‘
o O | ‘

& ——ox

;start of COB

;i f Input 3 is High
;and I nput 6 is High

2 ;then set Qutput 32
;else reset Qutput 32
;end of COB

O——oo

w o w

Saia PG5® Instruction List, 2013-10-25

65

Saia-Burgess Controls AG Bit Instructions

2.4

2.5

ANL - And Low

ANL - And Low

Description
The ACCU is AND linked with the inverted logical state of the addressed element, the ACCU is set to
the result.

ACCU State Result
L L

IrITr

L L

H H

H L

Format

ANL[X] [=] elenment (i) I OFTC

Example
ANL | 4 ; ANDs the ACCU with inverted state of I|nput 4

ANHX | 128 ; ANDs the ACCU with inverted I nput (128+I] ndex)

Flags
ACCU Set according to the result

Status Flags Unchanged

See also
ANH

Practical example

|2
— 032
— &
[4
coB 0 ;start of COB
0
STH I 2 ;i f Input 2 is High
ANL I 3 ; AND | nput 3 is Low
ANH | 4 ; AND | nput 4 is High
our O 32 ;then set Qutput 32
;else reset Qutput 32
ECOB ;end of COB
ORH - Or High
Description

The ACCU is OR linked with the logical state of the addressed element, and the ACCU is set to the
result.
OR instructions are used for parallel linkages of elements.

The main linkage begins with a start instruction (STH or STL). Each additional parallel partial linkage
begins with an ORH.

If a parallel linkage is successful (ACCU=High), then the logical states of all the following partial
linkages no longer exercise any influence on the result of the total linkage.

Saia PG5® Instruction List, 2013-10-25 66

Saia-Burgess Controls AG Bit Instructions

ORH - Or High

ACCU State Result

L L L

L H H

H L H

H H H

Format

ORH[X] [=] element (i) 1 OF TC

Example

STH I 5 ;i f Input 5 is High

ORH | 13 ;or Input 13 is High
then ACCU = 1, else ACCU = 0

Flags

ACCU Set according to the result

Status Flags Unchanged

See also

ORL

Practical example 1

15 032‘
113
i O
ST s 032
_
113
coB 0 ;start of COB
0
STH I 5 ;i f Input 5 is High
ORH I 13 ;or Input 13 is High
our O 32 ;then set CQutput 32
;else reset Qutput 32
ECOB ;end of COB

Practical example 2

o © o : 10

12 032 | 1 & | L—

oo Z | 12 >1 02
)) I3 t

=

” I4

Saia PG5® Instruction List, 2013-10-25 67

Saia-Burgess Controls AG

Bit Instructions

coB 0 ;start of COB
0

STH I 0 ;i f Input O is High

ANH I 1 ;and Input 1 is High

ORH I 2 ;or Input 2 is High

ORH I 3 ;or Input 3 is High

ANH | 4 ;and I nput 4 is High

our O 32 ;then set CQutput 32
;else reset Qutput 32

ECOB ;end of COB

It can be seen from the above example that the OR instruction has priority over AND.

Q52 |

In - Iz
o G ‘ C‘"-—#«_ﬂ ?} |

Fla

o —|
I '

—0 O
Fl0 1z —p ©32
s> o 0 /|
COoB 0 ;start of COB

0
STH I O ;if Input O is High
ORH 1 ;or Input 1 is High
outr F 10 ;then set Flag 10
;else reset flag 10

STH F 10 ;if Flag 10 is High
ANH I 2 ;and Input 2 is High

out O 32 ;then set CQutput 32
;el se reset Qutput 32
ECOB ;end of COB

2.6 ORL - Or Low

Description

ORH - Or High

The ACCU is OR linked with the inverted logical state of the addressed element, and the ACCU is set

to the result.

OR instructions are used for parallel linkages of elements.See ORH for details.

ACCU State Result

L L H
L H L
H L H
H H H
Format

Saia PG5® Instruction List, 2013-10-25

68

Saia-Burgess Controls AG

Bit Instructions

2.7

ORL[X]

Example

STH I 3
K

ORL I

Flags
ACCU

Status Flags

See also
ORH

el ement (i)

;1 f 1 nput
;or | nput

Set according to the result

Unchanged

XOR - Exclusive OR

Description

3 is High
7 is Low
;then ACCU = 1,

OFTC

else ACCU = 0

ORL - Or Low

The ACCU is XOR linked with the logical state of the addressed element and the ACCU is set to the

result.

XOR can be used to compare the states of two elements.
If they are the same the ACCU is set Low; if they are different it is set High.

Note: To follow XOR with an ANH/ANL instruction, first end the sequence with an OUT to store the
XOR result, then start a new linkage with STH/STL. An AND linkage after XOR will cause "Warning
22: Ignoring AND after XOR instruction".

ACCU State Result

L

I ITr

L
H
H

Format
XOR[X]

Example
XOR I 5

Flags
ACCU

Status Flags

See also
OR
AND

rITITr

el ement (i

Set according to the result

Unchanged

Practical example

| &
| &

coB

cstart

) ;1

; ACCU = ACCU XOR I nput

 E—C T

of COB

OFTC

5

Saia PG5® Instruction List, 2013-10-25

69

Saia-Burgess Controls AG

Bit Instructions

2.8

2.9

;i f Input 8 is Hgh and Input 5 is Low
;or Input 8 is Low and Input 5 is High

STH | 8 ;037 =1 8 XOR O 37

XOR I 5

our O 37 ;then set Qutput 37
;else reset Qutput 37

ECOB ;end of COB

ACC - Accumulator Operations

Description
Modifies the state of the Accumulator according to the code:

The operands cannot be supplied as a Function Block parameters.

C Complement ACCU is complemented (inverted)

H High ACCU is set High (1)

L Low ACCU is set Low (0)

P Positive ACCU is set to Positive (P) flag state

N Negative ACCU is set to Negative (N) flag state

Z Zero ACCU is set to Zero (2) flag state

E Error ACCU is set to Error (E) flag state

Format

ACC code ;code =C| H| L] P|] N| 2] E
Example

ACC H :sets ACCU to 1

ACC E ;sets ACCU to state of E status flag
Flags

ACCU Set according to the result

Status Flags Unchanged

See also

OUT,

Condition Codes

Practical example

C\WP R 99 ;conmpare R 99
" x' :with character 'x'
ACC Z ;i1 f equal then ACCU is set High

; (copy Z status flag to the ACCU)

DYN - Dynamic Edge Detection

Description
For rising or falling edge detection.

XOR - Exclusive OR

The result in the ACCU is High only when the ACCU goes from Low to High on consecutive

executions of DYN (rising edge).
The Flag given in the operand stores the previous state of the ACCU.

If the ACCU is Low, it remains Low, and the Flag is also set Low. The Flag need not be Low the first

Saia PG5® Instruction List, 2013-10-25

70

Saia-Burgess Controls AG Bit Instructions

DYN - Dynamic Edge Detection

time DYN is executed.
For rising edge detection, use STH to interrogate the element; for falling edge detection, use STL.

Format
DYN[X] [=] flag (i) ' F

Example
DYN F 100 ; Flag 100 stores dynam c ACCU state

Flags
ACCU Set High on rising edge

Status Flags Unchanged

See also
STH
STL
ANH
ANL
ORH
ORL

Practical example

10 — | 032

o T LT L
032 |

;Solution with DYN instruction
coB 0 ;start of COB
0

STH I 0 ;1 f Input O goes High

DYN F 500 ;(edge detection)

comv O 32 ;then toggle CQutput 32
; el se do not hing

ECOB ;end of COB

:Sol ution without DYN instruction
CcoB 0 ;start of COB
0
STH I 0 ;i1 f Input O is High
ANL F 500 ;and Flag 500 is Low
SET F 500 ;then set Flag 500 to High

comv O 32 ;invert Qutput 32
; el se do not hing
STL | O ;i1 f Input O is Low

RES F 500 ;then reset Flag 500 (state = L)
; el se do not hing

Saia PG5® Instruction List, 2013-10-25 71

Saia-Burgess Controls AG

Bit Instructions

ECOB ;end of COB

2.10 OUT - Set Element From Accumulator

Description
Sets an Output or Flag to the state of the ACCU.

If the ACCU is High then the Output or Flag is set High.
If the ACCU is Low, then the Output or Flag is set Low.

Format
OUT[X] [=] elenment (i) ;O F

Example

ouTt 0O 32 ;sets output 32 to the state of the ACCU

Flags
ACCU Unchanged

Status Flags Unchanged
See also

OUTL
OUTS

Practical example

17 032
I3 — 35
o O /
o 40
F 7177
CcOoB 0 ;start of COB
0
STH |7 ;i f Input 7 is High
our O 32 ;then set CQutput 32
;else reset Qutput 32
STH I 2 ;i f Input 2 is High
our O 35 ;then set CQutput 35, else reset
our O 40 ;and set CQutput 40, else reset
our F 777 ;and set Flag 777, else reset Flag 777
ECOB ;end of COB

DYN - Dynamic Edge Detection

Saia PG5® Instruction List, 2013-10-25

72

Saia-Burgess Controls AG Bit Instructions

OUTL - Set Element From Inverted Accumulator

211 OUTL - Set Element From Inverted Accumulator

Description
Sets an Output or Flag to the inverted state of the ACCU.

If the ACCU is High then the Output or Flag is set Low.
If the ACCU is Low, then the Output or Flag is set High.

Format
OUTL[X] [=] element (i) ;O F

Example
QUTL O 32 ;Qut put 32 = inverted state of the ACCU

Flags
ACCU Unchanged

Status Flags Unchanged

See also
ouT
ouTs

2.12 SET - Set Element

Description
The Output or Flag is set High only if the ACCU is High.

If the ACCU is Low, nothing is done.

An Output or Flag set with a SET-instruction remains set (High) until it is reset again by a RES
instruction.

This instruction is only executed if the ACCU is High.

Format
SET[X] [=] elenent(i) ;O F

Example
SET O 32 ;if ACCU is Hthen set CQutput 32

Flags
ACCU Unchanged

This instruction is executed only if the ACCU is High.
Status Flags Unchanged

See also
RES
SETD
RESD

Practical example
Graftec program. Outputs 36 and 37 must blink after Input 7 has been switched on.

Saia PG5® Instruction List, 2013-10-25 73

Saia-Burgess Controls AG Bit Instructions

2.13

2.14

SET - Set Element

T STH | 7 ; is input =1 ?
SET O 36 ; set output 36
—1- SET O 37 ; set output 37
LD T1 : load tinmer 1
5 c with 0.5s
he STL T1 ; tinmer elapsed ?
RES O 36 ; reset output 36
RES O 37 ; reset output 37
LD T1 : load tiner no. 1
10 : with 1 second
STL T 10 ; has tinmer elapsed?

RES - Reset Element

Description
The Output or Flag is set Low only if the ACCU is High. If the ACCU is Low, nothing is done.

Format
RES[X] [=] element (i) ;OF

Example
RES O 13 ;if ACCU is High then reset Qutput 13

Flags
ACCU Unchanged

This instruction is executed only if the ACCU is High.
Status Flags Unchanged

See also
SET
SETD
RESD

Practical example
See SET

COM - Complement Element

Description
The state of the Output or Flag is complemented (inverted) only if the ACCU is High. If the ACCU is

Low, nothing is done.

Tips: To be sure this instruction is executed, precede it with ACC H.
This instruction can be used to trigger the Watchdog (Output 255) from a cyclic program, e.g.

ACC H
COM O 255
Format

Saia PG5® Instruction List, 2013-10-25 74

Saia-Burgess Controls AG Bit Instructions

2.15

COM - Complement Element

CcoM X] [=] element (i) ;O F
Example
com O 32 ;invert the state of Qutput 32 if ACCU is High
Flags
ACCU Unchanged
This instruction is executed only if the ACCU is High.
Status Flags Unchanged
See also
ouT
SET
RES
DYN

10 — | 032

o IO LI LIL

COB 0 start of COB
0
STH I 0 ;1 f Input 0 goes High
DYN F 500 ; (edge detection)
comv O 32 ;then conpl enent Qut put 32
; el se do not hing
ECOB cend of COB

SETD - Set Element Delayed

Description
The Output or Flag is set High after the delay given in the 2nd operand only

if the ACCU is High. The delay is in timebase units, as set by the DEETB instruction.

A maximum of 16 delayed instructions can be in progress at the same time.
The operands cannot be supplied as Function Block parameters.

Format
SETD[X] el ement (i) ;O F
del ay ;delay in tinmebase units
Example
SETD 0 32 ;if ACCU is High then set Qutput 32
100 ;after 100 x 100nms = 10 seconds

Saia PG5® Instruction List, 2013-10-25 75

Saia-Burgess Controls AG Bit Instructions

SETD - Set Element Delayed

Flags
ACCU Unchanged

Status Flags E Set if more than 16 delayed actions are attempted
See also

RESD
DEFTB

Practical example
Graftec program.

T —|— STH C ;condition to continue

SET O 35 ;Qutput 35 is set immediately
ST SETD O 40 ;Qut put 40 is set after 120 seconds
1200 ; i ndependently of the running

; Graftec program

STH 'scondition to continue

2.16 RESD - Reset Element Delayed

Description
The Output or Flag is set Low after the delay given in the 2nd operand only if the ACCU is High.
The delay is in timebase units, as set by the DEFTB instruction.

A maximum of 16 delayed instructions can be in progress at the same time.
The operands cannot be supplied as Function Block parameters.

Eormat
RESD[X] element (i) ;OF
del ay ;delay in tinebase units

Example
RESD O 32 ;1 f ACCU is Hight then reset Qutput 32

100 ;after 100 x 100nms = 10 seconds

Flags
ACCU Unchanged

Status Flags E Set if more than 16 delayed actions are attempted

See also
SETD
DEFTB

Practical example
Graftec program.

Saia PG5® Instruction List, 2013-10-25 76

Saia-Burgess Controls AG Bit Instructions

RESD - Reset Element Delayed

T —|— STH C ;condition to continue

SET O 35 ;Qutput 35 is set immediately
ST SETD O 35 ;Qutput 35 is reset after 5 seconds
1200 ; i ndependently of the running

; Graftec program

STH ;condition to continue

Saia PG5® Instruction List, 2013-10-25 77

Saia-Burgess Controls AG Register Instructions

3 Register Instructions

These instructions transfer data to or from Registers.
Registers can contain binary, decimal, BCD or floating point values.

Loading Data
LD Load 32-bit value

LDL Load low word, lower 16 bits
LDH Load high word, upper 16 bits

Primary arithmetic
I NC Increment Register

DEC Decrement Register
Note: For arithmetic with floating point values, the floating point instructions must be used.

Moving Data
MOV Mowve data

COPY Copy data } Specially useful
GET Get data } for indexed
PUT Put data } addressing
TER Transfer data

TERI Transfer data indirect

Binary Input/Qutput

BI TI Bit in
Bl TI R Bit in reversed
BI TO Bit out

Bl TOR Bit out reversed

BCD Digit Input /Output
DId Digitin

DI G R Digit in reversed
DI GO Digit out

DI GOR Digit out reversed

Logical

AND AND Registers
OoR OR Registers

EXOR Exclusive-OR Registers
NOT Complement Register

Rotates and Shifts

SHIU Shift Registers up
SHID Shift Registers down
ROTU Rotate Registers up
ROTD Rotate Registers down
SHI L Shift Register left
SHI R Shift Register right
ROTL Rotate Register left
ROTR Rotate Register right

Saia PG5® Instruction List, 2013-10-25 78

Saia-Burgess Controls AG Register Instructions

AND - And Registers

3.1 AND - And Registers

Description
The contents of the 1st Register is logically ANDed with the contents of the second Register, and the
result is placed in the 3rd Register.

Format
AND[X] [=] valuel (i) ;R
[=] value2 ' R
[=] result (i) ;R
Example
AND R 11 ; AND Regi ster 11 with
R 12 ;Wi th Register 12
R 13 ;and put the result in Register 13

R 13 contains a 1 hit for every bit which is a 1 in both R 11 AND R 12.

Flags
ACCU Unchanged

Status Flags E Always set Low
P Set according to the result
Z Set according to the result
N Set according to the result

See also
OR
-

EXOR

Z

Practical example

hit 1 bit 1
Rl [1]of1]1] lololslofe{i]o]
anp ||| .
Rz [1li]1]o] lols[sfolols]1]
L [AN
rR13 |1]ol1]o] lololilololi]ao]

3.2 BITI - Bit In

Description
Moves a number of binary bits from Inputs, Outputs, Flags, a Timer or a Counter into a Register.

The 1st operand is the number of bits to be mowed (1..32).

The 2nd operand is the source (I, O, F, T or C).

The 3rd operand is the destination Register.
If the source is Inputs, Outputs or Flags, the source address given is the lowest address of the range.
The LOWEST address becomes the LEAST SIGNIFICANT bit in the destination Register.

Saia PG5® Instruction List, 2013-10-25 79

Saia-Burgess Controls AG Register Instructions

3.3

BITI - Bit In

Eormat
BITI[X] [=] bits ;nunber of bits to read 1..32
[=] source ;source | OF T C
[=] dest {i) ;destination R
Example
BI Tl 16 ;read 16 bits
I 32 ;fromlnputs 32..47
R 10 ;and store in Register 10 bits 0..15
Flags
ACCU Unchanged

Status Flags E Unchanged

P Set according to the value read
Z Set according to the value read
N Set according to the value read

See also

BITIR

DIGI

DIGIR

Practical example
When input 8 goes High, an 8-bit binary value is read from inputs 0 to 7 and stored in Register 500.

CcoB 0 ;start of COB
0
STH | 8 ;1 f Input 8 goes High
DYN F 100 ;(uses F 100 to detect the change)
JR L Next ;junp if not gone Low to High
BI Tl 8 ;read 8 bits
I 0 ;fromlinputs 0..7
R 500 ;and store in R 500
Next :
ECOB

BITIR - Bit In reversed

Description
Mowves a number of binary bits from Inputs, Outputs, Flags, a Timer or a Counter into a Register.

The 1st operand is the number of bits to be mowved (1..32).

The 2nd operand is the source (I, O, F, T or C).

The 3rd operand is the destination Register.
If the source are Inputs, Outputs or Flags, the source address is the lowest address of the range.
The LOWEST address becomes the MOST SIGNIFICANT bit in the destination Register.

Format

BITIRIX] [=] bits ;nunber of bits to read 1..32
[=] source ;source | OF TC
[=] dest (i) ;destination R

Example

BITIR 16 ;read 16 bits

Saia PG5® Instruction List, 2013-10-25 80

Saia-Burgess Controls AG Register Instructions

3.4

BITIR - Bit In reversed

I 32 ;fromlnputs 32..47
r 10 ;and store themin Register 10 bits 15..0
Flags
ACCU Unchanged
Status Flags E Unchanged
P Set according to the value read
Z Set according to the value read
N Set according to the value read
See also
BITI
DIG
DIGIR

Practical example

BITI |320 Source: Inputs 0 .31
S R N R AR RRRARRRRRRRRRRRRRRRRZARY!
Destination: Register 0
SR a0 Source: Inputs 0 .31
N A AR R RRRRRRRRRRRRIRRRRRRRTRT
Destination: Register 0
BITO - Bit Out

Mowves a number of binary bits from a Register to Outputs or Flags, or to bits in a Timer or Counter.
The 1st operand is the number of bits to transfer (1..32).
The 2nd operand is the source Register number.
The 3rd operand is the destination Outputs, Flags, Timer or Counter.
If the destination is Outputs or Flags, the destination address is that of the first address of the range.
The LEAST SIGNIFICANT bit of the Register is moved to the LOWEST address.

Format

Bl TJ X] [=] bits ;nunber of bits to nove 1..32
[=] source (i) ;source R
[=] dest ;destination OF T C

Example

Bl TO 8 :nmove 8 bits
R 10 ;fromRegister 10 bits 0..7
O 48 ;to Qutputs 48..55

Flags

ACCU Unchanged

Status Flags Unchanged

Saia PG5® Instruction List, 2013-10-25 81

Saia-Burgess Controls AG Register Instructions

BITO - Bit Out

See also
BITOR
DIGO
DIGOR

Practical example
Copy the states of Inputs 0..15 to Outputs 32..47.

coB 0 ;start COB
0
BI Tl 16 ;read 16 bits
I 0 ;fromlnputs 0..15
RO ;to Register O bits 0..15
BI TO 16 ;wite 16 bits
RO ;from Register 0
0O 32 ;to Qutputs 32..47
ECOB

3.5 BITOR - Bit Out Reversed

Description
Mowves a number of binary bits from a Register to Outputs, Flags or bits in a Timer or Counter.
The 1st operand is the number of bits to transfer (1..32).
The 2nd operand is the source Register number.
The 3rd operand is the destination Outputs, Flags, Timer or Counter.
If the destination is Outputs or Flags, the destination address is that of the lowest element in the
range.
The LEAST SIGNIFICANT bit of the Register is moved to the HIGHEST address.

Format
Bl TOR[X] [=] bits ;nunber of bits to nove 1..32
[=] source (i) ;source Register R
[=] dest ;destination OF T C
Example
Bl TOR 8 :nmove 8 bits
R 10 ;fromRegister 10 bits 0..7
O 48 ;to Qutputs 55..48
Flags
ACCU Unchanged
Status Flags Unchanged
See also
BITO
DIGO
DIGOR

Practical example

Saia PG5® Instruction List, 2013-10-25 82

Saia-Burgess Controls AG Register Instructions

3.6

BITOR - Bit Out Rewersed

Source: Reqister 0

BITO 32

bt L bo Lol laslos Laalaalolas o Liolielislielis i alialialus ol o T2 T2 e [s [alz 24 ol
Destination: Outputs 0..31

Source; Register 0

Y FYEY i F A £ Y O/ P A T e o e e
e N

0 32 a1 b Laslzrbaslos l2alosla Loy Lo [isli sl lielis [raluslialii Tl e Ta [{6 s Talaa T (o]
Destination: Outputs 0..31

COPY - Copy Data

Description
Copies the 32-bit contents of a Register, Timer or Counter into another Register, Timer or Counter.

The contents of the first operand (source) is copied into the second (destination).

The PUTX, GETX and COPY X instructions are useful for the indexed transfer of data between
Registers, Timers and Counters.

For PUTX the destination is indexed, for GETX the source is indexed, and for COPY X both the source
and the destination are indexed.

Format

COPY[X] [=] source (i) ;source RTC
[=] dest (1) ;destination RT C

Example

COPYX R 10 ;move the contents of Register 10+l ndex
R 50 ;to Regi ster 50+I ndex

Flags

ACCU Unchanged

Status Flags E Set if you copy a negative value to T or C,

0 is loaded

P Set according to the value copied
Z Set according to the value copied
N Set according to the value copied

See also

GET

PUT

MOV

Practical example
Mowe the contents of Registers 10..14 to Registers 50..54.

SEI KO
Loop:
COPYX R 10

Saia PG5® Instruction List, 2013-10-25 83

Saia-Burgess Controls AG Register Instructions

COPY - Copy Data

R 50
| NI K 4
JR H Loop
3.7 DEC - Decrement Register or Counter
Description

Decrements a Register or Counter by one.

This instruction is dependant on the ACCU state:
e Counters are only decremented if the ACCU is High.
e Registers are always decremented.

Format
DECI X] [=] element (i) ;R or Cto be decrenented

Example
DEC R 100 :R 100 := R 100 - 1

Flags
ACCU Unchanged

For Timers and Counters, this instruction is executed only if the ACCU is High.
For Registers this instruction is always executed

Status Flags E Set if underflow occurs
P Set according to the result
Z Set according to the result
N Set according to the result

See also

INC

SuUB

Saia PG5® Instruction List, 2013-10-25 84

Saia-Burgess Controls AG

Register Instructions

DEC - Decrement Register or Counter

3.8

INC Counter DEC Counter
max max
0 0
Zero Flag

Counter status

INC Register DEC Register

max -+ max +
0 0
min - min -
Zero Flag |

MNegative Flag |
Positive Flag — ——

Error Flag

DIGI - Digit In

Description
Mowves Binary Coded Decimal (BCD) digits from Inputs, Outputs or Flags into a Register. A BCD digit
is 4 bits (e.g. 4 Inputs), which represents a decimal digit (0..9).

The 1st operand is the number of digits to mowve (1..10).

The 2nd is the base Input, Output or Flag.

The 3rd is the destination Register.
The lowest addressed Input, Output or Flag becomes the least significant bit of the least significant
digit in the destination Register.

Format

Dl A [X] [=] digits ; nunber of digits 1..10
[=] source ;source data | OF
[=] dest (i) ;destination R

Example

Dl & 2 ;read 3 BCD digits

| 32 ;fromlInputs 39..36 and 35..32

Saia PG5® Instruction List, 2013-10-25 85

Saia-Burgess Controls AG

Register Instructions

3.9

R 100 ;into Register 100
Flags
ACCU Unchanged

Status Flags E Unchanged
P Set according to the value read
Z Set according to the value read
N Set according to the value read

See also

DIGIR

DIGO

DIGOR

BITI

BITIR

Practical example

3 Digits BCD 5 9 1

Ingut addresses |[27026]23]24] [23l22[21]20 L

Inpu.t.valmsj S00 400 200 100 a0 40 20 10 g 4 2 1
Inputsactivated 0] 1] 0]1] [t]olol1] [o]o]o]t]

Feadthe BCD walue DIGI 3
I 1&

B 123

BCD —> Binary
| |

Register 123: —— lolz]lzlels]alalz]i]a]is
E 123 hit values: 512025 128 64 32 16 8 4 2 1
R 123 = 391 lo|------ [1laloltolola]i]1]4]

The format inside the regiger iz always binary.

DIGIR - Digit In Reversed

Description

DIGI - Digit In

Moves Binary Coded Decimal (BCD) digits from Inputs, Outputs or Flags into a Register. A BCD digit

is 4 bits (e.g. 4 Inputs), which represents a decimal digit (0..9).
The 1st operand is the number of digits to mowve (1..10).
The 2nd is the base Input, Output or Flag.

The 3rd is the destination Register.

The lowest addressed Input, Output or Flag becomes the most significant bit of the most significant

digit in the destination Register.

Format

Dl G R X] [=] digits ;nunmber of digits 1..10
[=] source ;source | OF
[=] dest (i) ;destination R

Saia PG5® Instruction List, 2013-10-25

86

Saia-Burgess Controls AG

Register Instructions

Example

DG R 2 ;read 2 BCD digits
I 32 ;fromlInputs 32..35 and 36..39
R 100 ;into Register 100

Flags

ACCU Unchanged

Status Flags E Unchanged

P Set according to the value read
Z Set according to the value read
N Set according to the value read

See also

Practical example

3 Digits ECD 7 8 5
MYE

Irgt addresses solzilzzlzs] |zalaslzelzr

Inp‘u.tvaluesj 200 400 200 100 g0 40 20 10 g 4 23 1

Inputsactivate [0 1|11 [1]ololo] [o]1]o]t]

Feadthe BCD walue: DIGIR 3
I 1&

B 123

BCD — Binary
| |

Register 123: e lalz]7]lels]alzlz]i]a]us
F 123 hit values: S12025% 12 64 32 1M o8 4 02 1
R 123 = 785 lo|------ il 1]olalali]alo]o]1]

The format inside the regiger iz always hinary.

3.10 DIGO - Digit Out

Description
Mowves BCD digits from a Register to a range of Outputs or Flags. A BCD digit consists of 4 binary

bits.

The 1st operand is the number of BCD digits to mowe.
The 2nd is the source Register.
The 3rd is the base Output or Flag address.

DIGIR - Digit In Reversed

The lowest addressed Output or Flag becomes the least significant bit of the least significant BCD

digit.
Format
DI GO X] [=] digits ; nunber of BCD digits 1..10
Saia PG5® Instruction List, 2013-10-25 87

Saia-Burgess Controls AG

Register Instructions

] source (i) ;source Register R

[:
[:

] dest ; destination O or F
Example
DI GO 2 ;write 2 BCD digits
R 123 ;from Register 123
O 40 ;to Qutputs 47..44 and 43..40
Flags
ACCU Unchanged

Status Flags E Set if a BCD digit is invalid (> 9)
P Set according to the value read
Z Set according to the value read
N Set according to the value read

Regster T77:] ----—------ l7lsls]alzalalio]u=
B 777 hits values: 1@ 64 32 16 8 4 2 1
Write the BCD wvalue: DIGO 2

B 777

F 50

| Binary —> BCD |

PTIEE Ty Ls7ls6l5s]54] [sals2ls1]50) e
Flagvﬁlugs: a0 40 20 10 8 4 2 1
SO L3D

311 DIGOR - Digit Out Reversed

Description

DIGO - Digit Out

Mowves BCD digits from a Register to a range of Outputs or Flags. A BCD digit consists of 4 binary

bits.
The 1st operand is the number of digits to mowe.
The 2nd is the source Register.
The 3rd is the base Output or Flag address.

The lowest addressed Output or Flag becomes the most significant bit of the most significant BCD

digit.

Format

DIGOR[X] [=] digits ;number of BCD digits 1..10
[=] source (i) ;source Register R

Saia PG5® Instruction List, 2013-10-25

88

Saia-Burgess Controls AG

Register Instructions

DIGOR - Digit Out Reversed

3.12

[=] dest ;destination O or F
Example
DI GOR 2 ;write 2 BCD digits
R 123 ; from Regi ster 123
O 40 ;to Qutputs 40..43 and 44..47
Flags
ACCU Unchanged

Status Flags E Set if a BCD digit is invalid (> 9)

P Set according to the value read
Z Set according to the value read
N Set according to the value read

See also

DIGO

DIGI

DIGIR

BITOR

BITO

Practical example

e ——— [7l6ls]alalz]li]o]w

1= 64 32 16 8 4 2 1

Regster 777:
B 777 bitz values:

Wtite the BCD wralus: DIGOR 2

| Binary —> BCD |

PR T so)s1fsalsa] [salss]sels7]
Flagvalms; 20 40 20 10 2 4 21
MED L3D

DSP - Load Display Register

Description

The logical state of an Input, Output or Flag, or the contents of a Register, Timer, Counter or a
constant, can be loaded into the Display Register.

The Display Register value can be displayed in decimal on the 7-Segment PCD2.F5xx display of a
PCD1 or PCD2, and on the PCD8.P100 Programming Unit.

It can also be displayed by S-Bug's 'Display Display-register' command, or by entering DSP as the
symbol name in the PG5's Watch Window.

It is useful as an error code or status display.

The operand cannot be supplied as a Function Block parameter.

Note
This instruction is not supported by new PCD types (NT systems, PCD3 and PCD2.M480 etc).

Saia PG5® Instruction List, 2013-10-25

89

Saia-Burgess Controls AG Register Instructions

3.13

DSP - Load Display Register

If not supported, XOB 8 (Invalid Opcode) is called. If XOB 8 is not present, the PCD will Halt.

Format

DSP val ue ;data to be displayed | OF T CR or K
Example

DSP RO ; Display Register := contents of RO
DSP K 1234 ; Di splay Register := 1234

Flags

ACCU Unchanged

Status Flags Unchanged

See also

PCD1/2 Hardware Manuals.

EXOR - Exclusive-Or Registers

Description
The bits in the 1st Register is Exclusive-ORed with the bits in the 2nd Register, and the result is

placed in the 3rd Register.
Exclusive-OR means that if either bit is a 1, bit not both bits, then result will be 1.

Format
EXOR[X] [=] valuel (i) ' R
[=] val ue2 ' R
[=] result (i) ' R
Example
EXOR R 1 ; Register 1 is exclusive-ORd
R 2 ;Wi th Register 2
R 2 ;and the result is placed in Register 2
Flags
ACCU Unchanged

Status Flags E Always set Low
P Set according to the result
Z Set according to the result
N Set according to the result

See also

OR

Practical example

Saia PG5® Instruction List, 2013-10-25 90

Saia-Burgess Controls AG

Register Instructions

EXOR - Exclusive-Or Registers

bit 31 bit 0
R 1 [LJofou] oo loJolilofsfi]o]
exor | | | | e
R 2 [t [[o] - Lot ifofo]e]n]
LUl ULVl

R 2 lo|i]ofs] - lal1]o]o]1]o]1]

3.14 GET - Get Data

Description

Copies the 32-bit contents of a Register, Timer or Counter into another Register, Timer or Counter.
It also allows the transfer of data from a Text or Data Block into a block of consecutive Registers,

Timers or Counters.

The contents of the first operand (source) is copied into the second (destination). For GETX, the first

operand (source) is indexed.

GET[X will transfer a Text into a block of consecutive R/T/Cs, storing 4 characters per R/T/C, until the

end of the Text is encountered (NUL terminator, 0).

If the Text is not a multiple of 4 characters long, unused bytes in the last R/T/C are unchanged.
Similarly, GET[X] can transfer 32-bit data items from a Data Block into a block of consecutive R/T/Cs,

until the end of the DB.

If GET[X tries to read from a Text or Data Block which doesn't exist then the Error flag is set and XOB

13 (Error Flag Set) is called.

If the indexed Text or Data Block number is out of range then XOB 12 is called (Index Register

Overflow).

The PUTX, GETX and COPY X instructions are useful for the indexed transfer of data between

Registers, Timers and Counters.

For PUTX the destination is indexed, for GETX the source is indexed, and for COPY X both the source

and the destination are indexed.

Format
CET[X] [=] source (i)
[=] dest
Example
CETX R 10 ;move the contents of
R 50 ;to Register 50
Flags
ACCU Unchanged
Status Flags E Unchanged

P Set according to the value copied
Z Set according to the value copied
N Set according to the value copied

See also

;source R T C X or
;destination RT C

Regi st er

DB

10+l ndex

Saia PG5® Instruction List, 2013-10-25

91

Saia-Burgess Controls AG Register Instructions

GET - Get Data

PUT
COPY
MOV
Data Blocks (DB)
Texts
Example 1
Mowve R 10 to R 50, then R 11 to R 50, up to R 14.
SEI KO0
LOOP: GETX R 10 F 10 Fal
R 50 R 11
IN K4 12
JR H LOOP R 13
F 14

Transfer between Text / Data Block and R/T/C

The instruction GET[X] can transfer from a Text into the R|T|C until the end of the Text (00, NUL
terminator). If the Text does not end on an R|T|C boundary then the remainder of the R|T|C will be left
unchanged.

Similarly, GET[X] can transfer the data items present in a Data Block to the R|T|C until the end of the
Data Block.

A Data Block (DB) is a block which can hold large numbers of 32-bit values. Data Blocks can be used
for storing values which are specific to a process to liberate R|T|C addresses for use by other
processes.

If the instruction tries to read from a Text or Data Block which doesn't exist, then the Error flag is set
and XOB 13 (Error Flag Set) is called.

If the indexed Text or Data Block number is greater than 8191 then XOB 12 is called (Index Register
Ovwerflow)

Example 2
Data Block declared in the source program:
DB 100 [5] Oh, 1h, 2h, Oab5a5a5a5h, 720h

Instruction to transfer the DB into a range of Registers:

GET DB 100 ;transfer DB 100
R 1000 ;into Registers 1000..1004
The result is:
Register Hex Value
1000 00000000
1001 00000001
1002 00000002
1003 abababab
1004 00000720
Example 3

Text declared in the source program:
TEXT 123 "THIS I S A TEXT 123"

Instruction to transfer Text 123 into registers 1000..1004:
GETX X 123 ;transfer Text 123
R 1000 ;into Registers 1000..1004

Saia PG5® Instruction List, 2013-10-25 92

Saia-Burgess Controls AG

Register Instructions

The result is:
Register
1000

1001

1002

1003

1004

Text Value Hex Value
"TH S" 54484953
" 1S 20495320
"A TE" 41205445
"XT 1" 58542031
" 23<0><0>" 32330000

3.15 INC - Increment Register or Counter

Description

Increment a Register or Counter value by 1.

This instruction is dependant on the ACCU:
e Counters are incremented only if the ACCU is High
¢ Registers are always incremented

Format
I NC[X] [=]

Example
| NC R 100

Flags
ACCU

Status Flags E

P
Z
N

See also

DEC

ADD

el ement

'R

(i) ;R or C

100 = R 100 + 1

Unchanged
For Timers and Counters, this instruction is executed only if the ACCU is High.

For Registers this instruction is always executed

Set if overflow occurs

Set according to the result
Set according to the result
Set according to the result

Practical example

Up/down counter with pre-selection and display of the counter value.

(A
— D Set
[1 T U
T L— p
Il — 032
12 I [|Down
—r T
' ' IL
50
coB 0 ;start of COB
0
STH | O ;if Input 0 is H
LD C 50 :then | oad Counter 50 with 5
5

; el se do not hing

GET - Get Data

Saia PG5® Instruction List, 2013-10-25

93

Saia-Burgess Controls AG

Register Instructions

STH | 1
DYN F1
| NC C 50
STH | 2
DYN F 2
DEC C 50
STH C 50
ouT 0 32
DSP C 50
ECOB
INC Counter
max

INC Register

max -

min -

3.16 LD - Load 32-bit Value

Description

INC - Increment Register or Counter

;1 f Input 1 goes H

; (edge detection)

;then increnment Counter 50 by 1
; el se do not hing

;1 f Input 2 goes H

; (edge detection)

;then decrenment Counter 50 by 1
; el se do not hing

;if counter 50 contents !'= 0
;then set CQutput 32

;else reset Qutput 32

; di splay Counter 50

DEC Counter

max

Zero Flag

Counter status

DEC Register

max +

min -

Zero Flag
MNegative Flag |
Positive Flag

Error Flag

Load a Register, Timer or Counter with a 32-bit value.

For Timers and Counters:

e The instruction is only executed if the ACCU is High.
¢ Negative integer or floating point values are not supported (only Decimal, Hex, ANSI or Binary

values).

e |f a Timer is loaded, the Timer starts decrementing immediately according to the Timebase.
¢ The state of a Timer or Counter is High when it contains a non-zero value. Its state is Low when it

contains zero.

Saia PG5® Instruction List, 2013-10-25

94

Saia-Burgess Controls AG Register Instructions

LD - Load 32-bit Value

For Registers:
¢ The operation is independent of the ACCU state, it is always loaded.
¢ The value can be a Decimal, Hex, ANSI, Floating Point or IEEE value.

Binary values are post-fixed with Qor Y, e.g. 1101Q

Hex values are post-fixed with H, e.g. 0OABCDH.

Floating point values must contain a decimal point or an exponent, e.g. 1. 2, 1E6.
IEEE floats should be terminated by an | , e.g. 12. 345I

ANSI character values are enclosed in single quotes, e.g. ' a' , ' A" ., " abcd' .

NOTES

e Because the value is 32 bits and each operand is 16 bits, this instruction uses three program lines -
the 2nd and 3rd lines contain the 32-bit value as two 16-bit operands.

e CFB parameters are 16-bit values. The 32-bit LD instruction value cannot be supplied as a Function
Block parameter. But you can use LDH and LDL to load a 16-bit Function Block parameter into the
upper or lower 16 bits of a Register, Timer or Counter. Or pass the 32-bit value in a Register.

e LD T|C is only executed when the ACCU = H (1).

e LD R is always executed.

Format
LD[X] [=] dest (i) iR T or C
source ; Decimal : -2147483648. . +2147483647
:Hex: OH to FFFFFFFF
;Binary: 0OY to 111...111Y (32 hits)
; Floating point: £5.42101E-20 to %9.22337E+18
;| EEE float: e.g. 1.23l

;ANSI: "A -t Z, 'O -"9, It "2t "abed' etc.

If the source operand is an address, e.g. R 123 or a Register symbol, then the *address* of the
source operand is loaded into the destination R T C, not the contents of the source address. See the
example below. This allows addresses to be loaded into Registers for indirect addressing.

Example
LD RO ;loads RO with floating point value 32.1
3.21E1 ;(Tinmers & Counters nust have +ve integer val ues)
LD R 10 ;loads R 10 with the value 123,
R 123 ; NOT the contents of R 123
LD R 45 ;loads R 45 with the *val ue* of
My Sy nbol ; MySynbol , not the contents of Register MySynbol
Flags
ACCU Unchanged
For Timers and Counters, this instruction is executed only if the ACCU is High.
For Registers this instruction is always executed
Status Flags Unchanged
See also
LDH
LDL (16-bit loads)
Constants

Saia PG5® Instruction List, 2013-10-25 95

Saia-Burgess Controls AG Register Instructions

3.17

LDH - Load High Word (upper 16 bits)

LDH - Load High Word (upper 16 bits)

Description
Loads the upper 16 bits (31..16) of a Register, the lower 16 bits are not affected.

LDH cannot be used to load Timers or Counters, because the upper 16 bits cannot be loaded
separately.

LDH and LDL (Load Low) allow 16-hit constants (0..65535) to be passed as Function Block
parameters, or loaded directly.

A 32-bit value can be loaded using LDL and LDH, but LDL must be executed first because this sets
the upper 16 bits to zero.

Values can be loaded in Decimal, Hex, ASCII or binary, but NOT floating point or IEEE which are 32-
bit values.

Format
LDH[X] [=] element (i) ;R 0-4095*
[=] value ; Deci mal : 0- 65535
; Hexadeci mal : OH- OFFFFH
;Binary: 16 bits
Example
LDH R 100 ;Loads bits 31-16 of Register 100
OFFFFH ;Wi th FFFF Hex
R 100 = FFFFxxxx Hex
Flags
ACCU Unchanged
Status Flags Unchanged
See also
LDL
LD
Constants

Practical example
To load a Register in a Function Block with a 32-bit constant, you cannot use the LD instruction.

Instead you must use LDL and LDH.

The upper and lower 16 bits of a constant can be separated using the Assembler statements

‘&' (AND) and ">>' (Shift Left).

In this example a constant (12345678) will be passed as parameter to a Function block where it is
loaded into a Register. Remember that LDL must be done before LDH.

coB 0 ;start COB
0
CFB 0 ;call Function Block O
12345678 & OFFFFH ; paraneter 1 (lower 16 bits)
12345678 >> 16 ; parameter 2 (upper 16 bits)
ECOB ;end of COB
FB 0 ;start of FB O
LDL R 10 ;load the lower 16 bits of Register 10
=1 ;wWith the 1st paraneter (lower 16 bits)
LDH R 10 ;1 oad the upper 16 bits of Register 10
=2 ;wWith the 2nd paraneter (upper 16 bits)

Saia PG5® Instruction List, 2013-10-25 96

Saia-Burgess Controls AG Register Instructions

3.18

3.19

LDH - Load High Word (upper 16 bits)

EFB ;end of FB

LDL - Load Low Word (lower 16 bits)

Description
Loads the lower 16 bits (0..15) of a Register, Timer or Counter with a 16-bit value (0..65535); the upper

16 bits are always set to 0.
When values < 65535 are used, LDL can be used to load Counters, Timers or Registers instead of the
32-bit LD instruction.

This instruction is dependant on the ACCU:
e Timers and Counters are loaded only if the ACCU is High
¢ Registers are always loaded

LDL and LDH (Load High) allows 16-bit constants to be passed as Function Block parameters, or
loaded directly.

LDH loads the upper 16 bits. A 32-bit value can be loaded using LDL and LDH together, but LDL must
be executed first because this sets the upper 16 bits to zero.

Values can be loaded in Decimal, Hex, Binary or ANSI, but not Floating point or IEEE.

Format
LDL[X] [=] element (i) ;R T or C
[=] value ; Deci mal : 0- 65535
: Hexadeci mal : OH- FFFFH
;Binary: 16 bits, 0000000000000000Q ..
; 11111112112111112111Q
Example
LDL R 100 ;1 oad Register 100 with FFFF Hex
FFFFH :which is 65535 in deci mal
; R 100 = 0000FFFFH
Flags
ACCU Unchanged
For Timers and Counters, this instruction is executed only if the ACCU is High.
For Registers this instruction is always executed
Status Flags Unchanged
See also
LDH
LD
Constants

MOV - Move Data

Description
Mowes data from a Timer, Counter or Register into a Register. This is a 4-line instruction.

The 1st and 3rd operands are the source and destination.

The 2nd and 4th operands are the data type and position:

Q= Bit (mowes 1 bit) 0..31

D = Digit (4 Bits BCD) 0..9

N = Nibble (4 Bits Binary) 0..7

B = Byte (8 Bits) .3

A

0.
W= Word (16 Bits) 0.

Saia PG5® Instruction List, 2013-10-25 97

Saia-Burgess Controls AG Register Instructions

MOV - Mowe Data

L = Long word (32 Bits) 0

The data types (Q, D etc.) of the 2nd and 4th operands must be the same, but source and destination

positions may differ.

0= sl el aefosad o ofeaeisfig Aueii fuzh Aufid e[s [7] 6 [5 [4[5 2] 1 [n]
D= [= [s [7 [e& | s [+ [3] 2 [1]7u0]
M= [+ [¢ [s [&« [35 [2 [v [o |
B= I 3 | 2 | 1 | 0 |
Wy = I 1 [0 |
L=long | 0 |
Format
MOV] X] [=] source (i) R T or C
type position QDN BlWL see above
[=] dest (i) 'R

type position QDN BlWL see above

Practical example
Mowe the highest nibble (N 7) from Register 100 to the lowest nibble (N 0) of Register 101.

; Before: R186: 1111 16818 1616 1818 1616 1818 1616 16106
R161: 6861|0061 60861 0681 068061 86081 6861 B8e

; After: R186: 1111 1818 1618 1818 1616 1818 1818|1818
R161: 6861 0061 6661 0681 66801 66681 68M1

1111

100
E
101
0

20223

Flags
ACCU Unchanged
Status Flags Unchanged

:

See also
COPY

GET
PUT

—

D
D
D

I—
T

L

—

3.20 NOT - Complement Register

Description
The contents of the 1st Register is inverted (1's complement) and stored in the 2nd Register.

Saia PG5® Instruction List, 2013-10-25

98

Saia-Burgess Controls AG

Register Instructions

3.21

Format
NOT[X]

— p—

Example

—_

NOT R 10
R 100

Flags
ACCU

Status Flags

E

p
Z
N

value (i) 'R
result (i) 'R

;invert the contents of Register 10
;and put the result in Register 100

Unchanged

Always set Low

Set according to the result
Set according to the result
Set according to the result

Practical example

NOT - Complement Register

NOT ;9

R 10

R 100

kit 0

=", lolilalolale]s]

222 bvdvivy

lolofoly|------------- lilolalili]o]o]

OR - Or Registers

Description

The contents of the 1st Register is logically ORed with the contents of the 2nd Register, and the
result is placed in the 3rd Register.

Format
OR[X]

Flags
ACCU

Status Flags

See also

ZNTMm

val uel (i) ' R
val ue2 'R
result (i) ;R

; ORs Register 1
;Wi th Register 2
;and puts the result in the Register

Unchanged

Always set Low

Set according to the result
Set according to the result
Set according to the result

3

Saia PG5® Instruction List, 2013-10-25

99

Saia-Burgess Controls AG

Register Instructions

Practical example

hit 31 hit

R 1 B F D lololilali{i]o]
orR | ||| EEEEEN
R 2 Lilafelol--mmmmmmeo- HRARNRARN
A A A A A

R 3 Llalalal e lalalalalala]y]

3.22 PUT - Put Data

Description

OR - Or Registers

Copies the 32-bit contents of a Register, Timer or Counter into another Register, Timer or Counter.
It also allows the transfer of data from a block of consecutive Registers, Timers or Counters into a

Text or Data Block.

The contents of the first operand (source) is copied into the second (destination).

PUT[X can transfer a block of consecutive R|T|Cs into a Text, until the end of the Text is encountered

(NUL terminator, 0).

If there is a NUL (00) character in an R|T|C then it is changed into a space (20H).
Similarly, GET[X] can transfer 32-bit data items from a block of consecutive R|T|Cs into a Data Block

until the end of the DB.

If PUT[X] tries to write to a Text or Data Block which doesn't exist then the Error flags is set and XOB

13 (Error Flag Set) is called.

If the indexed Text or Data Block number is out of range then XOB 12 is called (Index Register

Overflow).

The PUTX, GETX and COPY X instructions are useful for the indexed transfer of data between

Registers, Timers and Counters.

For PUTX the destination is indexed, for GETX the source is indexed, and for COPY X both the source

and the destination are indexed.

Format
PUT[X] [=] source ;source RTC
[=] dest (i) ;destination RT C, X or DB

Example
PUTX R 10 ;move the contents of Register 10

R 50 ;into Register 50 + | ndex
Flags
ACCU Unchanged
Status Flags E Unchanged

P Set according to the value copied
Z Set according to the value copied

Saia PG5® Instruction List, 2013-10-25

100

Saia-Burgess Controls AG Register Instructions

PUT - Put Data

N Set according to the value copied

See also
GET
COPY
MoV

Notes

PUT cannot change the Text or Data Block length, and it cannot write beyond the end of the Text or
DB.

PUT cannot transfer values into a Text or to a Data block if EPROM or Flash memory is used, or
RAM with the jumper in the "Write Protect” (WP) position.

Example 1
Mowe the contents of Register 10 into Registers 50 to 54.

SEI
LOOP: PUTX

E 10 Eal
Fa1
Ra2
H&3

H&ad

(o]

[NI
JR

I XXTVAOAR
— >R O

o
o
©

Example 2
Data Block as declared in the source program:
DB 100 [5] ;Initial values are zero

Contents of Registers:
Register Decimal Value
1000 00000001
1001 00000002
1002 00000003
1003 01234567
1004 00000720

Instruction:
PUT R 1000 ;transfer Registers 1000..1004
DB 100 ;into Data Bl ock 100

Result as displayed with the debugger in decimal:

DB 100 [O]: 1 2 3 1234567 720
Example 3

Text as declared in the source program:

TEXT 100 [17] ;text containing 17 spaces

Contents of Registers:

Register ANSI Value Hex Value
1000 "THIS" 54484953
1001 IS 20495320
1002 "A TE" 41205445
1003 "XT 1" 58542031
1004 "23 " 32332020
Instruction:

Saia PG5® Instruction List, 2013-10-25 101

Saia-Burgess Controls AG Register Instructions

PUT - Put Data

PUT R 1000 ;transfer Registers 1000..1004
X 100 ;into Text 100

Result as displayed with the debugger.T

he size of the Text is unchanged at 17 characters, so the last three characters from Register 1004 are
not transferred.

TEXT 100 "TH S | S TEXT 12"

3.23 ROTD - Rotate Registers Down

Description
Rotates the contents of a block of Registers down one place.

The 1st and 2nd operands indicate the start and end of the block of Registers to be rotated.
After the rotate, the highest Register contains the value of the lowest.
Either the higher or the lower Register can be specified first.

Format

ROTD [=] start ' R
[=] end ' R

Example

ROTD R 100 crotate R 100 to R 105 down one address
R 105 R 100=R 101 .. R 104=R 105, R 105=R 100

Flags
ACCU Unchanged

Status Flags Unchanged

See also
ROTU
SHIU
SHID

Practical example

ROTD R 100

R 105 E 105

FE 104
E 103
E 102
E 101
E 100

s

3.24 ROTL - Rotate Register Left

Description
The contents of the addressed Register is rotated left by the number of bits given in the 2nd operand.

The most significant bit 31 is copied into the least significant bit 0.
The ACCU is set to state of the last bit that was rotated.

Format
ROTL[X] [=] reg (i) ' R

Saia PG5® Instruction List, 2013-10-25 102

Saia-Burgess Controls AG Register Instructions

ROTL - Rotate Register Left

[=] nbits ;nunber of bits to rotate 1..32

Example
ROTL R 10 ;rotate Register 10 left

4 by 4 bits
Flags
ACCU Set to the state of the last bit which was rotated
Status Flags Unchanged
See also
ROTR
SHIL
SHIR

Practical example

g %44 e FIIITII 0

to Accu ROTL by 1 bit
Lilolalilolslalo] -=-=------ [1l1lololololil1] ®iobefor
—IH ¢,—‘ ROTL R 10
— 4
ol lolslelelel -——-------- L1l TololiTal111] »10aser
e
oy |—)‘ boen=1
{Last bit that was rotated)
ROTL by 4 bits
3.25 ROTR - Rotate Register Right
Description
The contents of the addressed Register is rotated right by the number of bits given in the 2nd
operand.

The least significant bit O is copied into the most significant bit 31.
The ACCU is set to state of the last bit that was rotated.

Eormat
ROTR[X] [=] reg (1) 'R
[=] nbits ;nunber of bits to rotate 1..32

Example
ROTR R 10 ;rotate Register 10 right

4 by 4 bits

Flags

Saia PG5® Instruction List, 2013-10-25 103

Saia-Burgess Controls AG Register Instructions

ROTR - Rotate Register Right

ACCU Set to the state of the last bit which was rotated
Status Flags Unchanged

See also
ROTL
SHIL
SHIR

Practical example

N SRR

ROTR by 1 bit to Accu
N
Lilolialolefilol === ===---- [1]1]olololol1]1] R iovefor
—— —

\—l \—.L ROTR R 10
Y — 4
lolali i i lale Igl == =-====-- el Ll 11110l al »ioafer
l*tnﬁccu Epeu=1]

(Lastbit that was rotated)
ROTR by 4 bits

3.26 ROTU - Rotate Registers Up

Description

Rotates the contents of a block of Registers up one place.

The 1st and 2nd operands indicate the start and end of the block of Registers to be rotated.
After the rotate, the lowest Register contains the value of the highest.

Either the higher or the lower Register can be specified first.

Format
ROTU [=] start ' R
[=] end ' R
Example
ROTU R 100 ;rotate R 100 to R 105 up one place
R 105 ; R 100=R 105, R 101=R100 .. R 105=R 104
Flags
ACCU Unchanged
Status Flags Unchanged
See also
ROTD
SHIU

Saia PG5® Instruction List, 2013-10-25 104

Saia-Burgess Controls AG Register Instructions

ROTU - Rotate Registers Up

SHID

Practical example

ROTU R 100
R 105

E 105
E 104
E 103
E 102
E 101
E 100

TLRLH

3.27 SHID - Shift Registers Down

Description
Shifts the contents of a block of Registers down one place.

The 1st and 2nd operands are the start and end of the block of Register to be shifted.
After the shift, the highest Register contains zero, and the lowest overwrites the Register below.
Either the upper or the lower Register can be specified first

Format

SHI D =] start ' R

[
[=] end ' R

Example
SHI D R 100 ;shift R 100 to R 105 down one pl ace

R 105 ; R 99=R 100 .. R 104=R 105, R 105=0

Flags
ACCU Unchanged

Status Flags Unchanged

See also
SHIU
ROTU
ROTD

Practical example

SH D R 100
R 105 0 ™ R 105

B 104
B 103
B 102
B 101
E.100
LES9

S B T EE Em ey

Note
This instruction overwrites one Register more than those specified: the Register which precedes the
start of the block is overwritten.

Saia PG5® Instruction List, 2013-10-25 105

Saia-Burgess Controls AG Register Instructions

SHIL - Shift Register Left

3.28 SHIL - Shift Register Left

Description

The contents of the addressed Register is shifted left by the number of bits given by the second
operand.

The content of the ACCU (1 or 0) is shifted in from bit O (the least significant bit), n times.

At the end of the operation, the ACCU is set to the state of the last bit shifted out of the Register.

Format
SHI L[X]] reg (i) ' R

[:
[=] nbits ;nunmber of bits to shift 1..32

Example
SHI L R 10 ;shift Register 10 left

4 by 4 bits (divide by 16)

Flags
ACCU Set to the state of the last bit shifted out of the Register
Status Flags Unchanged

See also
SHIR
ROTL
ROTR

Practical example

fromgrxccu
v
31 |i.:+'+*+ P —— I e R ¢
to Accu SHIL by 1 bit
Lasthitshifted out
] Boeu=1
L1lolililaliilol —==-==---- l1l1lololalol1l1] Riovefor
tu:nPu:cu"(J
SHII. R 10
— 4
R [1l1lalalalololn] rioafer
Beon was 0 Bren=1
Last bit shifted out
¥ Loou=1
Lilol1lilnlailal -======--~ 11 lololaloli01] Riobefor
mAccu‘(J
F_______J SHII. R 10
(M SE— 4
ol lolslglelzl ~——---—---- [1TilololiTil111] B inase
Brenwas 1 Bocu=1
SHIL by 4 bits

Saia PG5® Instruction List, 2013-10-25 106

Saia-Burgess Controls AG Register Instructions

SHIL - Shift Register Left

3.29 SHIR - Shift Register Right

Description

The contents of the addressed Register is shifted right by the number of bits given by the second
operand.

The contents of the ACCU (1 or 0) is shifted in from bit 31 (the most significant bit), n times.

At the end of the operation, the ACCU is set to the state of the last bit shifted out of the Register.

Format
SHI R[X] [=] reg (i) ' R

[=] Dbits ;nunber of bits to shift 1..32
Example
SHI R R 10 ;shift Register 10 right

16 ;by 16 bits (divide by 65536)

Flags
ACCU Set to the state of the last bit shifted out of the Register
Status Flags Unchanged
See also
SHIL
ROTL
ROTR

Practical example

Saia PG5® Instruction List, 2013-10-25 107

Saia-Burgess Controls AG Register Instructions

SHIR - Shift Register Right

frorm Accu
Y
SISy p—— 23333351
SHIR by 1bit to & cou
Last hit shifted out
boeu=10
L1loli i lely Mgl —==------- [1l1lolololol1l1] miovefom
\—¢ @““ SHIR R10
(B S — 4
lololololilali 41 ---------- e lelxl=l1l1lalo] Rioafe:
Leoonwas Boou=1
Lasthitshifted out
¥ Lecu=1
Lol leli g Inl ==-=-=--~-- L1lilololololili] Riovefor
\ﬁ \ﬁl* fohen eHTR R 10
— 4
Ll hlel gl ——------ Ll [l l1 1T al o] ®ioafer
Boenwas 1 Boon=1
SHIR by 4 bits

3.30 SHIU - Shift Registers Up

Description

Shifts the contents of a block of Registers up one place.

The 1st and 2nd operands are the start and end of the block of Registers to be shifted.

After the shift, the lowest Register contains zero, and the highest overwrites the Register above.
Either the upper or the lower Register can be specified first.

Format
SHI U

— p—

] start 'R

Example
SHI U R 100 ;shift R 100 to R 105 up one pl ace

R 105 ; R 100=0, R 101=R 100 .. R 106=R 105

Flags
ACCU Unchanged
Status Flags Unchanged

See also
SHID
ROTU
ROTD

Saia PG5® Instruction List, 2013-10-25 108

Saia-Burgess Controls AG Register Instructions

SHIU - Shift Registers Up

Note
This instruction overwrites one Register more than those specified: the Register which follows the end
of the block is also overwritten.

Practical example

SHI U R 100 |

R 105 (R 1063

B 105
B 104

A
A
A
A _R103
i
A

B 102

R 101
0 — R0

3.31 TFR - Transfer Data

Description
This instruction enables the indexed data transfer of individual values from a Data Block or a Text into

Registers, Timers or Counters; and vice \ersa.

Format
To copy an individual 32-bit value from a Data Block or Text into a Register, Timer or Counter:

The 1st operand is the Data Block or Text containing the value to transfer.

The 2nd operand is the position of the value inside the Data Block or Text, which can be given as
a constant or indirectly via a Register.

The 3rd operand is the destination Register, Timer or Counter.

TFR[X] [=] source ; DB X
[=] position R K
[=] dest (i) RTC

To copy a Register, Timer or Counter into a Data Block or Text:

The 1st operand is the Register, Timer or Counter containing the value to transfer (source).

The 2nd operand is the destination Data Block or Text.

The 3rd operand is the position inside the Data Block or Text where the value is to be transferred,
this position can be given as a constant or indirectly via a Register.

TFR[X] [=] source (i) ;RTZC
[=] dest ; DB X
[=] position ;R K

Example

TFR DB 4010 ;copy fromthe Data Bl ock 4010
K 13 ;the value at position 13
R 26 ;to Register 26

TFR R 120 ; copy Register 120
DB 4025 ;to Data Bl ock 4025
K 6 ;at position 6

Flags

ACCU Unchanged

Saia PG5® Instruction List, 2013-10-25 109

Saia-Burgess Controls AG

Register Instructions

3.32

Status Flags E

Set if position is beyond the end of the DB

P Set according to the value copied
Z Set according to the value copied
N Set according to the value copied

See also

PUT

GET

Note

TFR - Transfer Data

Access to DBs 4000..8191 in Extension Memory is significantly faster than to DBs 0..3999.

It is therefore recommended that this instruction should be used mainly with DBs 4000..8191.
Data Blocks 0..3999 in Text/DB memory can hold up to 383 values (0..382). Data Blocks in Extension
(Data) Memory can hold up to 16384 values (0..16383).

Practical examples

From Data Block 4010, the 4 values from positions 2..5 are copied to Registers 100..103.

LD R 999 Source Destination
2 Fos Data Block Registers
SEl KO 0 12345
LOOP: TFRX DB 4010
R 999 1 [67845612
R 100 2 33 a3 R 100
INC R 999 3 1024 1024 E 101
I NI K 3
JR HLOOP 4 0 0 R 102
b Bo 5o R 103
f 13
7 =40
Registers 100..103 are copied to positions 2..5 of Data Block 4010:
LD S 999 Destination Source
SEl K 0 Registers Data Block Fos
LOOP: TFRX R 100 12345 0
DB 4010 &7R4R512 1
R 999 R 100 33 a3 4
I NC R 3
Ri101
IR . 1024 1024 3
B0z 0 0 4
R 103 5o =g 5
13 &
=1 7

TFRI - Transfer Data Indirect

Description
Transfers a singe Register, Timer or Counter value to or from a Data Block or Text using Register-

indirect addressing. The source and destination media addresses are supplied in Registers.

Saia PG5® Instruction List, 2013-10-25 110

Saia-Burgess Controls AG Register Instructions

TFRI - Transfer Data Indirect

Notes

e For firmware versions earlier than 1.20.00, the max. Register address for indirect instructions is
8191.

e To use Register addresses 8192..16383 with firmware version 1.2.00 or later, set the Build Option
"Use 16-bit Register and Flag addressing" to Yes.

e This instruction cannot be used with Function Block parameters (= n).

Format

To copy an individual 32-bit value from a Data Block or Text into a Register, Timer or Counter:

The 1st operand defines the source type Data Block or a Text (DB/X) followed by Regl which is the
number of a Register containing the DB or Text number.

The 2nd operand is the position of the value inside the Data Block or Text, which can be given as a
constant or indirectly via a Register.

The 3rd operand defines the destination type (R/T/C) followed by Reg2 which is the number of a
Register containing the destination Register, Timer or Counter number.

TFRI type source ; DBl X Regl
position ;R K
type dest ;R T| C Reg2

To copy a Register, Timer or Counter into a Data Block or Text:

The 1st operand defines source element type (R/T/C) followed by Regl which is the number of a
Register containing the Register, Timer or Counter number.

The 2nd operand defines the destination type (DB/X) followed by Reg2 which is the number of a
Register containing the destination DB or Text number.

The 3rd operand is the position inside the Data Block or Text where the value is to be transferred, this
position can be given as a constant or indirectly via a Register.

TFRI type source ;R T| C Regl
type dest ; DBl X Reg2
position ; Rl K
Examples
Transfer the element at position 10 of Data Block 4000 to Register 4095:
LD R 100 .l oad the DB nunber
4000
LD R 101 ;1 oad the Regi ster nunber
4095
TFRI DB 100 ;transfer: DB=source type, 100=req with DB nunber
K 10 ; DB position 10
R 101 ; R=dest type, 101=reg with actual Regi ster nunber

Transfer the value if Counter 1000 to position 50 of Data Block 4000:

LD R 100 .l oad the DB nunber
4000
LD R 101 ;1 oad the position
50
LD R 102 |l oad the Counter nunber
1000
TFRI C 102 ;transfer: C=source type, 102=reg wi th Counter nunber
DB 100 :destination DB
R 101 ; R=dest type, 10l=reg with the DB position
Flags
ACCU Unchanged

Saia PG5® Instruction List, 2013-10-25 111

Saia-Burgess Controls AG Register Instructions

TFRI - Transfer Data Indirect

Status Flags E Unchanged

P Set according to the value copied
Z Set according to the value copied
N Set according to the value copied

See also

TFR

PUT

GET

Notes

e On old PCD models, access to DBs 4000..8191 in Extension Memory (Data Memory) is
significantly faster than to DBs 0..3999. It is therefore recommended that this instruction should be
used mainly with DBs 4000..8191.

e Data Blocks 0..3999 in Text/DB memory can hold up to 383 values (0..382). Data Blocks in
Extension Memory can hold up to 16384 values (0..16383).

Saia PG5® Instruction List, 2013-10-25 112

Saia-Burgess Controls AG Index Register Instructions

4

4.1

Index Register Instructions

It is frequently necessary for series of Inputs, Outputs, Flags etc. to be dealt with in the same way (for
example resetting of non-wolatile Flags or Registers).
In cases like this, long programs can be drastically shortened with the help of address indexing.

Each COB or XOB has its own Index Register. This register is used for indexed addressing, where the
contents of the Index Register is added to the operand value to provide the actual address.

Indexing instructions are always ended with an X, for Example STHX, BITIX
The Index Register can be loaded or saved, incremented up to a given limit, or decremented down to a
given limit.

SEl Set Index register

N Increment Index register
DEI Decrement Index register
STI Store Index register
RS Restore Index register

SEI - Set Index Register

Description

The current Index Register is loaded with the supplied constant (K 0-8191) or the contents of the
indicated Register.

Each COB has its own Index register, and all XOBs share their own Index Register.

The range for the Index Register value is 0..8191 (13 bits).

If a value > 8191 is loaded, the Index Register is set to 8191 and XOB 12 is called.
If a value < 0 is loaded, the Index register is set to 0 and XOB 12 is called.

Format
SEI [=] value K 0..8191, R

Example
SEI K 32 ;1 oads I ndex Register with the val ue 32

SEl R 32 ;1 oads I ndex Register with the contents of Register 32

Flags
ACCU Unchanged

Status Flags Unchanged

See also
INI

o
m

%)
=

)
2

Practical example
The state of the Input whose address is given by a BCD encoder switch must be transferred to Output

32.

coB 0

Saia PG5® Instruction List, 2013-10-25 113

Saia-Burgess Controls AG Index Register Instructions

4.2

SEI - Set Index Register

Dd 2 ;read 2 BCD digits

| 24 ;fromlinputs 24..31

R 500 ;and store themin Register 500
SEl R 500 ;load Index with the contents of Register 500
STHX I 0 ;i f Input (0O + Index) is High
our O 32 ;then set CQutput 32

;else reset Qutput 32

ECOB

INI - Increment Index Register

Description

The current Index Register is compared to the value of the operand (supplied K constant or the
contents of a Register).

If the Index Register is less than this value, the Index Register is incremented and the ACCU is set
High (1).

If the Index Register is equal or greater than the value of the operand, the Index Register is NOT
incremented and the ACCU is set Low (0).

If the value in the operand is greater than 8191 (old systems) or greater than 16383 (NT systems), or
less than 0 then the Index Register is not modified, XOB 12 is called (if programmed) and the ACCU
is set Low. This can happen if the operand is a Register which contains an out-of-range Index Register
value.

Each COB has its own Index register, and all XOBs share their own Index Register.

Format

[NI [=] value ;K or R

Example

[NI K 100 ;increnent |Index register if < 100

[NI R 333 ;increnent Index register if |ower than the

; contents of R 333

Flags

ACCU Set Low if the Index Register is greater than or equal to the operand value.
Set High if the Index Register is less than the value of the operand.
Set Low if the operand is out of range, and XOB 12 is called.

Status Flags Unchanged

See also

DEI

SEI

Practical example
At start-up, Registers 1500 to 1999 must be reset (value 0).

XOB 16 ; XOB executed at start-up
SEI KO ;set Index Register to O
Repeat :
LDX R 1500 ;1 oad Register (1500 + Index Reg.)
0 ;with 0

I NI K 499 ;increnment | ndex Register by 1
JR H Repeat ;until I ndex Register > 499

(ACC H ;i n case subsequent code needs it)

Saia PG5® Instruction List, 2013-10-25 114

Saia-Burgess Controls AG Index Register Instructions

4.3

INI - Increment Index Register

EXOB

DEI - Decrement Index Register

Description

The current Index Register is compared to the value of the operand (K constant or the contents of a
Register).

If the Index Register is greater than this value, the Index Register is decremented and the ACCU is
set High (1).

If the Index Register is equal or less than the value of in the operand (constant or Register contents),
the Index register is NOT decremented and the ACCU is set Low (0).

If the value in the operand is greater than 8191 (old systems) or greater than 16383 (NT systems), or
less than 0 then the Index Register is not modified, XOB 12 is called (if programmed) and the ACCU
is set Low. This can happen if the operand is a Register which contains an out-of-range Index Register
value.

Each COB has its own Index register, and all XOBs share their own Index Register.

Format

DEI [=] value K 0..8191, R

Example

DEI K 100 ;decrenments | ndex Register if > 100

DEI R 444 ;decrenments | ndex Register if greater that

;than the contents of Register 444

Flags

ACCU Set Low if the Index Register is less than or equal to the operand value.
Set High if the Index Register is greater than the value of the operand.
Set Low if the operand is out of range, and XOB 12 is called.

Status Flags Unchanged

See also

INI

El

Practical example

Saia PG5® Instruction List, 2013-10-25 115

Saia-Burgess Controls AG Index Register Instructions

DEI - Decrement Index Register

IHI DEI
<MK*VE$ >N:' <MKPV?11 >Nj
|Yes |Yes
Arm=1 Ho =1
= o Acon=0 Ay fem =0
[[
W W
SEI ZEI
w INI w_ DEl
2191 , 2191 :
I I 1 I
End walus : : Initial walue |
1 1 1
Iritial walue ! ! Etud walue !	
1 1 1	
a i i a i	

Accop oo Accog o oo 1

End walue = value of the operand of the INI FDEI instraction

4.4 STI - Store Index Register

Description
The value in the current Index Register is stored in the given Register.

It can be re-loaded into the Index Register using the RSl instruction.
The Index Register is unchanged.

Eormat
STI [=] dest ;destination R

Example
STI R 100 ;stores the Index Register value in Register 100

Flags
ACCU Unchanged

Status Flags Unchanged

See also
RSI

4.5 RSI - Restore Index Register

Description
Loads the Index Register with the contents of the given Register.

The value in the Register will typically be an Index Register value saved by the STl instruction.

If the value to be restored is less than 0 or greater than 8191 (old systems) or greater than 16383 (NT
systems), then XOB 12 is called (if present), and the Index Register is set to the minimum value (0) or
maximum value (8191 or 16383).

Saia PG5® Instruction List, 2013-10-25 116

Saia-Burgess Controls AG

Index Register Instructions

Format

RSI [=] source 'R

Example

RSI R 100 ;load the Index register

; Regi ster 100 (sane as:

LD R 100
-1

SEl R 100 ;I ndex Regi ster

Flags

ACCU Unchanged
Status Flags Unchanged

See also
STl
SEI

RSI - Restore Index Register

with the contents of

set to 0, XOB 12 is called

Saia PG5® Instruction List, 2013-10-25

117

Saia-Burgess Controls AG Integer Instructions

5 Integer Instructions

The integer arithmetic instructions work with Registers containing signed 32-bit values with the range:
-2'147'483'648 to +2'147'483'647 (0B0000000H to O7FFFFFFFH)
(except UDIV and UMUL which support 32-biit unsigned values)

ADD Add Registers

SUB Subtract Registers

MJL Multiply Registers

DV Divide Registers

SR Square Root

cwP Compare Registers

UMUL Unsigned Multiply Registers
upl v Unsigned Divide Register

For floating point values, the Floating Point instructions must be used.

The integer formmat 15 hased on 32 hits wath the followang format:

HEEHEEE AEEE AR BEEFREE A BEE HEEAE B BEEREER

il]
where 3 hit walue (0 or 1)
B sign

Bits 0 to 30 are the integer walue in binary format.
Bit 31 1sthe sign bit (0 = posttive value, | = negative value)

The range allowed by this format 15 as follows:
Drecimal 2147483647 to -2.147483.643
Binary (hexadecimal) 7FFF'FFFF to &000'0000

INTEGEE format

5.1 ADD - Add Registers

Description
Signed integer addition.

Adds the contents of the 1st Register or constant to the contents of the 2nd Register or constant, and
stores the result in the 3rd Register.
If a constant is used, it should have the 'K' data type. K constants can only be positive.

Format
ADD[X] [=] valuel (i) ;R K
[=] value2 R K
[=] result (i) ' R
Example
ADD R 20 ;add 123 to Register 20
K 123 ;(range is K 0..16383)
R 20

Saia PG5® Instruction List, 2013-10-25 118

Saia-Burgess Controls AG Integer Instructions

ADD - Add Registers

Tip: To add a value larger than K 16383, first load a Register with the value, then add the Registers.

Flags
ACCU Unchanged

Status Flags E Set on overflow
P Set according to the result
Z Set according to the result
N Set according to the result

See also
EADD

Practical example
Read two numbers, add them and put the result in another Register.

The two numbers come from BCD encoders (2 digits) on Inputs 16 to 23, and 24 to 31.

CcoB 0

0
Dd 2 ;read 2 digit

| 16 ;fromlnputs 16..23

R 100 ;and store themin R 100
Dd 2 ;read 2 digits

| 24 ;fromlinputs 24..31

R 200 ;and store themin R 200
ADD R 100 R0 =R 100 + R 200

R 200

RO
ECOB

5.2 CMP - Compare Registers

Description

Compares the contents of the 1st Register or constant with the contents of the 2nd Register or
constant.

This is done by subtracting the 2nd value from the 1st value, the Status flags are set according to the
result.

The contents of the Registers are unchanged.

If a constant is used, it should have the 'K' data type. K constants can only be positive.

Format
CWVP[X] [=] valuel (i) R K
[=] val ue2 R K
Example
CwP RO ;conpares Register 0 with
R 1 ; Register 1 and the the Status Fl ags
;according to the result
Flags
ACCU Unchanged
Value 1 =Value2 Valuel>Value2 Value l< Value 2

Status Flags P High High Low

Z High Low Low

N Low Low High

Saia PG5® Instruction List, 2013-10-25 119

Saia-Burgess Controls AG Integer Instructions

5.3

CMP - Compare Registers

Practical example
Read two numbers; if the first number is greater, equal or lower than the second number then output

32, 33 or 34 respectively must be turned on.
The two numbers come from BCD encoders (2 digits) on inputs 16 to 23 and 24 to 31.

coB 0
0
Dd 2 ;read 2 digits
| 16 ;fromlnput 16..32
R1 ;and store themin R 1
Dd 2 ;read 2 digits
| 24 ;frominput 24..31
R 2 ;and store themin R 2
CWP R1 ;conpare R 1
R 2 ;with R 2
ACC z if R1 =R2(zZ=1)
our O 33 ;then set Qutput 33 and Flag O
our F O ;else reset Qutput 33 and Flag O
ACC N if R1 < R2
our O 34 ;then set output 34, else reset output 34
ACC P if R1 >R 2
ANL F O ;(use F O for "and not equal to")
our O 32 ;then set Qutput 32, else reset Qutput 32
ECOB

DIV - Divide Register

Description

Signed integer division.

Divides the contents of the 1st Register or K constant by the contents of the 2nd Register or
constant, and stores the result in the 3rd Register.

The remainder is placed in the 4th Register.

If a constant is used, it should have the 'K' data type. K constants can only be positive.

Format
DI V[X] [=] valuel (i) ; R K
[=] val ue2 R K
[=] result (i) ;R
[=] remainder (i) 'R
Example
Dl VvV R 20 ;divide R 20
K 1000 ; by 1000
R 21 ;and put the result in Register 21
R 22 ;and the renmainder in Register 22
Flags
ACCU Unchanged

Status Flags E Set on divide by zero

Saia PG5® Instruction List, 2013-10-25 120

Saia-Burgess Controls AG Integer Instructions

54

DIV - Divide Register

P Set according to the result
Z Set according to the result
N Set according to the result

See also
FDIV

Practical example
Read two numbers, divide them and put the result in another Register.
The two numbers come from BCD encoders (2 digits) on Inputs 16 to 23 and 24 to 31.

coB 0

0
D d 2 ;read 2 digits

I 16 ;fromlInputs 16..23

R 1 ;and store themin R 1
D d 2 ;read 2 digits

| 24 ;fromlinputs 24..31

R 2 ;and store themin R 2
Dl v R 1 ;R100 = R1/ R2

R 2

R 100 ;resul t

R 101 ; remai nder
CPB E 99 ;i1f Error Flag is set,

; then call program bl ock 99

ECOB
PB 99
SET O 47 ;alarmif division by zero (CQutput 47)
EPB

MUL - Multiply Registers

Description
Signed integer multiplication.

Multiplies the contents of the 1st Register or K constant by the contents of the 2nd Register or K
constant, and stores the result in the 3rd Register.
If a constant is used, it should have the 'K' data type. K constants can only be positive.

Eormat
MUL[X] [=] valuel (i) ;R K
[=] val ue2 ;R K
[=] result (i) 'R
Example
MJL RO ;multiplies Register O
K 10 ; by 10
RO ;and store the result in Register O
Flags
ACCU Unchanged

Set on overflow

Set according to the result
Set according to the result
Set according to the result

Status Flags

ZNTmMm

Saia PG5® Instruction List, 2013-10-25 121

Saia-Burgess Controls AG Integer Instructions

MUL - Multiply Registers

See also
EMUL

Practical example
Read two numbers, multiply them and put the result in another Register.

The two numbers come from BCD encoders (2 digits) on Inputs 16 to 23, and 24 to 31.

CcoB 0
0
Dd 2 ;read 2 digits
| 16 ;fromlnputs 16..23
R 50 ;and store themin R 50
Dd 2 ;read 2 digits
| 24 ;fromlinputs 24..31
R 55 ;and store themin R 55
MJUL R 50 iR 4000 = R50 * R55
R 55
R 4000 ;result
ECOB

5.5 SQR - Square Root

Description
Integer Square Root.

The integer square root of the contents of the 1st Register is stored in the 2nd Register.
If the 1st Register contains a negative value, the Error flag is set and the operation is not performed.

Format
SQR[X] [=] value (i) ' R
[=] result (i) ' R
Example
SR RO ;the square root of Register 0 is
R 100 ; placed in Register 100
Flags
ACCU Unchanged

Status Flags E Set on an attempt to obtain the square root of a negative value
P Set according to the result
Z Set according to the result
N Set according to the result

See also

EFSQR

Practical example
Get the square root of a number read from BCD encoders (4 digits) on inputs 16 to 31.

CcOoB 0
0
Dl G 4 ;read 4 digits
| 16 ;fromlnputs 16..31
R 100 rand store themin R 100
SR R 100 ; R 101 = square root of R 100
R 101 cresul t
ECOB

Saia PG5® Instruction List, 2013-10-25 122

Saia-Burgess Controls AG

Integer Instructions

5.6

5.7

SQR - Square Root

SUB - Subtract Registers

Description

Signed integer subtraction.

Subtracts the contents of the 2nd Register or K constant from the contents of the 1st Register or K
constant, and stores the result in the 3rd Register.
If a constant is used, it should have the 'K' data type. K constants can only be positive.

Format
SUB[X]

]
]

—_———
I
—

Example
SUB

Flags
ACCU

Status Flags

ZNTMm

See also
ADD
ESUB

valuel (i) ;RK
val ue2 'R K
result (i) ;R

tR3=R1- R2
Unchanged

Set on underflow

Set according to the result
Set according to the result
Set according to the result

Practical example
Read two numbers, subtract them and put the result in another register.

The two numbers come from BCD encoders (2 digits) on inputs 16 to 23, and 24 to 31.

coB

D &

D &

SuB

ECOB

VOO~ NMIOD— DNMOO

16
10

24
11
10
11
12

;R 12 = R 10 -

;read 2 digits
;fromlnputs 16..23
rand store themin R 10
;read 2 digits
;fromlnputs 24..31
cand store themin R 11
R 11

UDIV - Unsigned Divide Register

Description

Unsigned integer division.
Divides the contents of the 1st Register or K constant by the contents of the 2nd Register or
constant, and stores the result in the 3rd Register.

The remainder is placed in the 4th Register.

If a constant is used, it should have the 'K' data type. K constants can only be positive.

Saia PG5® Instruction List, 2013-10-25

123

Saia-Burgess Controls AG

Integer Instructions

UDIV - Unsigned Divide Register

Eormat
UDIV[X] [=] valuel (1) ;R K
[=] val ue2 ;R K
[=] result (i) 'R
[=] remainder (i) 'R
Example
ubl V R 20 ;divide R 20
K 1000 ; by 1000
R 21 ;and put the result in Register 21
R 22 ;and the remai nder in Register 22
Flags
ACCU Unchanged
Status Flags E Set on divide by zero
P Set according to the result
Z Set according to the result
N Set according to the result
See also
DIV
EDIV

5.8 UMUL - Unsigned Multiply Registers

Description

Unsigned integer multiplication.
Multiplies the contents of the 1st Register or K constant by the contents of the 2nd Register or K
constant, and stores the result in the 3rd Register.
If a constant is used, it should have the 'K' data type. K constants can only be positive.

Format
UMUL[X]

Flags
ACCU

Status Flags

See also
MUL
EMUL

val uel (i) R
val ue2 'R
result (i) R

;multiplies Register O
; by 10
;and store the result in Register O

Unchanged

Set on overflow

Set according to the result
Set according to the result
Set according to the result

Saia PG5® Instruction List, 2013-10-25

124

Saia-Burgess Controls AG

Floating Point Instructions

Floating Point Instructions

Floating point values can only be stored in Registers or Data Blocks. They are loaded into Registers
using the LD instruction.

To specify a floating point number, the number must include a decimal point '." or an exponent 'E'. For
example: 1.2, 1E3, 4.656E2.

By default, the PCD uses the "Motorola Fast Floating Point” (FFP) format for floating point numbers,
but the latest PCD models also support IEEE Float and IEEE Double formats.

See Numeric Constants for details and ranges.

Important

Floating point values are stored in Registers in a special binary format, using this value as an integer
will yield incorrect results.

Mixing integer and floating point values in arithmetic operations also gives invalid results.

The integer values must be conwverted to floating point and back with the IEP or EPI instructions, or
one of the Macros described above.

Floating Point Formats

Each of the following instructions has a version for FFP (the default), IEEE Float and IEEE Double
data.

For IEEE Float, precede the mnemonic with an 'E' character, for example ElI FP, EFADD etc.

For IEEE Double, precede the mnemonic with ‘D', for example: DI FP, DFSUB.

IFP Integer to floating point
FPI Floating point to integer
FADD Floating point add
FSuB Floating point subtract
FMUL Floating point multiply
FDI V Floating point divide
FSQR Square root

FCWP Floating point compare
FSIN Sine function

FCOs Cosine function
FATAN Arc tangent

FEXP Exponential function

FLN Logarithm function
FABS Absolute value

Special Operators and Macros for Floating Point handling
There are several "special operators" which can make IL programming easier.
These can be thought of a pre-defined Macros, and are resolved at assembly time, not at run time.

@ EEE(val ue)
@ SFLOAT(val ue)
@FP(int_val ue,
@PI (ffp_val ue,
@FPHI (val ue)

expon
expon

@FPLQ(val ue)

Convert to IEEE Float

Returns 1 if value is floating point (Motorola FFP or IEEE)
Integer to FFP

FFP to integer

Returns upper DWORD of the IEEE double value of an IEEE Float
or FFP float

Returns lower DWORD of IEEE double value of an IEEE Float or
FFP float

Saia PG5® Instruction List, 2013-10-25

125

Saia-Burgess Controls AG Floating Point Instructions

@ FPE(i nt _val ue, expo Returns IEEE float value for an integer: int * 10 ~ exponent
@EFPI (i eee_val ue, exp Returns the integer value of an IEEE float

IEEE Float
To declare an IEEE Float, use the | postfix:
Symbol EQU 1. 2l
LD RO
1. 23456l
See also @IEEE() - Conwert to IEEE Float.

IEEE Double
Note: Double values cannot be assigned symbol names, because a symbol is a 32-bit value.

To declare an IEEE Double directly you can use an IL Macro like this:

;Load 2 registers with an | EEE Doubl e val ue
DFLD MACRO reg, ffp_or_ieee_float

LD R reg
@FPHI (ffp_or_ieee_float)
LD R reg+1
@FPLO(ffp_or_ieee_float)
ENDM
DFLD(R 0, 1.2) ;load RO and R 1 with Double value 1.2

@DFPHI() and @DFPLO() also accept IEEE or FFP symbols, their values are converted to double:

| EEESynbol EQU 1.23456781 ;with '"I' postfix for |EEE fl oat
FFPSynmbol EQU 1.2345678 ;the default is a Motorola Fast Floating Point (FFP) val
LD R 100

@FPHI (| EEESynbol) ;converts the | EEE val ue to double and returns the upper
LD R 101

@FPLQ(| EEESynbol)
LD R 102

@FPHI (FFPSymbol)
LD R 103

@FPLO(FFPSynbol)

Motorola Fast Floating Point (FFP) Format

Saia PG5® Instruction List, 2013-10-25 126

Saia-Burgess Controls AG Floating Point Instructions

The floating point format 15 hased on 32 hits with the followang format:
1 |TTL [IT1 |IT1 |ITL JTT1 mlmlmlm mlmlmlm ml;;l_.lml;;glml;;g IT1|ITL(ETL 1T je |e |& |E 1 IE 1
31 0
where m: 24-hit mantissa

s sgn of the munber
g 7-bit exponent in excess 64 notation

The sign hitis a0 for apositive value, and a1 for anegative value.

The mantizsais considered to he ahinay fized point fraction and except for 0 it 1s
always normalized (has one hitin its highest position),

The exponent 15 the power oftwo needed to correctly position the mantizsa to reflect
the mumber's true arthnetic value. It is held in excess 64 notation which means that the
two's complement values are adjusted upward by 64.

6.1 DFPE - IEEE Double To Float

Description
Converts an IEEE double floating point value (64 bits) in two consecutive Registers into an IEEE float

(single) value in one Register (32 bits).

Format
DFPE[X] regl (i) ;1st reg of pair with | EEE Doubl e val ue to convert
reg2 (i) ;dest reg to receive the | EEE Fl oat (single) value
Example
LD R 100 ;1 oad | EEE double into R 100 and R 101
@FPLO (1.234) ;upper 32 bits in R 100
LD R 101
@FPLO (1.234) ;lower 32 bits in R 101
EFPD R 100 ;convert | EEE Double in R 100 and R 101
R 102 ;into | EEE Float 9single) in R 102
Flags
ACCU Unchanged

Status Flags E Set if the IEEE double is invalid or out of range

P Set according to the result
Z Set according to the result
N Set according to the result

See also

EFPD

DFEPHI() and @DFPLO
IFP
FPI

6.2 EFPD - IEEE Float To Double

Description
Conwerts an IEEE floating point value (single) in a Register into an IEEE double value (64 bits) in two

consecutive Registers.

Saia PG5® Instruction List, 2013-10-25 127

Saia-Burgess Controls AG Floating Point Instructions

EFPD - IEEE Float To Double

Eormat
EFPD[X] regl (i) ;| EEE fl oating point value (single) to convert
reg2 (i) ;1st reg of pair to receive the | EEE Doubl e val ue
Example
LD R 100 ;R 100 = 1.234 | EEE fl oat
1. 234l
EFPD R 100 ;convert R 100 to | EEE Doubl e
R 101 ;in R 100 and R 101
Flags
ACCU Unchanged

Status Flags E Set if the IEEE floating point number is invalid
P Set according to the result
Z Set according to the result
N Set according to the result

See also

DFEPE

E

@

6.3 FABS - Floating Point Absolute

Description
The absolute value (converted to positive if it is negative) of the 1st Register is stored in the 2nd

Register.
The 1st Register must contain a valid floating point format value.

NT systems only: For IEEE Float use EFABS. For IEEE Double use DFABS.

Format
FABS[X] [=] reg (i) 'R

[=] result (i) 'R
Example
FABS R 1 ;R 2 = absolute value of R 1

R 2 if R1 contains -1.2 then R2 = +1.2

Flags
ACCU Unchanged

Status Flags E Set if the floating point number is invalid
Always set High

Set according to the result

Always set Low

Z N T

See also
"Advanced n-Dimensional Quantum Calculus For Busy Housewives", 42nd Edition

6.4 FADD - Floating Point Add

Description
Adds the contents of the 1st Register to the contents of the 2nd Register, and stores the result in the

3rd Register.
The Registers must contain valid floating point format values.

Saia PG5® Instruction List, 2013-10-25 128

Saia-Burgess Controls AG

Floating Point Instructions

6.5

FADD - Floating Point Add

NT systems only: For IEEE Float use EFADD. For IEEE Double use DFADD.

Format
FADD[X] [=] regl (i) 'R
[=] reg2 'R
[=] result (i) X
Example
FADD R 100 ;R 500 = R 100 + R 101
R 101
R 500
Flags
ACCU Unchanged
Status Flags E Set on overflow
P Set according to the result
Z Set according to the result
N Set according to the result
See also
ADD

FATAN - Floating Point Arc Tangent

Description
The arc tangent of the contents of the 1st Register is stored in the 2nd Register.

The 1st Register must contain a valid floating point value in RADIANS.
The result in the second Register will range from -I1/2 to + I1/2 .

NT systems only: For IEEE Float use EFATAN. For IEEE Double use DFATAN.

Format
FATAN[X]] reg (i) :

] result (i) ;

O 0

[:
[:

Example

FATAN ;RO = Arc tangent of value in R 1

R 1
RO
Flags
ACCU Unchanged
Status Flags E Set if the value in the first Register is too big
P Set according to the result
Z Set according to the result
N Set according to the result

See also
FSIN
FCOS

Saia PG5® Instruction List, 2013-10-25

129

Saia-Burgess Controls AG Floating Point Instructions

6.6

6.7

FCMP - Floating Point Compare

FCMP - Floating Point Compare

Description

Compares the contents of the 1st Register with the contents of the 2nd Register and sets the Status
flags according to the result.

Neither of the Registers are altered.

Both Registers must contain valid floating point format values.

NT systems only: For IEEE Float use EFCVP. For IEEE Double use DFCVP.

Format
FCWVP[X] [=] regl (i) ' R

[=] reg2 ;R
Example
FCVP RO ;conpare RO and R 1

R 1 ;set the status flags according to result
Flags
ACCU Unchanged
Value 1 = Value2 Value 1>=Value?2 Value 1< Value 2

Status Flags E Low Low Low

P High High Low

Z High Low Low

N Low Low High
See also
CMP
Note

Do not compare Floating Point values for equality, always use >= or < to awoid accuracy errors.

FCOS - Floating Point Cosine

Description

The cosine of the contents of the 1st Register is stored in the 2nd Register.

The 1st Register must contain a floating point value in RADIANS in the range of +10"6

NT systems only: For IEEE Float use EFCOS. For IEEE Double use DFCOS.

Format
FCOS[X] [=] reg (i) 'R
[=] result(i) 'R
Example
FCCSs R 100 iR 20 = cosine of R 100
R 20
Flags
ACCU Unchanged

Status Flags E Set if the value in the first Register is too big
Set according to the result
Set according to the result
Set according to the result

Z N T

Saia PG5® Instruction List, 2013-10-25 130

Saia-Burgess Controls AG Floating Point Instructions

FCOS - Floating Point Cosine

See also
ESIN
FATAN

6.8 FDIV - Floating Point Divide

Description
Divides the contents of the 1st Register by the contents of the 2nd Register, and stores the result in

the 3rd Register.
Divide-by-zero sets the Error flag, and the operation is not performed.
Because Floating Point arithmetic is more exact than integer arithmetic, there is no remainder.

NT systems only: For IEEE Float use EFDI V. For IEEE Double use DFDI V.

Format
FDI V[X] [=] reg (i) ' R
[=] divisor ' R
[=] result (i) ;R
Example
FDI V R 1 ;R3=R1/ R2
R 2
R 3
Flags
ACCU Unchanged

Status Flags E Set on divide by zero

P Set according to the result
Z Set according to the result
N Set according to the result
See also
biv

6.9 FEXP - Floating Point Exponential
Description
Computes ‘e’ to the power of the contents of the 1st Register is stored in the 2nd Register.
The Register must contain a valid floating point format value.

NT systems only: For IEEE Float use EFEXP. For IEEE Double use DFEXP.

Format

FEXP[X] [=] reg (i) 'R
[=] result (i) 'R

Example

FEXP RO 'R1=e”"RO

R 1
Flags
ACCU Unchanged

Status Flags E Set on overflow
P Set according to the result
Z Set according to the result

Saia PG5® Instruction List, 2013-10-25 131

Saia-Burgess Controls AG Floating Point Instructions

6.10

6.11

FEXP - Floating Point Exponential

N Set according to the result

See also
EPI
IEP

FLN - Floating Point Logarithm

Description
The natural log of the contents of the 1st Register is stored in the 2nd Register.

The 1st Register must contain a valid floating point format value.
If the natural log of a negative value is taken, the Error flag is set and the log of the absolute (+we)
value is taken.

NT systems only: For IEEE Float use EFLN. For IEEE Double use DFLN.

Format
FLN[X] [=] reg (i) ; R
[=] result (i) 'R
Example
FLN R 1 'R2=InR1
R 2
Flags
ACCU Unchanged

Status Flags E Set if the "In" of zero or a negative value is taken

P Set according to the result
Z Set according to the result
N Set according to the result
See also
FEXP

FMUL - Floating Point Multiply

Description

Multiplies the contents of the 1st Register by the contents of the 2nd Register, and stores the result
in the 3rd Register.

Both Registers must contain valid floating point format values.

NT systems only: For IEEE Float use EFMJUL. For IEEE Double use DFMUL.

Format
FMUL[X] [=] regl (i) ' R
[=] reg2 ' R
[=] result (i) ' R
Example
FMUL R 20 ;RO =R 20 * R 30
R 30
RO
Flags
ACCU Unchanged

Saia PG5® Instruction List, 2013-10-25 132

Saia-Burgess Controls AG Floating Point Instructions

6.12

FMUL - Floating Point Multiply

Status Flags E Set on overflow

P Set according to the result
Z Set according to the result
N Set according to the result
See also
MUL

FPI - Floating Point to Integer

Description
Converts the floating point value in the specified Register to integer format.

The 2nd operand indicates the power of ten to be used in the conversion.
The result is the integer of the result of the Register contents multiplied by 10 to the power of the 2nd
operand.

For example, if the Register contains 1234.56 and the power of ten is 2, the integer result will be 12.
If the conversion is not possible, the Error flag is set and nothing is done.

NT systems only: For IEEE Float use EFPI . For IEEE Double use DFPI .

Format
FPI [X] [=] reg (i) ;R
power ; power of ten -20 to +18
Example
FPI RO ;if RO contains 1234.56, it is converted
0 ;to the integer value 1234 (power of ten is zero)
Flags
ACCU Unchanged
Status Flags E Set on overflow
P Unchanged
Z Unchanged
N Unchanged
See also
IEP
@FPI()
Practical example
R 500 Before Instruction Conversion R 500 After
123. 456 FPI R 500 R 500 * 1070 123
0
123. 456 FPI R 500 R 500 * 10"-2 1
-2
123. 456 FPI R 500 R 500 * 10”3 123456
3

Saia PG5® Instruction List, 2013-10-25 133

Saia-Burgess Controls AG Floating Point Instructions

6.13

6.14

FSIN - Floating Point Sine

FSIN - Floating Point Sine

Description

The sine of the contents of the 1st Register is stored in the 2nd Register.

The 1st Register must contain a floating point value in RADIANS in the range +10"6.

NT systems only: For IEEE Float use EFSI N. For IEEE Double use DFSI N.

Format

FSI N[X] [=] reg (i) ' R
[=] result (i) ' R

Example

FSI'N RO ;R 100 = Sine of RO
R 100

Flags

ACCU Unchanged

Status Flags E Set if the value in the first Register is too big
P Set according to the result
Z Set according to the result
N Set according to the result

See also
FCOS
FATAN

FSQR - Floating Point Square Root

Description

Stores the square root of the contents of the 1st Register into the 2nd Register.

If the 1st Register contains a negative value, the Error flag is set and the square root of the absolute

(+we) value is taken.

NT systems only: For IEEE Float use EFSOQR. For IEEE Double use DFSQOR.

Format

FSQR[X] [=] reg (1) ; R
[=] result (i) ' R

Example

FSQR RO ;R 0 = Square root of RO
RO

Flags

ACCU Unchanged

Status Flags E Set if the value was negative

P Always set High
Z Set according to the result
N Always set Low

See also

SOR

Saia PG5® Instruction List, 2013-10-25 134

Saia-Burgess Controls AG Floating Point Instructions

6.15

6.16

FSUB - Floating Point Subtract

FSUB - Floating Point Subtract

Description
Subtracts the contents of the 2nd Register from the contents of the 1st Register, and stores the result

in the 3rd Register.
Both Registers must contain valid floating point format values

NT systems only: For IEEE Float use EFSUB. For IEEE Double use DFSUB.

Format
FSUBJ X] [=] regl (i) ' R
[=] reg2 ' R
[=] result (i) ' R
Example
FSUB RO ;RO=RO-R1
R1
RO
Flags
ACCU Unchanged

Status Flags E Set on underflow
P Set according to the result
Z Set according to the result
N Set according to the result

See also

SuUB

IFP - Integer to Floating Point

Description
Converts the integer value in the specified Register to floating point format.

The 2nd operand indicates the power of ten to which the integer is to be raised, this controls the
position of the decimal point.

For example, if the power of ten is +3, the contents of the Register is multiplied by 1000 (10"3), and
the result is stored in the Register in floating point format.

If the Register contained 12, the result would be 12000.00.

If the conversion is not possible (number too big or too small), the Error flag is set and no conversion
is done.

NT systems only: For IEEE Float use EI FP. For IEEE Double use DI FP.

Format
| FP[X] [=] reg (i) ' R
power ; power of ten -20 to +18

Example
| FP RO ; R 0=fl oating point val ue of
RO *

3 1073

Flags

ACCU Unchanged

Status Flags E Set if conversion is not possible
P Unchanged
Z Unchanged

Saia PG5® Instruction List, 2013-10-25 135

Saia-Burgess Controls AG

Floating Point Instructions

N Unchanged

See also
EPI

@IFP()

Practical example

IFP - Integer to Floating Point

R 500 Before Instruction Conversion R 500 After

123 | FP R 500 R 500 * 1070 1. 23E+2
0

123 | FP R 500 R 500 * 10n-2 1. 23E+0
-2

123 | FP R 500 R 500 * 1073 1. 23E+5
3

Saia PG5® Instruction List, 2013-10-25

136

Saia-Burgess Controls AG Bloctec Instructions

7.1

Bloctec Instructions

Bloctec is a structured programming method which breaks a program down into separate blocks of
code.

A Cyclic Organization Block (COB) is the main task, which will typically call Program Blocks (PB)
and Function Blocks (FB), or Graftec Sequential Blocks (SBs), up to a call-nesting depth of 7.

At least one COB, usually COB 0, must be present in the program. Only Function Blocks (FBs) can
have run-time parameters.

For more information about the structured programming methods refer to "Structured Programming”
in the User's Guide.

COoB Cyclic Organization Block

ECOB End Cyclic Organization Block
X0oB Exception Organization Block
EXOB End Exception Organization Block
PB Program Block

EPB End Program Block

CPB Call Program Block

CPBI Call Program Block Indirect

FB Function Block, with optional parameters
EFB End Function Block

CFB Call Function Block

NCOB Next Cyclic Organization Block
SCoB Stop Cyclic Organization Block
CCOB Continue Cyclic Organization Block
RCOB Restart Cyclic Organization Block
Important

Calling the same FB or PB from different COBs or different places in the program may have
unexpected results if the data it uses is also shared - if the same global data are used.

To allow code sharing, or different "instances" of a block which is like a re-usable component, the
data must be supplied via FB parameters or indirectly via a base Register or Data Block.

The following instructions must NEVER be used in a Graftec program because they can compromise
event synchronization:
RCOB, NCOB, SCOB, CCOB and the COB instruction's supenvsion time.

CCOB - Continue Cyclic Organization Block

Description

Conditionally or unconditionally allows a COB that was stopped by the SCOB instruction to resume
execution.

If the condition is not satisfied, the COB is not resumed.

CCOB does not cause the COB to be executed immediately, but allows it to be executed the next
time it is scheduled.

Tip: Well-structured programs should not need this instruction. It should only be used in your
application with the utmost care.

Saia PG5® Instruction List, 2013-10-25 137

Saia-Burgess Controls AG Bloctec Instructions

7.2

CCOB - Continue Cyclic Organization Block

This instruction must not be used in a Graftec program because it can destroy event synchronization.

Condition Executed
blank Always (no condition code)

H If Accumulator = H (1)
L If Accumulator = L (0)
P If Positive flag = H (Negative flag = L)
N If Negative flag = H
z If Zero flag = H
E If Error flag = H
Format
CCOoB [cc] cob ; COB
;cc = condition code: H| L | P| N| Z|E
Example
CCOoB L 10 ;COB 10 is resunmed if the ACCU is Low (0)
CCOoB 0 ;COB 0 is resuned unconditionally
Flags
ACCU Unchanged
Status Flags Unchanged
See also
NCOB
RCOB
SCOB

CFB - Call Function Block

Description

Conditionally or unconditionally calls a Function Block. If the condition is not satisfied, the FB is not
called.

An optional parameter list can follow the CFB instruction. The parameters are used by instructions
within the Function Block.

Parameters are referenced by using '= n' as the operand, where 'n'is the parameter number to use (1-
255).

The value of this parameter is substituted as the operand.

Condition Executed

blank Always (no condition code)

H If Accumulator = H (1)

L If Accumulator = L (0)

P If Positive flag = H (Negative flag = L)
N If Negative flag = H

Z If Zero flag = H

E If Error flag = H

NOTE

CFB parameters are 16-bit values. The 32-bit LD instruction value cannot be supplied as a Function
Block parameter. But you can use LDH and LDL to load a 16-bit Function Block parameter into the
upper or lower 16 bits of a Register, Timer or Counter. Or pass the 32-bit value in a Register.

Format
CFB [cc] nunber ;FB, cc = condition code: H L|PINZ E
[param 1] ;optional paraneter |ist

Saia PG5® Instruction List, 2013-10-25 138

Saia-Burgess Controls AG Bloctec Instructions

7.3

CFB - Call Function Block

[param 2]
[param n]
Example
CFB H 10 ;calls FB 10 if the ACCU is High
32 ; paranmeter 1
R 10 ; paraneter 2
Flags
ACCU Set High (1) at the start of the CFB

When the program returns from the FB, the ACCU is restored to the state it had
before the FB was called.

Status Flags Depend on the FB code, they are not restored to the state they had before the FB
was called.

See also

EB

CPB

PG5 User's Guide

COB - Cyclic Organization Block

Description

Starts the specified Cyclic Organization Block. The 2nd operand is the COB supenision time, in 10
millisecond increments.

If the supenvision time elapses before the COB has finished execution (ECOB reached), the Exception
XOB 11 is executed if it is present; if not present, the next COB is started.

If the supenvision time is 0, XOB 11 is never executed, the next COB is started only when this COB
has ended (the ECOB is reached).

If several COBs are programmed, they run one after the other in numerical order.

The ACCU is always set High (1) at the start of each COB.

The COB instruction uses 3 program lines because the supenision time needs 32 bits.

Format
COB nunmber : COB
time ;supervision tine in 10nms increnments
Example
COB 0 start of COB O
0 ;supervision time =0

; body of COB O

ECOB cend of COB O
Flags

ACCU Set High at start of COB.
Status Flags Unchanged

See also
ECOB
NCOB
RCOB

Saia PG5® Instruction List, 2013-10-25 139

Saia-Burgess Controls AG Bloctec Instructions

7.4

COB - Cyclic Organization Block

2

CcOoB
XOB

CPB - Call Program Block

Description
Conditionally or unconditionally calls a Program Block. If the condition is not satisfied, the PB is not

called.

Condition Executed

blank Always (no condition code)

H If Accumulator = H (1)

L If Accumulator = L (0)

P If Positive flag = H (Negative flag = L)

N If Negative flag = H

Z If Zero flag = H

E If Error flag = H

Format

CPB [cc] nunber ; PB number, cc = condition code: H| L | P| N| Z | E
Example

CPB 10 ;unconditionally call PB 10
Flags

ACCU Set High for the start of the PB.

When the PB returns, the ACCU is restored to the state it had before the call.
Status Flags Depend on the PB code, they are not restored to the state they had before the PB
was called.

Practical example
IF.. THEN.. ELSE structure:

coB 0
0

STH | 15 ;i f Input 15 is High
CPB H 20 then call PB 20
CPB L 25 else call PB 25
ECOB

PB 20

EPB

PB 25

EPB

Saia PG5® Instruction List, 2013-10-25 140

Saia-Burgess Controls AG Bloctec Instructions

7.5

7.6

CPBI - Call Program Block Indirect

CPBI - Call Program Block Indirect

Description

Conditionally or unconditionally calls a Program Block whose number is contained in the given
Register.

Since this instruction uses a condition code, the 'R' data type is not required.

If the given Register contains an invalid PB number, or the PB does not exist, the Error flag is set and
XOB 13 is called (if present).

If the condition is not satisfied, the PB is not called.

Notes

e For firmware versions earlier than 1.20.00, the max. Register address for indirect instructions is
8191.

e To use Register addresses 8192..16383 with firmware version 1.2.00 or later, set the Build Option
"Use 16-bit Register and Flag addressing" to Yes.

e This instruction cannot be used with Function Block parameters (= n).

e Temporary Registers, defined with TEQU, cannot be used.

Condition Executed
blank Always (no condition code)

H If Accumulator = H (1)

L If Accumulator = L (0)

P If Positive flag = H (Negative flag = L)

N If Negative flag = H

z If Zero flag = H

E If Error flag = H

Format

CPBI [cc] reg ;reg = Register nunmber containing
;the nunber of the PB to be called
;cc = condition code: H| L | P| N| Z| E

Example

CPBI L 10 ;1f ACCU is Low (0), then the PB whose

;nunber is in R10 is called
Flags
ACCU Set High for the start of the PB.

When the PB returns, the ACCU is restored to the state it had before the call.
Status Flags Depend on the PB code, they are not restored to the state they had before the PB
was called.

ECOB - End Organization Block

Description
Ends the current COB. The next COB (if present) will begin execution.
A COB body must always be terminated by an ECOB instruction.

Format
ECOB ; N0 oper ands

Saia PG5® Instruction List, 2013-10-25 141

Saia-Burgess Controls AG Bloctec Instructions

7.7

7.8

ECOB - End Organization Block

Example

coB 0 ;start of COB O
0 ;supervision tinme

S ; body of COB

ECCOB ;end of COB

Flags

ACCU Unchanged

Status Flags Unchanged

See also

coB

EFB - End Function Block

Description
Ends the current Function Block (FB).

Returns to the instruction following the Call Function Block (CFB) instruction.

Format

EFB ; no oper ands
Example

FB 3 start of FB 3
; body of FB 3
EFB cend of FB 3
Flags

ACCU Restored to the state it had before the FB was called.
Status Flags Unchanged
See also

EB

CEB

EPB - End Program Block

Description
Ends the current Program Block (PB).

A return is made to the instruction after the Call Program Block (CPB) instruction.

Format

EPB ; N0 oper ands
Example

PB 6 :start of PB 6
; body of PB 6
EPB :end of PB6
Flags

ACCU Restored to the state it had before the PB was called.
Status Flags Unchanged

See also

PB

Saia PG5® Instruction List, 2013-10-25 142

Saia-Burgess Controls AG Bloctec Instructions

7.9

7.10

EPB - End Program Block

CPB

EXOB - End Exception Organization Block

Description
Ends the current XOB. At the EXOB instruction, the XOB returns to the location from where it was

called.

Format

EXOB ; N0 oper ands

Example

XOB 16 start of XOB 16
; body of XOB 16
EXOB cend of XOB 16
Flags

ACCU Unchanged

Status Flags Unchanged

See also

XOB

XOB List

FB - Function Block

Description
Begins a Function Block (FB). An FB is a subroutine with optional parameters.

A list of FB parameters can be defined, this list is supplied when the FB is called.

Format
FB nunber

Example
FB 10 start of FB 10

STH =1 ; FB paraneter reference, paraneter 1
EFB cend of FB 10

Flags
ACCU Set High at start of FB, restored at end of FB

Status Flags Unchanged

See also
EFB
CEB

Practical example
Compute the formula: Z = X* (X+Y)

FB 25 ; Function Block X * (X+Y)
ADD =1 1 Z = X+Y

=2

=3

Saia PG5® Instruction List, 2013-10-25 143

Saia-Burgess Controls AG Bloctec Instructions

7.11

FB - Function Block

MUL = 2 =2 * X
EFB
CcoB 7
0
STH I 1 ;i1 f Input 1 goes High
DYN F1
CFB H 25 ;then R107 = R100 * (R100+330)
R 100 ; paraneter 1 (X
K 330 ; paraneter 2 (YY)
R 107 ; paraneter 3 (2)
STH I 2 ;1 f Input 2 goes H
DYN F 2
CFB H 25 ;then R107 = R200 * (R200+R201)
R 200 ; paraneter 1 (X
R 201 ; paranmeter 2 (YY)
R 107 ; paraneter 3 (2)
ECOB

NCOB - Next Cyclic Organization Block

Description
Conditionally or unconditionally forces the program to switch to the next COB.

If the condition code is not satisfied, the NCOB instruction is ignored.

Wait loops can be programmed using NCOB without interfering with the execution of any other
COBs.

For every wait loop, an NCOB instruction should be inserted. This allows "parallel" execution of
COBs.

Tip: Good Bloctec programs should not include wait loops, and therefore should not need to use
NCOB.
Programs should normally use the ACCU state to control program execution.

This instruction must not be used in a Graftec program because it can destroy event synchronization.

Condition Executed

blank Always (no condition code)

H If Accumulator = H (1)

L If Accumulator = L (0)

P If Positive flag = H (Negative flag = L)

N If Negative flag = H

Z If Zero flag = H

E If Error flag = H

Format

NCOB [ccl] ;cc = condition code H| L | P| N| Z | E
Example

STH I 15 ;wait until | 15 = L

NCOB L ;ensure all other tasks execute
JR L -2

Saia PG5® Instruction List, 2013-10-25 144

Saia-Burgess Controls AG Bloctec Instructions

NCOB - Next Cyclic Organization Block

Flags
ACCU Unchanged

Status Flags Unchanged

7.12 PB - Program Block

Description
Marks the beginning of a Program Block (PB). A Program Block is a subroutine without parameters.

Format
PB nunber

Example
PB 26 ;start of PB 26

; body of PB 26
EPB :end of PB 26

Flags
ACCU Set High at start of PB, restored at end of PB

Status Flags Unchanged

See also
EPB
CPB

EB

7.13 RCOB - Restart Cyclic Organization Block

Description
Restarts any COB, conditionally or unconditionally, from the given program line.

This instruction can be used within any COB or XOB. If the condition is not satisfied, the RCOB
instruction is ignored.

The 1st operand is the COB number to be restarted.

The 2nd operand is the program line number to restart from.

The line number is an offset from the start of the COB, it is NOT an absolute program line number.

This instruction must not be used in a Graftec program because it can destroy event synchronization.

Condition Executed

blank Always (no condition code)

H If Accumulator = H (1)

L If Accumulator = L (0)

P If Positive flag = H (Negative flag = L)

N If Negative flag = H

z If Zero flag = H

E If Error flag = H

Format

RCOB [cc] cob ;condition code + COB nunber

Saia PG5® Instruction List, 2013-10-25 145

Saia-Burgess Controls AG Bloctec Instructions

7.14

RCOB - Restart Cyclic Organization Block

i ne :line nunber fromstart of COB
;cc = condition code: H| L | P| N| Z| E

Example
RCOB 0 restarts COB O

10 ;execution begins fromline 10 of COB O

Flags
ACCU Unchanged

Status Flags Unchanged

SCOB - Stop Cyclic Organization Block

Description
Stops the given COB conditionally or unconditionally. Execution continues with the next COB.

The COB is not executed again until the correct CCOB instruction is executed by another COB.
A COB can stop itself executing, but must be restarted by another COB containing a CCOB
instruction.

If the condition is not satisfied, the SCOB instruction is ignored.

Tip: Well-structured programs should not need this instruction. It should only be used in your
application with the utmost care.

Good Bloctec programs should not use any wait loops, and therefore should not need to use NCOB.
Programs should normally use the ACCU status to control program execution.

This instruction must not be used in a Graftec program because it can destroy event synchronization.

Condition Executed

blank Always (no condition code)

H If Accumulator = H (1)

L If Accumulator = L (0)

P If Positive flag = H (Negative flag = L)

N If Negative flag = H

Z If Zero flag = H

E If Error flag = H

Format

SCOB [cc] cob ;condition code + COB nunber
;cc = condition code: H| L | P| N| Z]| E

Example

SCOB L 10 ;stops COB 10 if ACCU is Low

Flags

ACCU Unchanged

Status Flags Unchanged

See also
CCOoB
NCOB
RCOB

Saia PG5® Instruction List, 2013-10-25 146

Saia-Burgess Controls AG Bloctec Instructions

SCOB - Stop Cyclic Organization Block

7.15 XOB - Exception Organization Block

Description

Marks the beginning of an Exception Organization Block (XOB).

An XOB is called when an error or another important event occurs. The XOB can contain program
code to handle these events.

If no associated XOB is present, no action is taken (the event is ignored) and the Error lamp may be
turned on if it was an error event.

At the end of the XOB, the exception routine will return to the location from where it was called.

Format
XOoB nunber

Example

XOB 16 ;startup XOB

o ; body of XOB

EXOB cend of XOB

Flags

ACCU Set High at start of XOB, restored at end of XOB
Status Flags Unchanged

See also

EXOB

XOB List

Saia PG5® Instruction List, 2013-10-25 147

Saia-Burgess Controls AG Graftec Instructions

8.1

Graftec Instructions
Saia PG5 Graftec is a graphical programming method for sequential (step-by-step) processes.

A Graftec program consists of a sequence of alternating Steps (ST) and Transitions (TR),
encapsulated in a Sequential Block (SB).

The SB is called repeatedly from a Cyclic Organization Block (COB), and it executes only the
pending Transitions (checks for pending events) and executes the associated STep if the Transition
was satisfied.

Steps contain actions to be performed, instructions such as SET, RES, STXT, etc. Transitions
contain conditional linkages using instructions such as STH, ANL CMP, etc.

A TR must always be followed by an ST. The ST is executed only if the preceding TR is satisfied
(ACCU is High at ETR).

Graftec programs are usually written using the Saia PG5 Graftec Editor (S-Graf). This editor
automatically handles the program structure, which you create graphically on the screen.
With this editor you don't need to use the low-level Graftec instructions listed below.

For more information about Graftec programming refer to the "Structured Programming” chapter in the
PG5 User's Guide.

SB Sequential Block

ESB End Sequential Block
18T Initial Step

ST Step

EST End Step

TR Transition

ETR End Transition

CSB Call Sequential Block
RSB Restart Sequential Block

CSB - Call Sequential Block

Description

Conditionally or unconditionally calls a Sequential Block. If the condition is not satisfied, the SB is not
called.

A sequential block cannot be called from another SB.

Condition Executed
blank Always (no condition code)
H If Accumulator = H (1)
L If Accumulator = L (0)
P If Positive flag = H (Negative flag = L)
N If Negative flag = H
Z If Zero flag = H
E If Error flag = H
Format
CSB [cc] nunber ; SB nunber
;cc = condition code: H| L | P| N| Z]| E
Example

Saia PG5® Instruction List, 2013-10-25 148

Saia-Burgess Controls AG

Graftec Instructions

8.2

8.3

CsB L 10 ;call SB 10 if the ACCU is Low
Flags
ACCU Set High for the start of the SB.

When the SB returns, the ACCU is restored to the state it had before the call.

CSB - Call Sequential Block

Status Flags Depend on the SB code, they are not restored to the state they had before the SB

was called.

See also
SB
CPB

ESB - End Sequential Block

Description
Ends the current Sequential Block (SB).

Format
ESB ; no operand

Example
SB 10 start of SB 10

; body of SB, contains STs and TRs
ESB cend of SB 10

Flags
ACCU Restored to the state it had before the SB was called.

Status Flags Unchanged

See also
SB
ST
IR

EST - End Step

Description

Ends the current Step or Initial Step (ST or IST)

Format

EST ; no operand

Example

ST 0 cstart of ST O
| 25 ;inconming from Transition 25
O 47 ;outgoing to Transition 47

; body of ST O

EST cend of ST O

Flags

ACCU Unchanged

Status Flags Unchanged

See also

ST

Saia PG5® Instruction List, 2013-10-25

149

Saia-Burgess Controls AG

8.4

8.5

EST - End Step

TR
sSB

ETR - End Transition

Description

Ends the current Transition (TR).

Format

ETR ; no operand

Example

TR 0 start of TR O
| 12 ;inconmng from Step 12
O 14 ;outgoing to Step 14

; body of TR O

ETR cend of TR O

Flags

ACCU Unchanged

Status Flags Unchanged

See also

IR

ST

SB

IST - Initial Step

Description
The Initial Step defines the first Step to be executed when a Sequential Block (SB) is called.

Every SB must have at least one Initial Step. In all other respects the Initial Step is the same as any
other Step (see ST).
IST is followed by a list of incoming (I) and outgoing (O) Transitions.

Format
| ST nunber ;initial Step nunber
list ;inconm ng and outgoing transitions |ist
; (variabl e | ength)
Example
| ST 1 ;lnitial Step 1
| 900 ;inconming from Transition 900
O1 ;outgoing to Transition 1
. ; body of ST 1
EST cend of ST 1
Flags
ACCU Set High at the start of the Initial Step
Status Flags Unchanged
See also
EST
SB
ST

Saia PG5® Instruction List, 2013-10-25

Graftec Instructions

150

Saia-Burgess Controls AG Graftec Instructions

8.6

IST - Initial Step

RSB - Restart Sequential Block

Description
Conditionally or unconditionally restarts a Sequential Block (SB).

The 1st operand is the number of the SB to be restarted.

The 2nd operand is the STep number from where the SB is to be restarted, or a list of Steps if in a
parallel branch.

The Steps must be in the SB to be restarted!

If the restart must take place in simultaneous branches (parallel programs), the "RSB" instruction will
contain as many additional lines as steps to be restarted.

Condition Executed

blank Always (no condition code)

H If Accumulator = H (1)

L If Accumulator = L (0)

P If Positive flag = H (Negative flag = L)
N If Negative flag = H

Z If Zero flag = H

E If Error flag = H

Tips: The RSB instruction can be used to restart a Graftec program from a pre-defined point. This
could be useful if a long process must be interrupted for some reason, such as a power down.
Howeer, the Steps from where the Graftec will restart must be programmed in advance, the PCD
does not sawe the state of the Graftec.

This means that the process can only be stopped and restarted at certain pre-programmed points,
and the code to handle this must be hand-written in IL.

You must also be sure that all data is properly initialized or is non-volatile.

Note that Timers and other data which is set to zero by a restart will need special attention.

One way to approach this would be to store a value in a Register which indicates the current state,
and use this to select the RSB instruction with the correct list of Steps from where the process will be
restarted.

The RSB instruction is potentially very dangerous. The assembler cannot \erify the parameters are
correct. If incorrect it can cause fatal de-synchronization of the Graftec program.

Format
RSB [cc] nunber ; SB nunber
;cc = condition code: H| L | P| N| Z]| E
step ; STep nunber
[step] ;[STep nunber]
Example
RSB 12 restarts SB 12
11 ; at Step 11
Flags
ACCU Set High before restarting the SB
Status Flags Unchanged
See also
SB
CSB
ST

Saia PG5® Instruction List, 2013-10-25 151

Saia-Burgess Controls AG

8.7

8.8

RSB - Restart Sequential Block

SB - Sequential Block

Description
Starts a Sequential Block (SB). A Sequential Block contains one independent Graftec program.

The SB contains the Steps and Transitions, and their code in IL or Fupla.

Format
SB nunber

Example
SB 10 start of SB 10

; body of SB 10, contains STs and TRs
ESB ;extra special beer

ACCU Unchanged
Status Flags Unchanged

See also
ESB
CSB
RSB

T

SIS

ST - Step

Description
Defines the start of a Step (ST). Following the ST instruction must be a list of incoming (I) and

outgoing (O) Transitions.

A Step should typically contain only action instructions such as SET, RES, OUT, LD, MOV, FADD,
etc. It can also call FBs and PBs.

In Saia PG5 Graftec, once a Step has been executed, the program pointer moves to the next
Transition.

Steps can only appear inside SBs.

Steps should not contain wait loops are call blocks which contain wait loops.

Format
ST nunber ; St ep nunber
list ;inconm ng and outgoing Transition |ist
; (variabl e | ength)
Example
ST 10 ; Step 10

| 9 ;inconming from Transition 9
O 10 ;outgoing to Transition 10
; body of Step
EST ;end of Step

Flags
ACCU Set High at the start of the ST
Status Flags Unchanged

Saia PG5® Instruction List, 2013-10-25

Graftec Instructions

152

Saia-Burgess Controls AG Graftec Instructions

8.9

ST - Step

See also
EST

IST

IR

SB

TR - Transition

Description

Defines the start of a Transition (TR). Following the TR instruction must be a list of all the incoming (l)
and outgoing (O) Steps.

Typically a Transition should contain logical instructions forming a linkage whose final result indicates
whether the following Step is to be executed.

If the final result of the Transition is false (ACCU = L (0)), then the next Step is not executed,
execution continues with the next parallel branch or COB.

The next time the TR executes, the whole Transition is processed again.

The next Step is executed only if the final result of the Transition is TRUE (ACCU = H (1)).

With OR branching, the order of handling of the parallel TRs is set by the order of the outgoing
Transitions defined in the preceding Step.

TRs can only appear inside SBs.

TRs should not contain wait loops, or call blocks which contain wait loops.

Format
TR nunmber : Transi ti on nunber
list ;inconm ng and outgoing Steps |ist
; (variabl e | ength)
Example
TR 10 Transition nunber 10
| 900 ;inconmng from Step 900
O1 ;outgoing to Step 1
02 ;outgoing to Step 2
; body of TR 10
ETR cend of Transition 10
Flags
ACCU Set High at the start of the ST
Status Flags Unchanged
See also
ETR
SB
ST

Saia PG5® Instruction List, 2013-10-25 153

Saia-Burgess Controls AG Communications Instructions

9 Communications Instructions

Networks

Automation solutions often consist of several decentralized PCD controllers, terminals and supenision
computers, connected by a communications network. Each station controls part of the process, and
exchanges data with the other stations on the network. To guarantee the flexibility of such a concept,
the PCD system supports seweral types of communications network. Each network has its own
capabilities, so the user should choose the network which is most appropriate for the application.

The Saia PG5® is an effective tool for implementing these solutions:

¢ Saia PG5 Project Manager provides an oveniew of the stations (PCDs) and their configuration
parameters including the network's communications parameters.

¢ The Fupla and IL editors allow the programming of the data exchange between PCD stations on the
network.

The choice of network depends on the application's requirements.

These are the available network types:

Profi-S-Bus Fieldbus network based at the Profibus FDL standard
Ether-S-Bus Information network based on the standard Ethernet
Serial S-Bus Network based on serial interface RS 485/232
S-Bus-Modem Network based on analogue or digital telephone line
Profibus DP Fieldbus network based on the standard Profibus DP
Profi-S-10 Fieldbus network based on the standard Profibus DP

The different networks are distinguished by their senices, technical characteristics and their
application domains.

Although all the communication networks support the transport of PCD data as Inputs, Outputs,
Flags, Registers etc., some also support the programming, control and commissioning of the PCD
systems through the network using the PG5 tools.

Open protocol
Serial communications Mode C allows the exchange characters and strings without any specific

protocol.
This mode is often used to support a text terminals or to implement another communication protocol
with a non-Saia PCD device.

Old protocols
The old Mode D and MM4 are not supported by the new PCD models, and should not be used.

9.1 Mode C

Sends or receives single characters, or transmits a Text.

Single characters from a Register or a Text are output.

Single characters can be received and transferred into a Register.
Often used to communicate with a terminal or printer.

Can be used to implement custom messages and protocols.

See:

Saia PG5® Instruction List, 2013-10-25 154

Saia-Burgess Controls AG Communications Instructions

9.2

9.3

Mode C

SASI Text (Mode C)
SRXD Receive Character (Mode C)

STXD Transmit Character (Mode C)
STXT Transmit Text (Mode C)

Texts Containing Data (Mode C

Text Output Formats (Mode C)

Mode D
Old protocol, not supported by new PCD models.

Data Mode. Uses telegrams in accordance with ISO 1745, IBM BSC and DIN 66019.

Data can be exchanged between two PCDs or between a PCD and another intelligent system (IBM
PC, etc) connected directly or via the Saia LAN 1.

The data can be the state of Inputs, Outputs or Flags; or the contents of Registers, Timers or
Counters.

<mode> Description
VDO Mode D master
SDO Mode D slave

The two modes are almost the same; the only difference is that when a conflict occurs in the full
duplex communication, the Master station always has priority over the Slave to repeat the request.
When communicating with a PC, the PCD must be set as Slave (SDO0).

For a description of the complete protocol, consult the "Functional specification for the Saia P8
Protocol".

See:

SASI Text (Mode D & MM4)
SRXM Receive Media (Mode D)
STXM Transmit Media (Mode D)

Mode MM4

Old protocol, not supported by new PCD models.

Mode MM4 allows the connection of the PCD on the COMPEX LAC/LAC2 Network.

The LAC/LAC2 is an industrial local area network which supports the connection of different intelligent
devices.

The PCD is connected to the network via a communicator which provides the required transmission
senices.

MM4 mode exchanges 32-bit Registers and up to 64 Registers can be transferred with one telegram.
This mode also supports a point-to-point connection between two PCDs.

See:

SASI Text (Mode D & MM4)
SRXM Receive Media (Mode MM4)
STXM Transmit Media (Mode MM4)

Saia PG5® Instruction List, 2013-10-25 155

Saia-Burgess Controls AG Communications Instructions

9.4

9.5

Serial-S-Bus

Serial-S-Bus

The Serial-S-Bus Master/Slave data exchange between PCDs or PLCs and PCDs.

The PG5 programming tool supports the full maintenance of the all PCDs present on a network.

The connection can be a point-to-point RS-232, a network RS-485, or remote communication with a
modem.

Serial S-Bus supports only one master per network, but multi-master can be provided by using the S-
Bus Gateway.

Communications is done using the STXM and SRXM instructions.

Characteristics

Max. transmission speed 115 KB
Exchange mode Master/slave
Max. number of stations 255

Instructions

SASI Assign Serial Interface

SASII Assign Serial Interface Indirect

SASI Text (Serial S-Bus)

SRXM Receive Media (Mode S-Bus)

SRXMI Receive Media indirect (Mode S-Bus)
STXM Transmit Media (Mode S-Bus)

STXMI Transmit Media Indirect (Mode S-Bus)
SICL Serial Input Control Line

SOCL Serial Output Control Line

See also
For more information, consult the S-Bus Manual 26/739.

Profi-S-Bus

Profi-S-Bus supports multi-master data exchange between PCDs or PCDs and other PLC's connected
on the network.

The PG5 programming tools support the commissioning and maintenance of the all PCDs on the
network.

The master-master functionality is an improvement on the standard Serial-S-Bus protocol.
Standard Serial-S-Bus only allows one master per network. In a Profi-S-Bus network, all stations can
be masters.

Communication is done using the familiar STXM and SRXM instructions. The syntax is similar to that
of existing Serial S-Bus, but the station numbering is different.

Characteristics

Max. transmission speed 12 Mbhd .
Exchange mode Multi-Master
Max. number of stations 126

Instructions

SASI Assign Serial Interface

SASII Assign Serial Interface Indirect
SASI Text (Profi-S-Bus)

SRXM Receive Media (Mode S-Bus)

Saia PG5® Instruction List, 2013-10-25 156

http://www.sbc-support.com/en/single-view/download/show/single/26739.html

Saia-Burgess Controls AG Communications Instructions

9.6

Profi-S-Bus

SRXMI Receive Media indirect (Mode S-Bus)
STXM Transmit Media (Mode S-Bus)
STXMI Transmit Media Indirect (Mode S-Bus)

Ether-S-Bus

Ether-S-Bus supports a multi-master data exchange between PCDs or PCDs and other PLCs
connected on the network.

The PG5 programming tools support the commissioning and maintenance of the all PCDs present on
the Ethernet network.

The master-master functionality in one network is an improvement on the standard Serial S-Bus
protocol.

Standard Serial-S-Bus only allows one master per network. In an Ether-S-Bus network all stations
can be masters.

Communication is done using the familiar STXM and SRXM instructions. The syntax is similar to that
of existing Serial S-Bus, but the station numbering is different.

Characteristics

Communication Maximum 3 retries in background. S-Bus CRC 16 error checking is applied.
security No special secure layer via IP is used
Protocol via IP The UDP protocol is used for communication in S-Bus via Ethernet. The

communications socket is open and permanently tied to port 5050.
Max. transmission 10 and 100 Mhd

speed

Exchange mode Multi-Master

Max. number of Unlimited: not limited
stations

Instructions

SASI Assign Serial Interface

SASII Assign Serial Interface Indirect

SASI Text (Ether S-Bus)

SRXM Receive Media (Mode S-Bus)

SRXMI Receive Media indirect (Mode S-Bus)
STXM Transmit Media (Mode S-Bus)

STXMI Transmit Media Indirect (Mode S-Bus)

Programming open data mode via Ethernet
Open data mode is used for PCD communication with a foreign device that does not support S-Bus.

Howewer, it is equally possible for two PCDs to communicate together in open data mode, if required.
Foreign devices do not support proprietary protocols (i.e. S-Bus). Therefore only raw data blocks
(chars, strings, without header) should be transferred via IP.

The PCD can send data to a remote station, but in client mode it cannot directly request data from
the remote station. Data received in open data mode is transmitted to the application layer.

If the transport protocol is UDP, it is not possible to recognize whether the connection between two
stations has been broken. This feature must be implemented by the user in the application layer.

A communication control mechanism that recognizes communication breaks has been implemented
within the TCP protocol.

Description of open data mode

Saia PG5® Instruction List, 2013-10-25 157

Saia-Burgess Controls AG Communications Instructions

Ether-S-Bus

In open data mode, raw data is attached to the UDP or TCP header and then transmitted. In S-Bus via
UDP, data is always attached to the UDP header. In open data mode UDP, the maximum admissible
length of transmitted data is 2048 bytes per datagram.

Configuration

The IP module must be configured with the IP address, subnet mask and default router as S-Bus via
IP using the PG5's Device Configurator. No further configuration is necessary. Open data mode is
initialized with the InitODM command.

Programming with IL

Open data mode is programmed by calling System Functions. System Functions are like FB calls,
and are supplied as libraries. There is a library for the Ethernet TCP/IP module. This library is included
in the FW. Functions are called with the CSF instruction.

See the "SF IP Library" help, which can be displayed from S-Edit's "Function Selector" window, or
from Library Manager.

Byte swapping
Example

There are 9 Bytes to send/receive.

= Without byte swapping (SendData / ReceiveData):

Sent/

received

data
Register 1000 or Register 1001 or Begister 1002 or
DB x element 0 DB x element 1 DB x element 2

=2 With byte swapping (SendDataRev / ReceiveDataRev):

Sent/

Register 1000 or Register 1001 or Register 1002 or
DB x element 0 DB x element 1 DB x element 2

Note:
If the buffer is a text, bytes are never swapped.

Saia PG5® Instruction List, 2013-10-25 158

Saia-Burgess Controls AG Communications Instructions

9.7

9.8

Ether-S-Bus

IP_address decoding
The IP address can be given as a value in a text, register or constant. The IP address can also be the
node in a register or constant value. A constant value can only be a node.

IP address in text:
In a text, the IP address is coded as text in the form of 4 decimal numbers separated by points,
e.g. "192.168.12.14"

IP address in register:
Coded in a register, the IP address will be a node if the higher word is 0. If it is not O, it will take the
form of an address.

The IP address is coded as 4 hex numbers:

aa | bb | cc | dd

The IP address will have this format in reception/connection information.
Ex. OCOA80COEh for the IP address 192.168.12.14

IP address in constant:
Coded in a constant, the IP address is always the node number.

See also
For more information, consult the manual Ether-S-Bus 26/776.

Profibus-DP

Profibus (PROcess Fleld BUS) is the standard industrial fieldbus.

For more information, search for Profibus-DP in the SBC website http://www.sbc-support.com.

Channel Number

The communication channel or port number is dependant on the PCD Device Type and onboard
communications hardware.

Use the Device Configurator to see the available ports.
Configure the device type and the onboard communications. The "Properties” window displays the
channel number required for your hardware.

Saia PG5® Instruction List, 2013-10-25 159

http://www.sbc-support.com/en/single-view/download/show/single/26776.html
http://www.sbc-support.com

Saia-Burgess Controls AG

Communications Instructions

9.9

: Propesties e

Onboard : R5-232,/PGU

El serial 5-Bus Port -
Port Mumber
Enabled Mo E
Full Protocal (PGl Yes £
El Public Line 5-Bus Modem
Port Mumber Moderm n
IUse Serial 5-Bus For Modermn Mo
Full Protocol (PEUY on Modem P Yes i
Bt mre Bl =

Port Number
The part number of the RS5-232 PGU part, fixed as Pork O,

SASI - Assign Serial Interface

Description

Channel Number

Processes a Text which contains the necessary information to initialize a communication channel:

The 1st operand is the serial channel number.

The 2nd operand is the number of a text which contains the channel operating definitions.

This initialization must be repeated for each channel to be used.
The SASI instructions are usually placed in the XOB 16.
Each channel can work in different modes and at different speeds.

Format
SASI [=] channel ; channel nunber
[=] text ;definition SASI text nunber
Example
SASI 0 cinitialize channel 0
100 ;using definitions in Text 100
Flags
ACCU Unchanged

Status Flags E The Error flag is set if the definition text is missing or invalid, if the channel does
not exist or already defined as PGU channel, if the station number has not been

defined.

Tip: $SASI..$ENDSASI can be used to detect invalid SASI texts

See also

SASI Texts (Mode C)

SASI Texts (Mode D & MM4)
SASI Text (Serial-S-Bus)
SASI Text (Profi-S-Bus)
SASI Text (Ether-S-Bus)

SASI Text (Profibus-DP)
SASI| Mode OFF

For SASI Text (Mode Profibus-FMS): consult the manual "PROFIBUS-FMS with SAIA PCD", ref.

26/742

Saia PG5® Instruction List, 2013-10-25

160

Saia-Burgess Controls AG Communications Instructions

9.10

SASI - Assign Serial Interface

Practical example
Initialize the channel 1 for text mode with a speed of 4800 Baud, 7 data bits, even parity and one stop

bit. The SASI instruction is placed in XOB 16.

XOB 16 ;cold Start Exception Organi zati on Bl ock
SASI 1 ;assign serial channel 1

10 ;With paraneters in Text 10
EXOB

TEXT 10 "UART: 4800, 7, E, 1;"
" MODE: MCO; "
"Dl AG F1000, R4000; "

The text could also be written on one line:
TEXT 10 "UART: 4800, 7, E, 1; MODE: MCO; DI AG F1000, R4000; "

SASII - Assign Serial Interface Indirect

Description
Processes a Text which contains the necessary information to initialize a communication channel.

This instruction works in the same way as the SASI instruction.

The difference is that it works in indirect mode.

Indirect mode means that the number of the channel and the definition text number can be given by
the content of registers.

Note
This instruction cannot be used with Function Block parameters (= n).
Temporary Registers, defined with TEQU, cannot be used.

Format
SASI | channel ; channel nunber or Regi ster containing the nunber
text _reg ; Regi ster containing the nunber of the SASI Text

The definition Text is the same as for the SASI instruction.

Example
SASI | 1 cinitialize serial channel 1
R 1 ;using the definition Text whose nunber is in R1
Flags
ACCU Unchanged

Status Flags E The Error flag is set if the definition text is missing or invalid, if the channel does
not exist or already defined as PGU channel, if the station number has not been
defined.

Tip: $SASI..$ENDSASI can be used to detect invalid SASI texts

See also

SASI

SASI Texts (Mode C)

SASI Texts (Mode D & MM4)
SASI Text (Serial-S-Bus)
SASI Text (Profi-S-Bus)
SASI Text (Ether-S-Bus)
SASI Text (Profibus-DP)

Saia PG5® Instruction List, 2013-10-25 161

Saia-Burgess Controls AG Communications Instructions

9.11

SASI Text (Mode D & MM4)

SASI Text (Mode D & MM4)

Note: Mode D and MM4 are not supported by new PCD models.

Description
This is a special text definition for the SASI instruction. The contents depends of the communications

mode.

Format
P XXXX 1S a Text number
TEXT xxxx "<uart_def>;" ;baud rate, data length, parity and stop bit
"<mpode_def >;" ; communi cations node
"<di ag_def>;" ;diagnostic elenents

Validating SASI texts
The $SASI and $SENDSASI directives can used to enclose SASI texts. This causes SASM to check

the syntax of the text and all characters are converted in uppercases.

<uart def>

Defines the baud rate, data length, parity, number of stop bits, timeout

Format: "UART: <baudr at e>, <char _| en>, <parity>, <stop_bit>[, <ti neout >];
<baud_rate>| <char | en>| <parity> <stop_bit>]| <tine_out> | or by default
110 7 E (even) 1 10..15000 ms | 15s
150 8 O (odd) 2 9s
300 L (low) 5s
600 H (high) 3s
1.200 N (none) 2s
2.400 1ls
4.800 0,5s
9.600 0,25 s
19.200 0,2s
38.400 0,1ls

Baud rate

Baudrates up to 38 400 or 115 200 bps are supported by all PCD modules regardless of hardware,
firmware version.

(exception : 20mA current loop - only up to 9600 bps).

The baud rate 38'400 bps is not supported on the old PCD hardware.

When assigning an interface as 38.4 Kbps it should also be noted that, for physical reasons, some
baud rates are no longer possible for assigning the second DUART interface.

For interfaces 0 + 1 (DUART 1) and 2 + 3 (DUART 2) respectively, the following combinations of baud
rates are not possible :

38.4 Kbps + 38.4 Kbps

38.4 Kbps + 19.2 Kbps

38.4 Kbps + 150 bps

Saia PG5® Instruction List, 2013-10-25 162

Saia-Burgess Controls AG Communications Instructions

SASI Text (Mode D & MM4)

38.4 Kbps + 110 bps

If an attempt is still made to assign a prohibited combination, the error flag is set and XOB 13 is
called.

CPU load for communications at 38.4 Kbps

Since S-Bus communication does not use a separate communications processor, data transmission
at 38 400/115 200 bps makes corresponding demands on CPU capacity.

If the communications throughput is large, it can demand up to 40% of CPU capacity. This in turn
means that processing of the user program is slowed down by the same factor.

<mode_def>

Defines the operating mode of the serial channel.

Format: " MODE: <npde>, [<reg>] ;"
<nmpde> | Description
MDO Mode D Master
Mode D Master via LAN1; Register = SCON status
SDO Mode D Slave
Mode D Master via LAN1; Register = SCON status
MM4 Mode MM4
OFF De-assignation of the serial line. SASI Mode OFF
<reg> D Mode with LAN 1

When using the SAIA PCDLAN 1, the PCA2.T9x interface uses a Register to
inform the PCD about the status of the connection. For more information, see
the SCON instruction.

MM4 <mode_opt> consists of the following:
<BCS_opt>,<trpartner>,<trinfo>,<repartner>,<reinfo>,<rechar>

<node_opt > Value Description

<BCS_opt > Ooril Block Check Sum (0: no BCS, 1: CRC16

<trpartner>| R XXXX Transmission partner station number

<trinfo> R XXXX Remote ACK information

<repartner>| R xXXxxX Reception partner station number

<rei nf o> R XXXX Receive information

<rechar > R xxxx Number of received characters
<diag_def>

Defines the communications diagnostics media.

Format: "Dl AG <di a_el enp, <di a_reg>; "

Type Description

Saia PG5® Instruction List, 2013-10-25 163

Saia-Burgess Controls AG Communications Instructions

SASI Text (Mode D & MM4)

<dia_elem> O XXXX Base address of 8 consecutive Flags (or Outputs)
F XXXX
<dia reg> R XXxX Address of a register for diagnostic

where xxxx is a valid address
The 8 Flags give information about the status of the serial line. In case of error when executing a

communication instruction, more information can be obtained by examining the contents of the
Diagnostic Register.

Diagnostic Flags

The SASI texts DIAG address is the base address of 8 consecutive Outputs or Flags, used as

follows:
Address Name Description
XXXX RBSY Receiver busy
XXXX+1 RFEUL Receive buffer full
XXXX+2 RDIA Receiver diagnostic
XXXX+3 IBSY Transmitter busy
XXXX+4 TFUL Transmit buffer full
XXXX+5 IDIA Transmitter diagnostic
XXXX+6 XBSY Text Busy
XXXX+7 NEXE Not executed

RBSY, Receiver Busy
RBSY is High when the receiver is busy.

RFUL: Receive Buffer Full
RFUL is High when a correct data frame has been received.

RDIA: Receiver Diaghostic

RDIA is set High if the PCD detects an error during reception of a character. See also the Diagnostic
Register.

RDIA will be reset when all receiver diagnostic bits (0..15) in the Diagnostic Register are reset.

TBSY: Transmitter Busy
TBSY is set High when the PCD is transferring data.
TBSY is set Low when the telegram has been acknowledged or when the number of retries is reach.

TFUL: Transmit Buffer Full

D Not used
M TFUL is High when the acknowledgment has been received.
M4

TDIA: Transmitter Diagnhostic

TDIA is set High when the PCD detects an error during transmission of a character. See also the
Diagnostic Register.

TDIA will be reset when all transmitter diagnostic bits (16..31) in the diagnostic register are reset.

Saia PG5® Instruction List, 2013-10-25 164

Saia-Burgess Controls AG Communications Instructions

SASI Text (Mode D & MM4)

XBSY: Text busy
D XBSY is High when a connection via the LAN1 is open.

MM4 XBSY is High when there is activity on the LAC network (STXM instruction)

NEXE: Not executed
If the PCD is unable to perform the requested operation, NEXE is set High. See also the Diagnostic
Register.

Diagnostic Reqister

If the diagnostic flag TDIA or RDIA is high, see the Diagnostic Register for details.
Any bit which has been set high in the Diagnostic Register remains High until manually reset by the
user program or the debugger.

Bit | Description Cause Mode
C D SBU| MM4| PROF
S I-
BUS
Owverrun error Should never occur (notify SAIA) X X X
1 Parity error Received a character with a parity
error
2 Framing error Usually caused by an incorrect baud | x X X X
rate
3 Break Break in data line X
4 BCC error Bad Block Check Code (or CRC16)
5 S-Bus PGU status | S-Bus PGU with Public Line
modems
6 End of transmit Transmission ended SASI OFF X X
7 Overflow error Receive buffer overflow X X X
8 Length error The telegram length is invalid X
9 Format error Invalid telegram format X X X
10 | Address error Adress of ACK is invalid X
11 | Status error PCD in false status X
12 | Range error Invalid element address X X X
13 | Value error Error in the received value X
14 | Missing media err | Address of media not defined or X
invalid
15 | Program error Read from an empty receive buffer X
LAN 1 not assigned or invalid station X X
nb
16 | Retry count Indicates the number of retries (in X
binary)
17
18 | Transmission off Sending is suspended (CTS = L or X
XOFF)
19
20 | NAK response NAK was received X X X X
21 | No response No response was received after X X

Saia PG5® Instruction List, 2013-10-25 165

Saia-Burgess Controls AG

Communications Instructions

SASI Text (Mode D & MM4)

timeout
22 | Multiple NAK NAK received after retries X X
23 | TXbuffer full No more space in transmit buffer X
TS Delay No CTS after the TS Delay X
24 | Enquiry error No response to ENQ after retries X
25 | Format error Invalid definition text X
Invalid command X
26 | Partner error A problem has occured with the
partner
27 | Network error A problem has occured on the
network
28 | Range error Invalid element address X X
29
30 | Receive error Error occurred
31 | Program error Attempt to transmit when X X
unauthorized

Examples of SASI Texts

Mode MDO (Master)

$SASI
TEXT 40

$ENDSASI

UART: 9600, 7, E, 1, 3000; "
MODE: MDO, R1; "
DI AG F1000, R4000; "

Register R 1 is used to store the connection state of the LANL.

Mode SDO (Slave)

$SASI

TEXT 30

$ENDSASI

Mode MM4

$SASI

TEXT 50

"UART: 9600, 7, E, 1; MODE: SDO; DI AG F1000, R4000; "

"UART: 9600, 8, N, 1, 300; "

" MODE: M4, 0, R100, R101, R102, R103, R104; "
"Dl AG F1000, R1000; "

$ENDSASI

9.12 SASI Text (Mode C)

Description
This is a special text definition for the SASI instruction. The contents depends of the communications

mode.

Format

XXXX 1S a Text nunber

Saia PG5® Instruction List, 2013-10-25

166

Saia-Burgess Controls AG Communications Instructions

SASI Text (Mode C)

TEXT XXXX "<uart _def>;" ; baud rate, data length, parity and stop bit
"<mode_def >; " ; conmuni cati ons node

"<di ag_def>; " ; di agnostic el enents
["<rx_buf>;"] ;optional receive buffer length (default = 1)
["<tx_buf>;"] ;optional transmt buffer |ength

Validating SASI texts
The $SASI and $SENDSASI directives can used to enclose SASI texts. This causes S-Asm to check

the syntax of the text and all characters are converted to uppercase.

<uart_def>

Defines the baud rate, data length, parity, number of stop bits, timeout

Format: "UART: <baudr at e>, <char _| en>, <parity>, <stop_bit>;
<baud_rate> | <char_Il en> <parity> <stop_bit>
110 7 E (even) 1
150 8 O (odd) 2
300 L (low)

600 H (high)
1.200 N (none)
2.400
4.800
9.600
19.200
38.400
57.600
115 200
Baud rate

Baudrates up to 38 400 or 115 200 bps are supported by all PCD modules regardless of hardware,
firmware version.

(exception : 20mA current loop - only up to 9600 bps).

The baud rate 38 400 bps is not supported on the old PCD hardware.

When assigning an interface as 38.4 Kbps it should also be noted that, for physical reasons, some
baud rates are no longer possible for assigning the second DUART interface.

For interfaces 0 + 1 (DUART 1) and 2 + 3 (DUART 2) respectively, the following combinations of baud
rates are not possible :

38.4 Kbps + 38.4 Kbps

38.4 Kbps + 19.2 Kbps

38.4 Kbps + 150 bps

38.4 Kbps + 110 bps

If an attempt is still made to assign a prohibited combination, the error flag is set and XOB 13 is
called.

CPU load for communications at 38.4 Kbps

Since S-Bus communication does not use a separate communications processor, data transmission
at 38 400/115 200 bps makes corresponding demands on CPU capacity.

If the communications throughput is large, it can demand up to 40 % of CPU capacity. This in turn

Saia PG5® Instruction List, 2013-10-25 167

Saia-Burgess Controls AG Communications Instructions

SASI Text (Mode C)

means that processing of the user program is slowed down by the same factor.

<mode_def>

Defines the operating mode of the serial channel.

Format: " MODE: <npde>; "
<nodej Description
MCO Mode C without automatic handshaking.
The user must control by himself the control signals with the SICL and SOCL instructions.
MC1 Mode C using RTS and CTS handshaking.
The RTS control signal is automatically positioned by the PCD in function of the remaining
space in the reception buffer. The CTS signal influences the transmission of the
RTS Low Receive buffer contains more than 450 characters
High | Receive buffer contains less than 300 characters
CTS Low | Transmission is stopped
High | Transmission is resumed
MC2 Mode C with Xon/Xoff protocol.
This mode is similar to the RTS/CTS handshaking and is used when no control signals are
present (eg. current loop). Two special characters Xon (CTRL/Q) and Xoff (CTRL/S) are
sent to control the transmission of the partner
Receiver send Xoff Receive buffer contains more than 450 characters
when Xon Receive buffer contains less than 300 characters
Transmitter Low Transmission is stopped
receives High | Transmission is resumed
then
MC3 Mode C with echo.
This mode is used when communicating with a terminal. All received characters are sent
back to the terminal screen.
MC4 Mode C for RS485 interface
The MC4/MC5 modes are low level modes which will set the RS485 driver/receiver in drive
mode only during the transmission of information (character/text) and will be set by default
to receive at any other time.
However the XBSY and TBSY flags don't work in the same way.
For MC4:
¢ The reset to receipt mode happens between 0 and 1 ms after the end of the last
character sent.
® The flags XBSY/TBSY are reset to O between 0 and 1 ms after the end of the last
character sent.
For MCS5:
¢ The reset to receipt mode happens one bit time (time needed to transfer 1 bit) after the
end of the last character sent.
® The flags XBSY/TBSY are reset to O between 0 and 1 ms after the begin of the last
character sent.
OFF De-assignation of the channel. SASI Mode OFF
<diag def>

Saia PG5® Instruction List, 2013-10-25 168

Saia-Burgess Controls AG Communications Instructions

SASI Text (Mode C)

Defines the communications diagnostics elements.

Format: "Dl AG <di a_el en», <di a_reg>; "
Type Description
<di a_elenm> [O xxxx Base address of 8 consecutive Flags (or Outputs)
F xxxx
<di a_reg> R XXXxX Address of a register for diagnostic

where xxxx is a valid address
The 8 Flags give information about the status of the serial line. In case of error when executing an

serial communication instruction, more information can be obtained by examining the contents of the
Diagnostic Register.

Diagnostic Flags

The SASI texts DIAG address is the base address of 8 consecutive Outputs or Flags, used as

follows:
Address Name Description
XXXX RBSY Receiver busy
XXXX+1 RFEUL Receive buffer full
XXXX+2 RDIA Receiver diagnostic
XXXX+3 IBSY Transmitter busy
XXXX+4 TFUL Transmit buffer full
XXXX+5 IDIA Transmitter diagnostic
XXXX+6 XBSY Text Busy
XXXX+7 NEXE Not used

RBSY, Receiver Busy

RBSY is High when at least one character is available in the reception buffer.

When all characters waiting in the reception buffer have been read with the SRXD instruction RBSY is
cleared.

RFUL: Receive Buffer Full

RFUL is set High when the number of incoming characters in the PCD Receive buffer is equal to or
greater than the value of rx_buf (Receive buffer length).

RFUL is Low when the number of characters remaining in the receive buffer is less than the vale of
rx_buf. The internal reception buffer of the PCD always has room for 512 characters.

RDIA: Receiver Diaghostic

RDIA is set High if the PCD detects an error during reception of a character. See also the Diagnostic
Register.

After execution of a communication instruction, RDIA is reset only if all receiver diagnostic bits
(0...15) in the diagnostic register are 0.

TBSY: Transmitter Busy
TBSY is set High when the PCD transmits characters over the serial line. TBSY is set Low when all

Saia PG5® Instruction List, 2013-10-25 169

Saia-Burgess Controls AG Communications Instructions

SASI Text (Mode C)

characters from the Transmission buffer have been transmitted

TFUL: Transmit Buffer Full

TFUL is set High when the number of characters remaining in the PCD transmission buffer is greater
than or equal to the value declared for tx_buf (Transmit buffer length).

The TFUL is reset when the number of characters remaining in the Transmit buffer is less than the
value of TBUF.

TDIA: Transmitter Diagnostic

TDIA is set High when the PCD detects an error during transmission of a character. See also the
Diagnostic Register.

After execution of a communication instruction, TDIA is reset only if all transmitter diagnostic bits
(16...31) in the Diagnostic Register are 0.

XBSY: Text busy
XBSY is set High when the PCD transmits a text (STXT); when all the text has been transmitted
XBSY is reset. Note: XBSY is reset at the beginning of the sending of the last character.

Diagnostic Reqister
If the diagnostic flag TDIA or RDIA is high, the diagnostic register content will help you to found the

communication trouble.
Any bit which has been set high in the diagnostic register remains so, until manually reset by the
user program or the debugger.

Bit Description Cause
0 Owerrun error Should newver occur (notify Saia Burgess Controls)
1 Parity error Received a character with a parity error
2 Framing error Usually caused by an incorrect baud rate
3 Break Break in data line
4
5
i
c |7 Overflow error Receive buffer overflow
E 8
' 9
\%
E 10
R 11
12
13
14
15 Program error Read from an empty receive buffer
16
17
18 Transmission off Sending is suspended (CTS = L or XOFF)
19
20
21
T 22

Saia PG5® Instruction List, 2013-10-25 170

Saia-Burgess Controls AG Communications Instructions

SASI Text (Mode C)

23 TX buffer full No more space in transmit buffer

24
25 Format error Invalid definition text

26
27
28
29
30
31

TmMmA44 - Z20nz2Z2>r3

Bit 0: Overrun Error
Set high when there is an owverrun of the internal buffer of the DUART.
Cause : Baud rate assigned is too high, the CPU can no longer process all characters received.

This can happen if one CPU is involved in communications requiring a high rate of data transmission
via several interfaces simultaneously. It is theoretically possible for all interfaces of a CPU (excluding
the 20mA current loop) to be assigned the maximum Baud rate of 19.200 bps at the same time. In
practice, howewer, this error can arise when there is a very high level of communication over several
interfaces. The system program handles the interfaces with differing priorities. The highest priority is
allocated to interface 0, declining to interface 3.

Remedy :
- Reduce Baud rate.
- For fast communication, use an interface with high priority, if possible.

Bit 2: Framing Error
Set high when a character is received with a framing error (missing stopbit). This is usually caused by
setting the Baud rate wrongly.

Bit 3: Break Error

Set high when an interruption is noticed during receipt of a character.
Cause : Data line broken or wrongly set Baud rate.

Bit 15: Program Error

Set high during execution of a SASI instruction with the definition SS1 mode, if the user program
header has not been configured for the S-Bus slave station, or if the configuration is invalid.

<rx_buf>
Format: "RBUF: <r buf _| en>; "

Defines the communication reception buffer limit.
The <rx_buf> is are only used for mode C

Value Description

<rbuf_len> 1..511 Receive buffer length

The Receive Buffer has always space for 512 x 8bit characters.
The RBUF definition (1511) indicates when to set the Receive Buffer Full status (RFUL).

Saia PG5® Instruction List, 2013-10-25 171

Saia-Burgess Controls AG Communications Instructions

9.13

SASI Text (Mode C)

If no indication is given, the default value 1 will be taken, i.e. after only one received character the
RFUL flag will be set.

<tx_buf>
Defines the communication transmission buffer limit.

Format: "TBUF: <t buf _| en>;”

The <tx_buf> is only used for mode C

Value Description

<tbuf_len> 1..511 Transmission buffer length

Similar to the Receive Buffer.
The TBUF definition (1511) indicates when to set the Transmit Buffer Full status (TFUL).

If no indication is given, the default value 1 will be taken.

Examples of SASI Texts

Mode MCO
$SASI
TEXT 10 "UART: 9600, 7, E, 1; MODE: MCO; DI AG. F1000, R4000; "
$ENDSASI
$SASI
TEXT 11 "UART: 19200, 8, E, 2; "
" MODE: MCO; "
"Dl AG F0123, R4000; "
"RBUF: 128; "
"TBUF: 32; "
$ENDSASI
Mode MC2
$SASI
TEXT 20 "UART: 4800, 8, N, 1; MODE; MC2; DI AG. FO, R100; "
"RBUF: 25; "
$ENDSASI
See also

Using Symboals in $SASI Texts

SASI Text (Serial S-Bus)

Description
The master and slave station number must be configured from device configurator and completed with

a special text definition for the SASI instruction.
The master and slave channel settings are fully configured from SASI text.

Format

Saia PG5® Instruction List, 2013-10-25 172

Saia-Burgess Controls AG Communications Instructions

SASI Text (Serial S-Bus)

P XXXX 1S a Text number

TEXT xxxx "<UART_DEF>;" ;baud rate, timeout, TS-Delay, TN-Delay, break |en
"<MODE_DEF>;" ;comms npde and register for slave station nunber
"<DlI AG DEF>;" ;diagnostic R and F for the serial conmunication

Validating SASI texts
The $SASI and SENDSASI directives can used to enclose SASI texts. This causes S-Asm to check
the syntax of the text and all characters are converted to uppercase.

<UART_DEF>
Defines Baud rate, Timeout, TS-Delay, TN-Delay and Break-Length.

The definitions of character length, parity and stop bits are not required, as the S-Bus protocol
includes the following definitions as fixed settings :

Character length 8 bits

Stop bit 1 bit
Parity bit Mode SM2/SS2 Data mode
Mode SM1/SS1 Parity bit "1" for address character
Parity bit "0" for data character
Mode SMO/SSO With Break character
Format: "UART: <Baudr at e>[, <Ti meout >] [, TS- Del ay>] [, TN- Del ay] [, Br eak-
Length];"

TimeOut, TS-Delay and TN-Delay are optional and normally only needed to be defined when a modem
is used.

Baudrat [Timeout] [TS-Delay]| [TN-Delay] [Break-
e Length]
adjustabl | or default value adjustabl | or default
e e
Saia PCD- | Other PCD value adjustable
NT system
110 15000 ms 27 ms
150 9000 ms 20 ms
300 5000 ms 20 ms
600 3000 ms 5ms
1200 2000 ms 2000 ms 3ms
2400 1 15000(2000ms 11000mS |, 45000 | 1...15000 |-2™MS 4..25
4800 ms 500 ms 500 ms ms ms 2ms characters
9600 250 ms 250 ms 1ms
19200 200 ms 200 ms 1ms
38400 200 ms 100 ms 1ms
57.600 200 ms
115 200 200 ms

Saia PG5® Instruction List, 2013-10-25 173

Saia-Burgess Controls AG Communications Instructions

SASI Text (Serial S-Bus)

Baud rate

Baudrates up to 38 400 or 115 200 bps are supported by all PCD modules regardless of hardware,
firmware version.

(exception : 20mA current loop - only up to 9600 bps).

The baud rate 38 400 bps is not supported on the old PCD hardware.

When assigning an interface as 38.4 Kbps it should also be noted that, for physical reasons, some
baud rates are no longer possible for assigning the second DUART interface.

For interfaces 0 + 1 (DUART 1) and 2 + 3 (DUART 2) respectively, the following combinations of baud
rates are not possible :

38.4 Kbps + 38.4 Kbps

38.4 Kbps + 19.2 Kbps

38.4 Kbps + 150 bps

38.4 Kbps + 110 bps

If an attempt is still made to assign a prohibited combination, the error flag is set and XOB 13 is
called.

CPU load for communications at 38.4 Kbps

Since S-Bus communication does not use a separate communications processor, data transmission
at 38 400/115 200 bps makes corresponding demands on CPU capacity.

If the communications throughput is large, it can demand up to 40 % of CPU capacity. This in turn
means that processing of the user program is slowed down by the same factor.

Timeout

This value defines the maximum time after sending a read telegram (instruction SRXM), during which
the reply telegram must be received from the station addressed.

If no valid reply is received within this time, the last telegram transmitted is repeated and the
corresponding diagnostic elements are set. Two repeat transmissions are the maximum for any
telegram.

TN-Delay (Delay time on turnaround)

This parameter defines the delay time before the RTS signal is switched on at the RS 232 and RS 422
interfaces, or before the transmitter is

switched on at the RS 485 interface. A telegram is sent at the earliest after this delay time has
elapsed.

TS-Delay (Training Sequence Delay time)

This parameter defines a monitoring time for the CTS (Clear To Send) signal of a connected device.
The PCD sends a telegram as soon as the connected device (modem) has shown its readiness to
receive by setting the CTS signal, or at the end of the TS-Delay time.

If the CTS signal has not been set by the end of the TS-Delay time, bit 23 (CTS-Timeout) is set in the
diagnostic register.

Monitoring and handling of the CTS signal is only active if the parameter has been defined in the SASI
text. Otherwise the CTS signal is ignored.

The standard value for the TS-Delay time is 0 ms.

If, within the timeout defined by the SASI instruction, the master station receives an incomplete or
invalid reply telegram, the telegram sent before is transmitted again.

Break-Length

This parameter allows the length of the break signal to be adjusted in SMO mode. This is used to
differentiate between data and address characters.

An address character is identified by a preceding break signal. A break signal is only sent by the
master station in SMO mode and can therefore also only be adjusted from that station.

It is not normally necessary to change the break length.

Saia PG5® Instruction List, 2013-10-25 174

Saia-Burgess Controls AG Communications Instructions

SASI Text (Serial S-Bus)

Break signal : Data line = low for duration of n characters including stop bit.

<MODE_DEF>

Defines communications mode and a register for the slave station number.

Format : "MODE: <sbus_node>[, <dest reg>[, <secure_node>]];"
<sbus_mode> Description
SM2 Serial S-Bus master, Data Mode
SML Serial S-Bus master, with parity bit control
SMD Serial S-Bus master, with break character
SS2 Serial S-Bus slawe, Data Mode
SS1 Serial S-Bus slawve, with parity bit control
SSO Serial S-Bus slawe, with break character
GS2 Serial S-Bus Gateway slave, Data Mode
GS1 Serial S-Bus Gateway slave, with parity bit control
GSO Serial S-Bus Gateway slave, with break character
GM Serial S-Bus Gateway master
OFF De-initialize the serial line (see also SAS| Mode OFF)
<dest _reg> Master: This Register defines the address of the remote station.
Slave: Not used
<secur e_npde>| For SM2 and GM mode only, see note below
0 = turn off secure data mode
1 = turn on secured data mode
Default is 1

Note: "Secure data mode" is a updated S-Bus protocol which assigns sequence numbers to each S-
Bus telegram, for better communications reliability. If the slave device does not support secure data
mode then it can be turned off with this option.

The remote station address has to be loaded into the register before executing SRXM/STXM.

Register address field (32 bit)

More significant word Less significant word
| S-Bus-address
Example:
LD R 100 ; Renpt e address regi ster
10 : S-Bus address 10
STXM 10 : channel no. 10
100 cTransmt 100 el enents
F 500 ; Flag 500 ...599
O 32 ;to outputs 32..131
<DIAG_DEF>

Saia PG5® Instruction List, 2013-10-25 175

Saia-Burgess Controls AG Communications Instructions

SASI Text (Serial S-Bus)

Defines diagnostic elements for Serial-S-Bus communication.

Format: "Dl AG <di ag_el enP, <di ag_reg>; "
Type Description
<diag elem> F xxxx Base address of 8 consecutive Flags (or Outputs)
O xXxxx
<diag_reg> R XXXX Address of a register for diagnostic

The 8 Flags give information about the status of the serial line. In case of error when executing a
communication instruction, more information can be obtained by examining the contents of the
Diagnostic Register.

Diagnostic Flags

The SASI texts DIAG address is the base address of 8 consecutive Outputs or Flags, used as

follows:
Address Name Description
XXXX RBSY Receiver busy
XXXX+1 REUL Receive buffer full
XXXX+2 RDIA Receiver diagnostic
XXXX+3 IBSY Transmitter busy
XXXX+4 TFUL Not used
XXXX+5 IDIA Transmitter diagnostic
XXXX+6 XBSY SASI permission
XXXX+7 NEXE Not executed

Receiver Busy (RBSY)
Set high when a slave station receives a telegram. The flag is reset as soon as the reply telegram has
been sent. This flag has no significance in the case of the master station

Receive Buffer Full (RFUL)
Set high when elements in the slave station have been changed by the master station.

Receiver Diagnostic (RDIA)

Set high when an error is noticed during receipt of a telegram. A detailed description of the error can
be obtained from the Diagnostic Register (bits 0..15).

After execution of a communication instruction, RDIA is reset only if all receiver diagnostic bits
(0...15) in the diagnostic register are 0.

Transmitter Busy (TBSY)

Set high while transmission is taking place.

Master station :

It is set high during execution of an STXM or SRXM instruction. The flag is reset as soon as a valid
reply is received.

Slawe station :

It is set high while the reply is transmitted.

Transmitter Diagnostic (TDIA)

Saia PG5® Instruction List, 2013-10-25 176

Saia-Burgess Controls AG Communications Instructions

SASI Text (Serial S-Bus)

Set high if an error occurs during transmission of a telegram. A detailed description of the error can be
obtained from the Diagnostic Register.

After execution of a communication instruction, TDIA is reset only if all transmitter diagnostic bits
(16...31) in the diagnostic register are O.

Interface busy (XBSY)
Low when the user has the permission to perform a SASI OFF to undo the S-Bus PGU for Public Line
modem.

Not Executed (NEXE)
Set high if an instruction (STXM or SRXM) has not been completed after three attempts. The flag is
reset by the next S-Bus instruction.

Diagnostic Reqister

If the diagnostic flag TDIA or RDIA is high, the diagnostic register content will help you to found the
communication trouble.

Any bit which has been set high in the diagnostic register remains so, until manually reset by the
user program or the debugger.

N
i

N
(¢}

Bit Designation Description
0 Owerrun error Owerrun of the internal receiver buffer
1
2 Framing error Usually caused by an incorrect baud rate
3 Break error Break in data line (No signification in mode SM0/SSO0)
R 4 BCC error Bad Block Check Code or CRC-16
E 5 S-Bus PGU status S-Bus PGU with Public Line modems
C 6 SASI OFF permission SASI OFF permission
E 7
| 8 Length error The telegram length is invalid
V 9
E 10 Address error Address of ACK is invalid
R 11 Status error PCD in false status, cannot execute command
12 Range error Invalid element address
13 Value error Error in the received value
14 Missing media error Address of media not defined or invalid
15 Program error Station number not allocated (or invalid)
16 Retry count Indicates the number of retries (in binary)
17 (telegram repeats in binary representation)
T 18
R 19
A 20 NAK response Negative response (NAK) was received
N 21 Missing response No response was received after timeout
S 22 Multiple NAK NAK received after retries
M 23 CTS-Timeout No CTS set after TS delay
I
T
T

N
»

Saia PG5® Instruction List, 2013-10-25 177

Saia-Burgess Controls AG Communications Instructions

SASI Text (Serial S-Bus)

E 27
R 28 Range error Invalid element address
29
30
31 Program error Attempt to transmit when unauthorised

Bit 0: Overrun Error

Set high when there is an owverrun of the internal buffer of the DUART.

Cause : Baud rate assigned is too high ? the CPU can no longer process all characters received.
This can happen if one CPU is involved in communications requiring a high rate of data transmission
via several interfaces simultaneously.

It is theoretically possible for all interfaces of a CPU (excluding the 20mA current loop) to be assigned
the maximum Baud rate of 19.200 bps at the same time.

In practice, howewer, this error can arise when there is a very high level of communication over several
interfaces.

The system program handles the interfaces with differing priorities. The highest priority is allocated to
interface 0, declining to interface 3.

Remedy :

- Reduce Baud rate.

- For fast communication, use an interface with high priority, if possible.

Bit 2: Framing Error
Set high when a character is received with a framing error (missing stopbit). This is usually caused by
setting the Baud rate wrongly.

Bit 3: Break Error
Set high when an interruption is noticed during receipt of a character.
Cause : Data line broken or wrongly set Baud rate.

Bit 4: BCC or CRC-16 Error

Set high if a CRC-16 error is identified on the incoming telegram. The incoming telegram is rejected.
Reaction of Slavwe : The received telegram will be ignored

Master : The received telegram will be ignored and the last telegram will be retransmitted.

Cause : Interference on the data line.

Remedy : Check electrical installation.

Bit 5: S-Bus PGU Status

Shows the current S-Bus PGU with Public Line Modem (PLM)

"1": S-Bus port is in STANDBY status , waiting for modem connection.

"0": No S-Bus PGU PLM port configured or in FINAL status (PCD ready in mode S-Bus lewel 2 for
modem or S-Bus PGU PLM undone yet.

Bit 6: SASI OFF Permission
Indicates that somebody has disabled an UNDO/REDO process of the S-Bus PGU PLM in performing
a RUN or STOP via S-Bus or PG4/PG3 Utilities during the SASI OFF execution delay period.

Bit 8: Length Error

Set high when a telegram is received with invalid length. This error cannot arise in a network made up
exclusively of PCD stations.

The error indicates that an invalid telegram has been received from an external system. This results in
a NAK response.

Bit 10: Address Error
Set high if an invalid telegram is received (incorrect command code).

Saia PG5® Instruction List, 2013-10-25 178

Saia-Burgess Controls AG Communications Instructions

SASI Text (Serial S-Bus)

Cause : Same as for Length Error (there is no NAK response).

Bit 11: Status Error
Set high when the PCD can not execute a command request because the slave PCD is not in the
correct status (Run/ Halt/Stop/Diconnected/...). Only used for S-Bus lewvel 2

Bit 12: Range Error

Set high if an incoming telegram contains an invalid PCD element address. This error cannot arise in
a network made up exclusively of PCD stations, as the master PCD monitors the element address
range of telegrams as they are transmitted.

The slawve station responds to this error with NAK.

Bit 13: Value Error

Set high when an invalid data value is received.

Example :

The STXM instruction is used in an attempt to load the clock. The value received for the hour is 30.
However, the maximum range for the hour is only 0..23.

The slave station responds to this error with NAK.

Bit 14: Missing Media Error
Set high when the addressed media is not defined or invalid media code for current request. Only
used for S-Bus lewel 2

Bit 15: Program Error
Set high during execution of a SASI instruction with the definition SS1 mode, if the user program
header has not been configured for the S-Bus slave station, or if the configuration is invalid.

Bits 16 and 17: Retry Count

Shows the number of repeat telegrams sent during execution of a SRXM or STXM instruction,
represented in binary. Bit 16 is the LS bit. The quality of an S-Bus network can be judged by
monitoring these two bits.

Bit 20: Negative Response
Set high if a NAK response is received from a slave. This means that the master has previously sent
an invalid telegram. Check for the following errors: Value Error, Range Error and Length Error.

Bit 21: Missing Response

Set high if no response has been received from the slave station after the time-out has elapsed.

In this case, the telegram is retransmitted (maximum two times).

Possible causes :

¢ The slawve station addressed does not exist.

¢ Installation error in network (wiring).

¢ The slawve station has received a confused telegram with a CRC-16 error.

Remedies :

¢ Check slawve station (connections, station number)

¢ Hawe the correct line termination and pull-up/down resistors been connected on the bus line at the
first and last stations ?

Bit 22: Multiple NAK

Set high if, instead of the expected ACK or NAK, a different response is received from a slave station.
Possible causes :

¢ More than one slave with the same station number.

¢ More than one master in the network.

¢ Interference on the bus line.

Remedies :

¢ As for Missing Response error

Saia PG5® Instruction List, 2013-10-25 179

Saia-Burgess Controls AG Communications Instructions

SASI Text (Serial S-Bus)

Bit 23: CTS Timeout
Set high if the time between setting the control line RTS (by the PCD) and receiving the CTS (from the
modem) exceeds the "TS Delay".

Bit 28: Range Error

Set high if the SRXM or STXM instructions indicate an element address (source or destination
address) lying outside the permitted range.

Cause : Error in user program

Ranges monitored :

Inputs/Outputs 0..8191
Flags 0..8191
Timers/Counters 0..1599
Registers 0..8191
Example : During execution of the following STXM instruction, the Range Error bit is set high.
STXM 1 ; channel 1
25 ;25 registers
R 1000 ; base address source
R 8172 ; base address destination

An attempt is made to transmit the contents of registers 1000 to 1024 in the master station to
registers 4072 to 4096 in the slave station.

Bit 31: Program Error

Set high during execution of an STXM or SRXM instruction if the interface has been assigned in SS1
mode, or if a similar instruction is already executing (TBSY flag was not polled before executing the
instruction).

Examples of SASI Texts
Mode S-Bus Parity mode (Master)

$SASI
TEXT 60 "UART: 9600; MODE: SML, R555; DI AG: F8000, R4005; "
$ENDSASI

Mode S-Bus Paritiy mode (Slave)

$SASI
TEXT 60 " UART: 9600; MODE: SS1; DI AG F8000, R4005; "
$ENDSASI

Mode S-Bus Data mode(Slave)

$SASI
TEXT 60 "UART: 9600; MODE: SS2, R55; DI AG F8000, R4005; "
$ENDSASI

See also
Using Symbols in Texts

Saia PG5® Instruction List, 2013-10-25 180

Saia-Burgess Controls AG Communications Instructions

SASI Text (Profi-S-Bus)

9.14 SASI Text (Profi-S-Bus)

Description

The master and slave channel settings must be configured from device configurator and completed

with a special text definition for the SASI instruction:

e The master SASI text defines the diagnostic flags, register address and options necessary to
communication instructions: STXM/SRXM/...

e The slave SASI text is not necessary if the user don't need the diagnostic flags and registers. All
definitions necessary are already present in device configurator.

Format
P XXXX 1S a Text number
TEXT XXXX " <MODE_DEF>; " ;comms node and Regi ster for slave station number
" <Dl AG_DEF>; " ; di agnostic elenents for serial comunication
[" <SAP_DEF>; "] ;master option to define the FDL sap nunber

["<TOUT_DEF>;"] ; master option to define the Tineout val ue

Validating SASI texts

The $SASI and SENDSASI directives can used to enclose SASI texts. This causes S-Asm to check
the syntax of the text and all characters are converted to uppercase.

<MODE_DEF>

Defines communications mode and a register for the slave station number.

Format : " MODE: <sbus_node>[, <dest _reg>];"
<sbus_mode> Description
PSM Mode Profi-S-Bus Master
PSS PSS Mode Profi-S-Bus Slave
<dest_reg> Master: this register defines the address of the remote station.
Slave: do not defined

The remote station address has to be stored in the register before to send the commands STXM/
SRXM.

This addressing uses two address fields, the upper and the lower part of the address register.

Register address field (32 bit)
More significant word Less significant word
Not used FDL/Profibus Not used S-Bus-address
address
Example:
LDL R 100 ; Renot e address regi ster
10 ; S-Bus address 10
LDH R 100
15 ; FDL/ Profi bus address 15
STXM 10 ; channel no. 10
100 ; Transmit 100 el enents
F 500 ; Flag 500 ...599
O 32 ;to outputs 32..131

Saia PG5® Instruction List, 2013-10-25 181

Saia-Burgess Controls AG Communications Instructions

SASI Text (Profi-S-Bus)

<DIAG_DEF>

Defines diagnostic elements for Profi S-Bus communication.

Format: "Dl AG <di ag_el enP, <di ag_reg>; "
Type Description
<diag elem> F xxxx Base address of 8 consecutive Flags (or Outputs)
O xXxxx
<diag_reg> R XXXX Address of a register for diagnostic

The 8 Flags give information about the status of the serial line. In case of error when executing a
communication instruction, more information can be obtained by examining the contents of the
Diagnostic Register.

Diagnostic Flags

The SASI texts DIAG address is the base address of 8 consecutive Outputs or Flags, used as

follows:
Address Name Description
XXXX RBSY Receiver busy
XXXX+1 RFEUL Receive buffer full
XXXX+2 RDIA Receiver diagnostic
XXXX+3 IBSY Transmitter busy
XXXX+4 TFUL Transmitter full
XXXX+5 IDIA Transmitter diagnostic
XXXX+6 XBSY SASI permission
XXXX+7 NEXE Not executed

Receiver Busy (RBSY)
Set high when a slave station receives a telegram. The flag is reset as soon as the reply telegram has
been sent. This flag has no significance in the case of the master station

Receive Buffer Full (RFUL)
Set high when elements in the slave station have been changed by the master station.

Receiver Diagnostic (RDIA)

Set high when an error is noticed during receipt of a telegram. More information can be obtained from
the Diagnostic Register (bits 0..15).

After execution of a communication instruction, RDIA is reset only if all receiver diagnostic bits
(0...15) in the diagnostic register are 0.

Transmitter Busy (TBSY)

Set high while transmission is taking place.

Master station :

It is set high during execution of an STXM or SRXM instruction. The flag is reset as soon as a valid
reply is received.

Slawe station :

Saia PG5® Instruction List, 2013-10-25 182

Saia-Burgess Controls AG Communications Instructions

SASI Text (Profi-S-Bus)

It is set high while the reply is transmitted.

Transmitter Diagnostic (TDIA)

Set high if an error occurs during transmission of a telegram. A detailed description of the error can be
obtained from the Diagnostic Register.

After execution of a communication instruction, TDIA is reset only if all transmitterr diagnostic bits
(16...31) in the diagnostic register are O.

Interface busy (XBSY)
Low when the user has the permission to perform a SASI OFF to undo the S-Bus PGU for Public Line
modem.

Not Executed (NEXE)
Set high if an instruction (STXM or SRXM) has not been completed after three attempts. The flag is
reset by the next S-Bus instruction.

Diagnostic Reqister

If the diagnostic flag TDIA or RDIA is high, the diagnostic register content will help you to found the
communication trouble.

Any bit which has been set high in the diagnostic register remains so, until manually reset by the
user program or the debugger.

Bit Designation Description
0
1
2
3
R 4
E 5
C 6
E 7
| 8 Length error The telegram length is invalid
\Y 9
E 10 Address error Address of ACK is invalid
R 11
12 Range error Invalid element address
13 Value error Error in the received value
14
15
16 Retry count Indicates the number of retries (in binary)
17 (telegram repeats in binary representation)
T 18
R 19
A 20 NAK response Negative response (NAK) was received
N 21 Missing response No response was received after timeout
S 22 Multiple NAK NAK received after retries
M 23
I 24 FDL No ACK No ACK ower the FDL

Saia PG5® Instruction List, 2013-10-25 183

Saia-Burgess Controls AG Communications Instructions

SASI Text (Profi-S-Bus)

T 25 FDL Negative ACK Negative ACK ower the FDL
T 26 FDL No Resource No FDL resource in the partner station
E 27 FDL No Connection No free SAP to open a connection to the server
R 28 Range error Invalid element address
29 TxNode_error Node does not exist
30
31 Program error Attempt to transmit when unauthorised

Bit 8: Length Error

Set high when a telegram is received with invalid length. This error cannot arise in a network made up
exclusively of PCD stations.

The error indicates that an invalid telegram has been received from an external system. This results in
a NAK response.

Bit 10: Address Error
Set high if an invalid telegram is received (incorrect command code).
Cause : Same as for Length Error (there is no NAK response).

Bit 12: Range Error

Set high if an incoming telegram contains an invalid PCD element address.

This error cannot arise in a network made up exclusively of PCD stations, as the master PCD
monitors the element address range of telegrams as they are transmitted.

The slave station responds to this error with NAK.

Bit 13: Value Error

Set high when an invalid data value is received.

Example:

The STXM instruction is used in an attempt to load the clock. The value received for the hour is 30.
Howewer, the maximum range for the hour is only 0..23.

The slave station responds to this error with NAK.

Bits 16 and 19: Retry Count

Shows the number of repeat telegrams sent during execution of a SRXM or STXM instruction,
represented in binary. Bit 16 is the LS bit.

The quality of an S-Bus network can be judged by monitoring these two bits.

Bit 20: Negative Response

Set high if a NAK response is received from a slave. This means that the master has previously sent
an invalid telegram.

Check for the following errors: Value Error, Range Error and Length Error.

Bit 21: Missing Response

Set high if no response has been received from the slave station after the time-out has elapsed.

In this case, the telegram is retransmitted (maximum two times).

Possible causes :

¢ The slave station addressed does not exist.

e [nstallation error in network (wiring).

¢ The slave station has received a confused telegram with a CRC-16 error.

Remedies :

e Check slawve station (connections, station number)

e Hawe the correct line termination and pull-up/down resistors been connected on the bus line at the
first and last stations ?

Saia PG5® Instruction List, 2013-10-25 184

Saia-Burgess Controls AG Communications Instructions

SASI Text (Profi-S-Bus)

Bit 22: Multiple NAK

Set high if, instead of the expected ACK or NAK, a different response is received from a slave station.
Possible causes :

¢ More than one slave with the same station number.

¢ More than one master in the network.

¢ Interference on the bus line.

Remedies :

¢ As for Missing Response error

Bit 24: FDL No ACK
Set high if, no ACK is received over the FDL layer.

Bit 25: FDL Neg ACK
Set high if, negative ACK is received over the FDL layer.

Bit 26: FDL No Resource

Set high if there are no FDL resources in the partner station.
Possible causes:

e Partner is not present

¢ Too many clients access to the sener

¢ Partner has no Profi-S-Bus Slave port open

Bit 27: FDL No Connection

is set high if no connection can open to the server.
Possible causes:

¢ There are too much clients connected on the sener.

e All SAP are used for other protocols like MPI or other.

Bit 28: Range Error
Set high if the SRXM or STXM instructions indicate an element address (source or destination
address) lying outside the permitted range.

Cause : Error in user program
Ranges monitored :
Inputs/outputs 0..8191
Flags 0..8191
Timers/counters 0..1599
Registers 0..8191
Example : During execution of the following STXM instruction, the Range Error bit is set high.
STXM 1 ; channel 1
25 ;25 registers

R 1000 ; base address source

R 8172 ; base address destination
An attempt is made to transmit the contents of registers 1000 to 1024 in the master station to
registers 4072 to 4096 in the slave station.

Bit 29:TxNode Error
Set high if the node doesn't exist in the node list. The given node is not configured.

Bit 31: Program Error

Set high during execution of an STXM or SRXM instruction if the interface has been assigned in SS1
mode, or if a similar instruction is already executing (TBSY flag was not polled before executing the
instruction).

[<sap_def>]
Master option to define the FDL sap number

Saia PG5® Instruction List, 2013-10-25 185

Saia-Burgess Controls AG Communications Instructions

9.15

SASI Text (Profi-S-Bus)

Format: " SAP: <Sap>; "
Value Description
<Sap> 1..39 FDL sap number. Must be different than Slave SAP
(Default SAP 12)

[<tout_def>]

Master option to define the Timeout value.

The default timeout for the connection is 1 second and can be changed using a SYSWR instruction:
SYSWR 6100

Ti meout ; Ti meout value (in seconds)
Format: "TOUT: <ti meout >; "
Value Description
<timeout> Timeout value.(Default 250ms)

Examples of SASI Texts
Profi-S-Bus (Master)

$SASI
TEXT 60 " MODE: PSM R555; DI AG F8000, R4005; "
$ENDSASI

Profi-S-Bus (Slawe)

$SASI
TEXT 60 " MODE: PSS; DI AG F8000, R4005; "
$ENDSASI

See also
Using symbols in Texts

SASI Text (Ether-S-Bus)

Description
The master and slave channel must be configured from device configurator and completed with a

special text definition for the SASI instruction:

e The master SASI text defines the diagnostic flags, register address and options necessary to the
master communication instructions: STXM/SRXM/...

e The slave SASI text is not necessary if the user don't need the diagnostic flags and registers. All
definitions necessary are already present in the Device Configurator.

Format
CXXXX 1S a Text nunber
TEXT XXXX " <MODE_DEF>; " ;comms node and Regi ster for slave station nunber
" <Dl AG_DEF>; " ; di agnostic elenents for Ethernet comrunication
"<OPTI ON_DEF>;" ;options for Ethernet comrunication

Saia PG5® Instruction List, 2013-10-25 186

Saia-Burgess Controls AG Communications Instructions

SASI Text (Ether-S-Bus)

Validating SASI texts

The $SASI and SENDSASI directives can used to enclose SASI texts. This causes S-Asm to check
the syntax of the text and all characters are converted to uppercase.

<MODE_DEF>

Defines communications mode and a register for the slave station number.

Format : " MODE: <sbus_node>[, <dest _reg>];"

<sbus_mode> Description

EM Ether S-Bus master mode.

ES Ether S-Bus slave mode (only used for slave diagnostics).
Note: The Ethernet slawe is configured automatically when
configurating the TCP/IP module in the PG5 Device Configurator.

<dest_reg> Master: this register defines the address of the partner station. (Type:
RXXXX)
Slave: do not defined

The remote station address has to be stored in the register before to send the commands STXM/
SRXM.
This addressing uses two address fields, the upper and the lower part of the address register.

Register address field (32 bit)

More significant word Less significant word
IP node number Not used S-Bus address
Example:
LDL R 500 ; partner address register
12 : S-Bus address 12
LDH R 500
15 : | P node nunber 15
STXM 9 : Interface no. 9
16 ;. Transmt 16 el enents
R 150 ; Register 150..165
C 500 ;. to counters 500..515
<DIAG DEF>

Defines the diagnostic elements for the Ether-S-Bus communication.

Format: "Dl AG <di ag_el en, <di ag_reg>;"
Type Description
<di ag_el enp| F xxxx Base address of 8 consecutive Flags (or Outputs)
O XXXX
<di ag_reg> | R xxxx Address of a register for diagnostic

Saia PG5® Instruction List, 2013-10-25 187

Saia-Burgess Controls AG Communications Instructions

SASI Text (Ether-S-Bus)

The 8 Flags give information about the status of the channel. In case of error when executing an
communication instruction, more information can be obtained by examining the contents of the
Diagnostic Register.

Diagnostic Flags

The SASI texts DIAG address is the base address of 8 consecutive Outputs or Flags, used as

follows:
Address Name Description
XXXX RBSY Receiver busy
XXXX+1 RFEUL Receive buffer full
XXXX+2 RDIA Receiver diagnostic
XXXX+3 TBSY Transmitter busy
XXXX+4 TRUL Transmitter full
XXXX+5 TDIA Transmitter diagnostic
XXXX+6 XBSY SASI permission
XXXX+7 NEXE Not executed

Receiver Busy (RBSY)
Set high when a slave station receives a telegram. The flag is reset as soon as the reply telegram has
been sent. This flag has no significance in the case of the master station

Receive Buffer Full (RFUL)
Set high when elements in the slave station have been changed by the master station.

Receiver Diagnostic (RDIA)

Set high when an error is noticed during receipt of a telegram. A detailed description of the error can
be obtained from the diagnostic register (bits 0..15).

After execution of a communication instruction, RDIA is reset only if all receiver diagnostic bits
(0...15) in the diagnostic register are 0.

Transmitter Busy (TBSY)

Set high while transmission is taking place.

Master station :

It is set high during execution of an STXM or SRXM instruction. The flag is reset as soon as a valid
reply is received.

Slave station :

It is set high while the reply is transmitted.

Transmitter Diagnostic (TDIA)

(TDIA) is set high if an error occurs during transmission of a telegram. A detailed description of the
error can be obtained from the diagnostic register. After execution of a communication instruction,
TDIA is reset only if all transmitter diagnostic bits (16...31) in the diagnostic register are 0.

Interface busy (XBSY)
Low when the user has the permission to perform a SASI OFF to undo the S-Bus PGU for Public Line
modem.

Not Executed (NEXE)
Set high if an instruction (STXM or SRXM) has not been completed after three attempts. The flag is

Saia PG5® Instruction List, 2013-10-25 188

Saia-Burgess Controls AG

Communications Instructi

ons

reset by the next S-Bus instruction.

Diagnostic Reqister

SASI Text (Ether-S-Bus)

If the diagnostic flag TDIA or RDIA is high, the diagnostic register content will help you to found the
communication trouble.
Any bit which has been set high in the diagnostic register remains so, until manually reset by the
user program or the debugger.

Bit Designation Description
0 Owerrun error Owerrun of the internal receiver buffer
1
2 Framing error Usually caused by an incorrect baud rate
3 Break error Break in data line
R 4 BCC error Bad Block Check Code or CRC-16
E 5
C 6
E 7
I 8 Length error The telegram length is invalid
Vv 9
E 10 Address error Address of ACK is invalid
R 11
12 Range error Invalid element address
13 Value error Error in the received value
14 RxBroadcast_error Error while receiving a not alowed broadcast telegram
over IP.
15
16 Retry count Indicates the number of retries (in binary)
17 (telegram repeats in binary representation)
T 18
R 19
A 20 NAK response Negative response (NAK) was received
N 21 Missing response No response was received after timeout
S 22 Multiple NAK NAK received after retries
M 23 Target not present Target station not present
I 24
T 25
T 26
E 27
R 28 Range error Invalid element address
29 TxNode_error Node does not exist
30 TxBroadcast_error Error when sending broadcast tlg over IP
31 Program error Attempt to transmit when unauthorised

Saia PG5® Instruction List, 2013-10-25

189

Saia-Burgess Controls AG Communications Instructions

SASI Text (Ether-S-Bus)

Bit 0: Overrun Error

Set high when there is an overrun of the internal buffer of the DUART.

Cause: Baud rate assigned is too high ? the CPU can no longer process all characters received.
This can happen if one CPU is inwolved in communications requiring a high rate of data transmission
via sewveral interfaces simultaneously. It is theoretically possible for all interfaces of a CPU (excluding
the 20mA current loop) to be assigned the maximum Baud rate of 19.200 bps at the same time. In
practice, howewer, this error can arise when there is a very high level of communication over several
interfaces. The system program handles the interfaces with differing priorities. The highest priority is
allocated to interface 0, declining to interface 3.

Remedy :

- Reduce Baud rate.

- For fast communication, use an interface with high priority, if possible.

Bit 2: Framing Error
Set high when a character is received with a framing error (missing stopbit). This is usually caused by
setting the Baud rate wrongly.

Bit 3: Break Error
Set high when an interruption is noticed during receipt of a character.
Cause : Data line broken or wrongly set Baud rate.

Bit 4: BCC or CRC-16 Error

Set high if a CRC-16 error is identified on the incoming telegram. The incoming telegram is rejected.
Reaction of Slawve: the received telegram will be ignored

Reaction Master: the received telegram will be ignored and the last telegram will be retransmitted.
Cause : Interference on the data line.

Remedy : Check electrical installation.

Bit 8: Length Error

Set high when a telegram is received with invalid length. This error cannot arise in a network made up
exclusively of PCD stations. The error indicates that an invalid telegram has been received from an
external system. This results in a NAK response.

Bit 10: Address Error
Set high if an invalid telegram is received (incorrect command code).
Cause : Same as for Length Error (there is no NAK response).

Bit 11: Status Error
Set high when the PCD can not execute a command request because the slave PCD is not in the
correct status (Run/ Halt/Stop/Diconnected/...). Only used for S-Bus lewvel 2

Bit 12: Range Error

Set high if an incoming telegram contains an invalid PCD element address. This error cannot arise in
a network made up exclusively of PCD stations, as the master PCD monitors the element address
range of telegrams as they are transmitted. The slave station responds to this error with NAK.

Bit 13: Value Error

Set high when an invalid data value is received.

Example :

The STXM instruction is used in an attempt to load the clock. The value received for the hour is 30.
However, the maximum range for the hour is only 0..23.

The slave station responds to this error with NAK.

Bit 14: Missing Media Error
Set when an invalid broadcast telegram is received (IP broadcast ? IP node = 65535 and S-Bus
address < 255).

Saia PG5® Instruction List, 2013-10-25 190

Saia-Burgess Controls AG Communications Instructions

SASI Text (Ether-S-Bus)

Bit 16 and 19: Retry Count (Bits 16 and 19)

Shows the number of repeat telegrams sent during execution of an SRXM or STXM instruction,
represented in binary. Bit 16 is the LS bit. The quality of an S-Bus network can be judged by
monitoring these two bits.

Bit 20: Negative Response
Set high if a NAK response is received from a slave. This means that the master has previously sent
an invalid telegram. Check for the following errors: Value Error, Range Error and Length Error.

Bit 21: Missing Response

Set high if no response has been received from the slave station after the time-out has elapsed.

In this case, the telegram is retransmitted (maximum two times).

Possible causes :

¢ The slawve station addressed does not exist.

¢ Installation error in network (wiring).

¢ The slawve station has received a confused telegram with a CRC-16 error.

Remedies :

¢ Check slawve station (connections, station number)

¢ Hawe the correct line termination and pull-up/down resistors been connected on the bus line at the
first and last stations ?

Bit 22: Multiple NAK

Set high if, instead of the expected ACK or NAK, a different response is received from a slave station.
Possible causes :

¢ More than one slave with the same station number.

¢ More than one master in the network.

¢ Interference on the bus line.

Remedies :

¢ As for Missing Response error

Bit 23: CTS Timeout
Set high if the target station can not be reached in the network Connection cable defect or power
interrupted to the station.

Bit 28: Range Error
Set high if the SRXM or STXM instructions indicate an element address (source or destination
address) lying outside the permitted range.

Cause : Error in user program
Ranges monitored :
Inputs/Outputs 0..8191
Flags 0..8191
Timers/Counters 0..1599
Registers 0..8191
Example : During execution of the following STXM instruction, the Range Error bit is set high.
STXM 1 ; channel 1
25 ;25 registers
R 1000 ; base address source
R 8172 ; base address destination

An attempt is made to transmit the contents of registers 1000 to 1024 in the master station to
registers 4072 to 4096 in the slave station.

Bit 29: TxNode Error
Set high if the node does not exist in the node list, or if it has not been configured, or if an invalid
broadcast telegram has been sent (IP broadcast ® IP node = 65535 and S-Bus address < 255).

Saia PG5® Instruction List, 2013-10-25 191

Saia-Burgess Controls AG

Communications Instructions

9.16

SASI Text (Ether-S-Bus)

Bit 30: TxBroadcast Error

Set high if an invalid broadcast telegram has been sent (IP broadcast ® IP node = 65535 and S-Bus

address < 255).

Bit 31: Program Error

Set high during execution of an STXM or SRXM instruction if the interface has been assigned in SS1
mode, or if a similar instruction is already executing (TBSY flag was not polled before executing the

instruction).

<OPTION_DEF>

Defines the option elements for the Ethernet communication.

Format: "[<t out _def>], [<dbx_def>];"

Type Description

< tout _def> | TOUT: xxX Is the timeout value of the EM mode in ms. Default
timeout is 500ms (lowest limit value 100 ms).

< port_def> [PORT: xxx Optional selection of S-Bus communication port:
Default = 0

1 = automatic allocated port 1024 ... 4999

X =5000 ... 65535

Examples of SASI Texts

Mode Ether-S-Bus (Master)

$SASI
TEXT 100 " MODE: EM R100; DI AG F1000, R1000; TOUT: 500"
$ENDSASI

Mode Ether-S-Bus (Slawe)

$SASI
TEXT 101 " MODE: ES; DI AG F2000, R2000"
$ENDSASI

See also
Using symbols in Texts

SASI Text (Profibus-DP)

Description

The SASI text is generated by the PROFIBUS-DP configurator and has the following format:

Master:
" MODE: DPM CONF: DBXxxxx; DI AG Fyyyy, Rzzzz"

Slave:
" MODE: DPS; CONF: DBXxxxXx; DI AG Fyyyy, Rzzzz"

Saia PG5® Instruction List, 2013-10-25

192

Saia-Burgess Controls AG Communications Instructions

SASI Text (Profibus-DP)

XXXX Specific number of a DBX containing all PROFIBUS-DP information.
yyyy Specific number of the first diagnostic flag or diagnostic output
227z Specific number of the first diagnostic register.

Diagnostics
Diagnostics of a PROFIBUS-DP communication takes place in the usual way for the PCD, i.e. for

each communications channel, 8 flags are assigned for rough diagnosis and up to a maximum of 70
registers for fine diagnosis.
The diagnostic data addresses are defined in the Device Configurator.

Diagnostic flags with PROFIBUS-DP

Address Name Description

XXXX SLAVE_ERR Slave error
Error in the slave

XXXX+1 GCS_BUSY Global Control Senice
is processing

XXXX+2 SERV_BUSY Senice function
is processing

XXXX+3 DATA_EXCH Data exchange
Exchange of data between master
and slave

XXXX+4 Not used

XXXX+5 Not used

XXXX+6 CONF_RCV Configuration received
Slave has received a configuration
telegram from the master

XXXX+7 CONF_STAT Configuration status
Indicates whether configuration
data is OK

Slave_error (SLAVE_ERR)

Master: H = Error in one or more slaves
L = No error in slaves
Slawe: H = Error in slave

L = No error in Slave
Master:
The number of the slave that generated the error can be obtained from diagnostic registers +3 to +6.
This flag is set low when, after completion of a 'Read slave diagnostic data' telegram, there are no
longer any errors present.

Global Control Service (GCS_BUSY)

Master: H = Global Control Senice is busy
Global Control Senice has finished
Slave: Not used

Global Control Senices are: Freeze, Unfreeze, Sync and Unsync.

Service (SERV_BUSY)

Saia PG5® Instruction List, 2013-10-25 193

Saia-Burgess Controls AG Communications Instructions

SASI Text (Profibus-DP)

Master: H = Senice function is busy
L = Senice function has finished
Slave: Not used.

Senice functions are:

¢ Stop data exchange between the PCD controller's process image memory and PROFIBUS-DP card
memory.

¢ Read slave diagnostic data.

¢ Activate or deactivate a slave.

Data Exchange (DATA_EXCH)

Master: H = Data exchange on the PROFIBUS-DP network is running.
L = Data exchange on the PROFIBUS-DP network has halted.

Slawe: H = Connection with master established (executing data
exchange).

L = No data exchange connection with master.
The flag becomes = L only after the watchdog time is elapsed

Configuration received (CONF_RCV)

Master: Not used.
Slave: H = Slawve has received a configuration telegram from master.
L = Slave has not received a configuration telegram from master.

Configuration status (CONF_STAT)

Master: Not used.

Slawe: H = The configuration telegram from the master corresponds to
the slave configuration.
L = The configuration telegram from the master does not
correspond to the slave configuration.

Diagnostic Registers with PROFIBUS-DP
Diagnostic registers are grouped by the following areas:

Senice area

Station area

Standard PROFIBUS-DP diagnostic area
Expanded PROFIBUS-DP diagnostic area

The maximum size of diagnostic registers is defined by the ‘Max_Diag_Data_Len' parameter from the
slave device GSD file, since slave diagnostic data is stored in the diagnostic registers.

'‘Max_Diag_Data_Len' can have a maximum size of 244 bytes. When there is more than one slave,
the largest 'Max_Diag_Data_Len' parameter always applies.

At present, the diagnostic registers are only used by the master.
Division of diagnostic registers:

Areas Address Description
Senice area | Base +0 Result of Global Control Senice GCS
Base +1 Result of IL instruction SCON(I) Fct. 0,1,8,9

Saia PG5® Instruction List, 2013-10-25 194

Saia-Burgess Controls AG

Communications Instructions

SASI Text (Profibus-DP)

Base +2 Result of IL instruction SCON(I) Function #7

Base +3 Error status station 0...31
Station area | Base +4 Error status station 32...63

Base +5 Error status station 64...95

Base +6 Error status station 96...126
Standard Base +7 Length of PROFIBUS-DP diagnostic (byte 6...243)
Profibus- DP | Base +8 Standard DP diagnostic (byte 0 and 1)
Diagnostic Base +9 Standard DP diagnostic (byte 2 ... 5)

Base +10 Expanded DP diagnostic (byte 6...9)
Expanded Base +11 Expanded DP diagnostic (byte 10...13)
Profibus DP | Base +12 Expanded DP diagnostic (byte 14...17)
Diagnostic Base +13 Expanded DP diagnostic (byte 18...21)
/ 1
/

Base +69 Expanded DP diagnostic (byte 242 and 243)

Description of Diagnostic Registers

Result GCS (base + 0)

In this register the result of the 'Global Control Senice' is stored. The 'Global Control Senvice' is

triggered by function codes 13..16 of the SCON instruction.

The result codes are the same as described under: 'Result of IL instruction SCON(l) Fct. 0, 1, 8,9

(Base + 1).

Result of IL instruction SCON(I)

Fct. 0, 1, 8,9 (base + 1)
In this register the results of the following functions are stored:

e Run/ Stop Data Exchange
SCON wit function code O.

¢ Read slave diagnostics.

SCON with function code 1.
e Activate or deactivate slave.

SCON with function code 8 or 9.

The following values are possible here:

Word | Description

Instruction has been successfully completed

Incorrect parameter (contact your local Saia Burgess Controls agent)

Not possible (contact your local Saia Burgess Controls agent)

No local resources (contact your local Saia Burgess Controls agent)

DP error (contact your local Saia Burgess Controls agent)

Slawe is not OK

Not defined

Status conflict (contact your local Saia Burgess Controls agent)

O IN[foo(g|~[fw]|N|F|O

Error in acyclic master-slave data exchange (contact your local Saia
Burgess Controls agent)

Saia PG5® Instruction List, 2013-10-25

195

Saia-Burgess Controls AG

Communications Instructions

SASI Text (Profibus-DP)

20

Timeout

21

Station number does not exist

22

Instruction executed more than once (Diag Flag base+2 has not been
checked)

23

Incorrect DP response

24

Incorrect parameter

Result of IL instruction SCON(I) Fct. 7 (base + 2)
The result of the following functions are stored in this register:

¢ Read station status.
SCON with function code 7.

The register is coded here as follows:

31..8
7

6
5.4
3.0

Not used

System diagnostic flag (error)

Data exchange flag

Resened

4-bit status, decimal value has these meanings:
e 0: Cyclical data exchange running
: Error in connection

: Connection broken

. Stopped

. Slave deactivated

. Slave not defined

..15: Not used

°
OO, WNPE

Error status stations 0...31 (base + 3)

Each bit in this register corresponds to the station number of a slave device. As soon as an error

occurs in a slave device, the relevant bit is set high.
The bit is set low when, after completion of a 'Read slave diagnostic data' telegram, there is no longer
any error present.

31
30

1
0

Slave 31
Slave 30

Slave 1
Slave 0

Error status stations 32...63 (base + 4)

Same function as for diagnostic register (base + 3) with errors for stations 32 to 63.

Error status stations 64...95 (base + 5)

Same function as for diagnostic register (base + 3) with errors for stations 64 to 95.

Error status stations 96...125 (base + 6)

Same function as for diagnostic register (base + 3) with errors for stations 96 to 125.

Length of PROFIBUS-DP diagnostic bytes 6...243 (base +7)
In this register, after an SCON instruction with function 1, the total length of diagnostic data (standard
PROFIBUS-DP + external PROFIBUS-DP diagnostic) is stored in bytes. The length of diagnostic data

differs in each slave device, amounting to no less than 6 bytes and no more than 244 bytes.

Saia PG5® Instruction List, 2013-10-25

196

Saia-Burgess Controls AG Communications Instructions

SASI Text (Profibus-DP)

Standard DP diagnostic: bytes 0 and 1 (base +8)
In this register the first two bytes of standard PROFIBUS-DP diagnostic data are stored. Division into
diagnostic registers is as follows:

Register# = Base +8
3 2 1 0
Not used | Not used | DP byte 0 | DP hytel

DP diagnostic byte 0, register bits 15..8:

15 Diag.deactivated: (set master)

14 Resenvec

13 Sync_mode: Sync command received

12 Diag.freeze_mode: Freeze command received
11 Diag.WD_ON: Response monitoring active

10 Always 1

9 Diag.Stat_diag: Static diagnosis (Byte Diag-Bits)
8 Diag.Prm_req: Slave parameters must be reset

DP diagnostic byte 1, bits 7..0:

7 Diag.master_lock: (set Master) Slave parameters set by another master
Diag.prm_fault: Incorrect parameter set (Ident number etc.)
Diag.invalid_slave_response: (set slawve fixed to 0)

Diag.not_supported: Requested Fct. is not supported in slave.
Diag.ext_diag: Slave has external diagnostic data.
Diag.cfg_Fault: Configuration data does not match.
Diag.station_not_ready: Slave is not ready for data exchange.
Diag.station does not exist(set master)

OFRNWK~UITO

Standard DP diagnostic: bytes 2 to 5 (base +9)
In this register bytes 2 to 5 of the standard PROFIBUS-DP diagnostic data are stored.
The division is as follows:

Register# = Base +9
3 2 1 0
DP byte 2 | DP byte 3 | DP byte 4 | DP byte 9

DP diagnostic byte 2, bits 31..24:
31 Diag.ext_overfl
30..24 Reserved

DP diagnostic byte 3, bits 23..16:
23..16 Diag.master_add: Master address after parameter setting
(FF without parameter setting)

DP diagnostic byte 4, bits 15..8:
15..8 Slawve ident number, high byte

DP diagnostic byte 5, bits 7..0:
7..0 Slawve ident number, low byte

Expanded DP diagnostic: bytes 6 to 9 (base +10)
In this register bytes 6 to 9 of the expanded PROFIBUS-DP diagnostic are stored.
The division is as follows:

Saia PG5® Instruction List, 2013-10-25 197

Saia-Burgess Controls AG

9.17

SASI Text (Profibus-DP)

Register# = Base +10
3 2 1 0
DP byte 6 | DP byte 7 | DP byte 8 [DP byte 9

DP diagnostic byte 6, bits 31..24:
31..24 Length of expanded diagnostic in bytes

DP diagnostic bytes 7, 8 and 9, bits 23..16, 15..8, 7..0
23..0 Meaning of bits must be obtained from slave descriptions.

Expanded DP diagnostic: bytes X0 to X3 (base +2)
In these registers the expanded diagnostic information is stored.
The division is always as follows:

Register# = Base +Z
3 2 1
X0 X1 X2 X3

o

$SASI..$ENDSASI

Description
These assembler directives can be used to delimit texts which are used by the SASI instruction.

All texts enclosed within these directives are checked by the assembler and any errors detected.
If $SASI .. $ENDSASI are not used, it is possible to enter an invalid text which may cause incorrect
initialization of the channel (Error flag set).

Format

$SASI

<SAS|I Text definition>
$ENDSASI

Example
XOB 16

SASI 0 cinitialize serial channel 0
100 ;using text 100

EXOB
$SASI
Text 100 is checked as SASI text by the Assenbler

TEXT 100 "UART: 9600, 7, E, 1; MODE: MCO; DI AG F1000, R4000; "
$ENDSASI

Note
If $SASI .. $ENDSASI are not used, it is possible to enter an invalid text which may cause incorrect
initilialisation of the serial channel.

New SASI| with '$'
SASI text accepts $
e.g.: "UART: $Ra, $Rb, $Rc, $Rd; MODE: $Re, $Rf; DI AG F$Rg, R$Rh; "

Ra Baudrate 110 .. 38400 (numeric)
Rb Bits 7, 8 (numeric)

Saia PG5® Instruction List, 2013-10-25

Communications Instructions

198

Saia-Burgess Controls AG

Communications Instructions

9.18

$SASI..$ENDSASI

Rc Parity E, O, N (ASCII coded)

Rd Stop 1 or 2 (numeric)

Re Mode 'MCQO0', 'SM2' etc. (ASCII coded)

Rf Station Register with S-Bus station (numeric)

Rg Diagnostic Flags Register with the base Diagnostic Flag number (0 .. 8191 numeric)
Rh Diagnostic Register Register with the Diagnostic Register number (0 .. 4095 numeric)

Using Symbols in $SASI Texts

Description

Symbols can also be used in SASI texts. The value and optionally the type of the symbol is inserted

into the text.

The symbol is written outside the text which is in double quotes, and must be separated from the text

and other symbols by a comma.
After the symbol, an optional field width and prefix type can be given.

Format
symbol [. [[] [0] width] [t | T]]
synbol The symbol name. This can actually be any expression which includes a
symbol, for example: Mot or On + 100, ...
Symbols with floating point values are not permitted.
The dot immediately after the symbol indicates that a field width and/or a prefix
is present.
wi dt h The field width: the number of digits or spaces required for the number. If the
width begins with a 0, leading zeros are inserted.
t | T Optional prefix type t or T. If t , the value is prefixed with the symbol's type in
lower case (o, f, r, ...). If T, the symbol's type is in upper case (O, F, R,...)
Example
BAUD EQU 9600
D FLAGS EQU F 500
D REG EQU R 4095
XOB 16
SASI 1

3999

TEXT 3999 "UART:", BAUD, ",7,E, 1; MODE: MCO; "
"DIAG ", D_FLAGS. T, ",", D_REGT,

EXCB

The resulting text will be:

TEXT 3999 "UART: 9600, 7, E, 1; MODE: MCO; "
"Dl AG F500, R4095; "

See also
SASI Instruction

Saia PG5® Instruction List, 2013-10-25

199

Saia-Burgess Controls AG Communications Instructions

9.19

9.20

Using Symbols in $SASI Texts

SASI Mode OFF

Description
If the channel has been configured by a SASI instruction, then a new SASI instruction will fail unless a

SASI| “MODE:OFF” command is done.

Format
TEXT xxxx " MODE: OFF"

See also
SASI| Mode OFF on S-Bus PGU Slawe
SASI Mode OFF on S-Bus PGU Slave

Description
If the channel has been configured by the Device Configurator as a PGU channel , then the SASI

instruction will fail unless a SASI “MODE:OFF” command is done.

Format
TEXT xxxx "MODE: OFF, xx, yy, zz"

XX timeout before the channel is unassigned: [0;300] [S]
yy another SASI instruction must be executed before this timeout is over: [0;5000] [MS]
zz not used by FW: [0;1]

See also
SASI| Mode OFF

Practical example

XOB 16
SASI 1

DI AG ; " DI AG FO, RO" assign diag flags and register
EXOB
CcoB 0

0
SASI 1

OFF ; " MODE: OFF, ..."
STH XBSY
JR H-1
SASI 1

User SASI ;assign new node
ECOB

- The XBSY flag is set to 1 after executing the SASI MODE:OFF, while the timeout xx has not
elapsed.

- A new SASI (except SASI DIAG) can only be executed after a SAS| MODE:OFF.

- If the yy timeout elapses before a new SASI is executed, the channel will reassigned as SBus PGU

Saia PG5® Instruction List, 2013-10-25 200

Saia-Burgess Controls AG Communications Instructions

SASI| Mode OFF on S-Bus PGU Slawe

slave.
- A SASI without the “MODE:OFF” text will give an error on SBus PGU slawe.

9.21 SRXD - Receive Character (Mode C)

Description
Loads the next character (byte) present in the Receive Buffer of the channel given by the 1st operand

into the Register given by the 2nd operand.

The instruction SRXD should be executed only if there is a character ready, indicated by RBSY = H
otherwise the Error flag is set.

After SRXD is executed, the least significant 8 bits of the Register contain the character, all other
Register bits are set to 0.

Up to 512 characters can be in the Receive Buffer. Each time SRXD is executed, the next character
is read.

If the Receive Buffer overruns (more than 512 characters), then there will be a receive error (the RDIA
flag and the corresponding status bit in the channels Diagnostic Register are set).

Format
SRXD[X] [=] channel ; channel nunber
[=] reg (i) ; Regi ster to receive the character

Example
SRXD 3 :read a character from channel 3

R 100 ;and store it in Register 100
Flags
ACCU Unchanged
Status E Error flag set if the SRXD instruction is executed with an empty receive buffer or if the
Flags channel has not been correctly initialized or does not exist.
See also

SASI Assign Serial Interface
STXD Transmit Character (Mode C)
STXT Transmit Text (Modes C)

Practical example
Typical application in a Bloctec structured program:

STH F RBSY ;i1 f there is a character waiting

CFB H READ CHAR :then read this character

FB READ CHAR :FB to read a character

[STH H RDI A] ;if there is a Receive Error

[CFB H RCV_ERROR] ;then handle the error

SRXD 0 :read the character on channel 0
R 999 rand store it in R 999

EFB

Note

In simple non-critical applications the error handling (above between brackets) can be omitted.

Saia PG5® Instruction List, 2013-10-25 201

Saia-Burgess Controls AG Communications Instructions

9.22

9.23

STXD - Transmit Character (Mode C)

STXD - Transmit Character (Mode C)

Description
The character held in the least significant 8 bits of the Register given in the 2nd operand is placed in

the Transmit Buffer of the serial channel given by the 1st operand. It is then transmitted automatically.

The Transmit Buffer can hold up to 512 characters. If it is empty (all characters have been
transmitted), the TBSY status flag is set Low. While there are characters waiting to be transmitted,
TBSY remains High.

If the TDIA status is High after executing an STXD, this indicates a problem, and the Diagnostic
Register should be examined.

Format
STXD[X] [=] channel ; channel nunber
[=] reg (i) ; Regi ster containing the character to transmt

Example
STXD 1 ;transmt the character in

R 100 ; Regi ster 100 (bits 7..0) on channel 1
Flags
ACCU Unchanged
Status E Error flag set if the channel has not been correctly initialized or does not exist.
Flags
See also

SASI Assign Serial Interface
SRXD Receive Character (Mode C)
STXT Transmit Text (Modes C)

Practical example
Typical application in Bloctec structured program:

STL F TFUL

i f there is roomin the TX buffer
CFB H SEND_CHAR ;then send a character
FB SEND_CHAR ; FB to send a character
STXD 0 ;send on channel O
R 900 ;the character stored in R 900
[STH H TDI Al ;if there is a Transmt Error
[CFB SND_ERROR] ;then handl e the error
EFB
Note

In simple or non-critical applications the error processing (above between brackets) can be omitted.

STXT - Transmit Text (Mode C)

Description
Transmits the Text indicated in the 2nd operand via the serial channel given by the 1st operand.

Status bit XBSY is set High, and the PCD transmits the Text. XBSY is set Low when the Text has
been transmitted.

Saia PG5® Instruction List, 2013-10-25 202

Saia-Burgess Controls AG Communications Instructions

STXT - Transmit Text (Mode C)

The normal execution of the program is not affected because the Text is transmitted as a background
operation.

Texts can contain control strings to allow the formatted transmission of data values, see Texts
Containing Data and Text Output Formats.

The XBSY flag indicates the completion of the background task. Whilst XBSY is High no other
communications instruction should be performed on this serial channel.
The NEXE diagnostic flag is set if the Text contains a bad control string.

Format

STXT[X] [=] channel ; channel nunber
[=] text (i) ;text nunmber to transmt

Example

STXT 0 ;transmt Text 123 on serial channel O
123

Flags

ACCU Unchanged

Status Flags E Error flag set if the channel has not been correctly initialized or does not exist.

See also

SASI Assign Serial Interface

SRXD Receive Character (Mode C)
STXD Transmit Character (Mode C)
Texts Containng Data (Mode C)
Text Output Formats (Mode C)
Using Symbols in Texts

Practical example
When Input 1 goes High, the following text should be sent: "Abort!".

XOB 16
SASI 1 ;initialize serial channel 1
0 ;With paraneters stored in Text O
EXOB
$SASI

; 9600 Baud, 7 Data bits, Even Parity, 1 Stop bit

; Mode MCO, Diagnostic flags: F1000..F1007, Di agnostic register: R1000
TEXT 0 "UART: 9600, 7, E, 1; MODE: MCO; DI AG F1000, R1000; "

$ENDSASI

TEXT 10 "Abort! <CR><LF>"

CcoB 0
0
STH I 1 ;1 f Input 1 goes High
DYN F O ; (rising edge detection)
ANL F 1006 ;and not already transmitting (F1006 = XBSY)
JR L End
STXT 1 ;then send Text 10 over serial channel 1
10
End:
ECOB

Saia PG5® Instruction List, 2013-10-25 203

Saia-Burgess Controls AG Communications Instructions

9.24

STXT - Transmit Text (Mode C)

Texts Containing Data (Mode C)

Transmitted texts can contain data such as the clock value, the state of an Input, the contents of a
Register, etc. This is done by using a special character sequence in the Text, beginning with $ or @,
as shown in the table below.

Values can also be formatted for field width, left/right justified etc, see Text Output Formats (Mode C).

NOTE
In Mode C texts, media addresses must always be 4 digits, or with firmware version 1.20.0 or later 5
digits can be used for addresses > 9999.
To ensure 4 or 5 digits, use the format Synbol . 04T, see Using symbols in Texts.
"$", Synbol.04T or"$R', Synbol. 04

If the symbol has a 5-digit address, S-Asm will automatically use 5 digits and insert an X character so
the firmware knows it's 5 digits. This means you can still use the Synbol . 04T format for 5-digit
addresses.

For example:
; This creates text "Register 1234 = $R1234<CR><LF>"
Symbol 1 EQU R 1234 ;4 digit address
TEXT 4000 "Register ", Symboll, " = $", Synbol 1. 04T, "<CR><LF>"

; This creates text "Register 12345 = $RX12345<CR><LF>"
Symbol 2 EQU R 12345 ;5 digit address
TEXT 4001 "Register ", Symbol2, " = $", Synbol 2. 04T, "<CR><LF>"

; This also creates text "Register 12345 = $RX12345<CR><LF>". but
;the media type nust be in the text, the format does not have 'T':

Symbol 3 EQU R 12345 ;5 digit address
TEXT 4003 "Register ", Synmbol2, " = $RX", Synbol 2. 05, "<CR><LF>"

= Direct Addressin

Absolute media address is provided.

$H Time (Hour,Minute,Second): hh:mm:ss

$HH Time (Hour only): hh

$HM Time (Minute only): mm

$HS Time (Second only): ss

$D Date (Year, Month, Day): yy-mm-dd

$d Date (Day, Month, Year): dd.mm.yy

$DD Date (Day only): dd

$DM Date (Month only): mm

$DY Date (Year only): yy

$W Week (Week number, Day of week): ww-dd

$VN Week (Week number only): ww

$VD Week Day (Day number only): dd

$innnn | Logical state of a single Input (0, 1) nnnn = media address
$onnnn Logical state of a single Output (0, 1) (must be 4 digits)

Saia PG5® Instruction List, 2013-10-25 204

Saia-Burgess Controls AG Communications Instructions

Texts Containing Data (Mode C)

$fnnnn | Logical state of a single Flag (0, 1)
$I nnnn Logical state of 8 Inputs (nnnn to nnnn+7) nnnn = first media address
$Onnnn Logical state of 8 Outputs (hnnn to nnnn+7) (must be 4 digits)

$Fnnnn | Logical state of 8 Flags (nnnn to nnnn+7)

$Cnnnn | Counter contents nnnn = media address

$Rnnnn Register contents (must be 4 digits)

$Tnnnn | Timer contents

$Lnnnn Includes another Text (max. 3 lewels) nnnn = Text number
See also the new $I nnnn below (must be 4 digits)

$xnn Character 'x' is repeated 'nn' times nn must be 2 digits

The character cannot be one of these:
$: HDAd Wi of |l OFCRTLA

$AnnNn | Output Register contents as ASCII character | nnnn = Register number
(must be 4 digits)

Example of $Annnn:

" $A0999" when R 999 = 00000000 hex " NUL'
" $A0999" when R 999 = 00000061 hex tal

" $A0999" when R 999 = 00006162 hex "ab’

" $A0999" when R 999 = 00616263 hex "abc’
" $A0999" when R 999 = 61626364 hex "abcd'’

Preceding zeros are not output. An ASCII zero is only output if the lowest value byte is equal to 0.

New formats for firmware version 1.20.00 and later

SbxxXX. yyyyy Data Block element Xxxx = DB number
yyyyy = element number
0..16383, must be 5 digits

$l nnnn Includes another Text but only up to nnnn = Text number, 4
@ nnnn the first <0> character in the Text. If digits

the Text does not contain <0>, the
entire Text is included.

$RXnnnnn If an X character precedes the X = indicates 5 digits
@RXnnnnn address, then a 5-digit address is nnnnn = 5-digit R or F
$FXnnnnn assumed. Use this for Register and number

Flag addresses > 9999. Note: In some
cases S-Asm will automatically insert
the X if it knows the address is >
9999.

Examples of formats containing 5-digit R or F addresses > 9999, use an X after the data type:
$RX16383
$FX16383

Saia PG5® Instruction List, 2013-10-25 205

Saia-Burgess Controls AG Communications Instructions

Texts Containing Data (Mode C)

@ = Indirect Addressing

The media address is supplied in a Register.

@ nnnn Logical state of a single Input (0, 1) nnnn = media address

@nnnn Logical state of a single Output (0, 1) (must be 4 digits)

@ nnnn Logical state of a single Flag (0, 1)
@ nnnn Logical state of 8 Inputs (add to add+7)
@nnnn Logical state of 8 Outputs (add to add+7)

@-nnnn Logical state of 8 Flags (add to add+7)
Use @ Xnnnnn for 5-digit address

@nnnn | Counter contents

@nnnn Register contents
Use @Xnnnnn for 5-digit address

@nnnn Includes another Text (max. 3 lewvels)
See also @ nnnn above

@nnnn Character 'x' is repeated Register contents

times. The character cannot be one of these:
@: 1 of |l OFCRL

NOTE: To output a single '$' use "$$", to output a single '@' use "@@".
Register numbers above 9999 cannot be used (more than 4 digits).

Example 1
I npAdds EQU I 0

RegAdds EQU R 100

TEXT 10 "Date: $d Tinme: $H<CR><LF>"

"I nput 0..7: $", I npAdds. 04T, "<CR><LF>"
"Regi ster 100: $R', RegAdds. 04, "<CR><LF>"
"$+32<CR><LF>"

Assembling and linking produces this text:
TEXT 10 "Date: $d Tinme: $H<13><10>"

"I nput 0..7: $1 0000<13><10>"
"Regi ster 100: $R0100<13><10>"
"$+32<13><10>"

Assuming that this text is printed on the 16th August 2012 at 09:32 am, that Inputs 0 and 1 are High,
and the contents of Register 100 is 12345, the following will be printed:

Date: 16.08.12 Tinme: 09:32:59
[nput 0O..7: 11000000

Regi ster 100: 12345
o S S S

Example 2
Practical use of "$A...."

Cursor position on a screen should be determined from 2 registers for the Xand Y position:
¢ X position from Register R 1 (1..80)
¢ Y position from Register R 2 (1..25)

Saia PG5® Instruction List, 2013-10-25 206

Saia-Burgess Controls AG Communications Instructions

9.25

Texts Containing Data (Mode C)

The escape sequence for cursor positioning is: <27><17><value for X><value for Y>
It is possible to program: " <27><17>$A0001$A0002"
Where the <value for X> is in Register 0001 and the <value for Y> is in Register 0002.

To output a fixed position of X =40 and Y = 12, the whole sequence of 4 characters can be written
into a single Register and output using $A....

Note that all values must be in hex format:

Esc = 1B hex; 17 = 11 hex; 40 = 28 hex (X value); 12 = 0C hex (Y value)

Load a Register with the data to send:
LD R 1000
1B11280Ch

Transmit this text to position the cursor::
" $A1000"

Text Output Formats (Mode C)
The format of transmitted Register and Counter data can also be specified in the Text.

The field width and number of decimal places can be specified. Format definitions are introduced by
the text "$%xxxx", where xxxx' is the required format, see below.

If such a definition is output, all the following Register or Counter values are output using this format,
until another format definition is encountered.

In the following format definitions, the d | D means 'decimal’, x | X= hexadecimal and b | B = binary.
Other number base formats are not supported. If the value is too large to fit in the defined field, default
formatting is used (no formatting).

Output format definitions
Assume Registers 10, 11 and 12 contain respectively the following constant values: 123456, -7890
and 5.

No formatting (default)

The field width depends on the size of the number.

TEXT O "REG STER 10: $R0010<10><13>"
"REG STER 11: $R0011<10><13>"
"REG STER 12: $R0012"

Output:

REGI STER 10: 123456

REG STER 11: -7890

REG STER 12: 5

Fixed width field
Use the format definition "$%xxd" or "$%xxD", where ‘xx' (1..99) signifies the field width.
"$%xxd": The value is right justified with leading spaces.

TEXT 1 "$YO8dJREG STER 10: $R0010<10><13>"
"REG STER 11: $R0011<10><13>"
"REG STER 12: $R0012"

Output:

REG STER 10: 123456
REGI STER 11: - 7890
REG STER 12: 5

Saia PG5® Instruction List, 2013-10-25 207

Saia-Burgess Controls AG Communications Instructions

Text Output Formats (Mode C)

"$%xxD": The value is right justified with leading zeroes.

TEXT 1 "$9%B8DREG STER 10: $R0010<10><13>"
"REGQ STER 11: $R0011<10><13>"
"REG STER 12: $R0012"

Output

REG STER 10: 00123456

REG STER 11: -0007890

REG STER 12: 00000005

Fixed width field and fixed number of decimal places

The value is right-justified, but the number of decimal places is always displayed, and is padded on
the right with zeros.

Use the format definition "$%xx.yd", where 'xx' is the total field width, and 'y' is the number of places
to the right of the decimal point.

TEXT 2 "$9%07. 3dREG STER 10: $R0010<10><13>"
"REGQ STER 11: $R0011<10><13>"
"REGQ STER 12: $R0012"

Output:

REG STER 10: 123. 456

REG STER 11: -7.890

REG STER 12: 0. 005

Fixed decimal places only
The number of decimal places is fixed but the field width is dependent on the size of the number.

Use the format definition "$%00.yd", where 'y'is the number of decimal places, padded on the right
with zeros if required.

TEXT 2 "$990. 5dREG STER 10: $R0010<10><13>"
"REGQ STER 11: $R0011<10><13>"
"REGQ STER 12: $R0012"

Output:

REG STER 10: 1.23456

REG STER 11:-0. 07890

REG STER 12: 0. 00005

Removing formatting
"$%00d" sets the standard format (no formatting).

Saving / Restoring format definitions
Format definitions may be saved using "$sn", where 'n'is a 'save’ number.

Up to 10 format definitions can be saved (09).

Sawed formats are restored using "$n", where 'n' is the 'save' number of the format definition to be
restored.

Formats may be saved as part of the initialization process, in XOB 16, the startup XOB.

To sawve a format, the text containing this format must be output to the serial line with the STXT
instruction.

If a format is restored which has not been sawved, the default format (no formatting) is used.

Example:
X0OB 16 ;startup XOB
TEXT 991 "$%05. 1d$s1” ; Format 1 definition (nnn.n)

Saia PG5® Instruction List, 2013-10-25 208

Saia-Burgess Controls AG

Communications Instructions

TEXT 992 "$9%94. 2d$s2"
TEXT 993 "$%08. 3d$s3"

;Activation of the format

SEI KO
Loopl:

STH XBSY
JR H DEF
STXTX 0

991
[NI K 2
JR H Loopl
EXOB
CcoB 0

0
STXT 1

10

TEXT 10 "Punp Liters

"1 1R0O010
"2 1R0O013

ECOB

Output:

Punmp Liters Pricel/L
1 13.8 0. 86

2 158.2 0.95

Including other texts

. For mat
. For mat

Text Output Formats (Mode C)

2 definition (n.nn)
3 definition (nnnn.nnn)

definitions

Pricel/L
2R0011
2R0014

Tot al
11. 868
150. 290

Tot al <10><13>"
3R0012<10><13>"
3R0015<10><13>"

The "$Lnnnn" sequence 'incLudes' another text which is processed as though it were part of the

original text.

If this included text contains a new format definition, the format is used until the end of the text.
On return to the original text, the original format definition is restored.

Example
COB 0
0
STXT 1
10

TEXT 10 "$L0100 Mbt or
STXT 1

11
TEXT 11 "$L0100 G |
ECOB

TEXT 100 "Di esel

:send Text 10

:send Text 11

Engi ne ALARM "

speed too hi gh<10><13>"

pressure too | ow<10><13>"

Saia PG5® Instruction List, 2013-10-25

209

Saia-Burgess Controls AG Communications Instructions

Text Output Formats (Mode C)

Result:
Di esel Engine ALARM Modtor speed too high
Di esel Engine ALARM Q| pressure too | ow

9.26 SRXM - Receive Media (Mode S-Bus)

Description
This instruction reads data or status from a slave station and copies them into the master PCD.

The slawe's station number must be loaded into the Register defined by the SASI Text, and the SASI
instruction should be executed first to configure the channel.
This instruction can only be used in the master PCD.

The TBSY Flag is set High while it is being processed, and is reset once the data transfer is
complete.
Before executing the SRXM instruction, the TBSY Flag can be tested to ensure it is Low.

The instruction uses of four lines:

The 1st operand is the channel number.

The 2nd operand defines the number of items to transfer.

The 3rd operand defines the base address (lowest) of the source data in the slave PCD.

The 4th operand defines the base address (lowest) of the destination data in the master PCD.

Format
SRXM X] [=] channel ; channel nunber
[=] count ;nunber of itens to receive
[=] source (i) ;base address of source data (in the slave)
[=] dest (i) ;base address of destination data (in the master)
count 1..32 Number of R T C to read
1..128 Number of 1 O F to read
0 Special function code
R nnnn Used for Data Block transfer
source Base address of data in the slave PCD
I OF Input, Output, Flag
R Register
TC Timer, Counter
DB Data Block
K K 0..6000 special function code
dest Base address of data in the master PCD
I OF Input, Output, Flag
R Register
TC Timer, Counter
DB Data Block

Data source and destination
The following table shows which data can be copied from the slave station to the appropriate data in
the master station.

Master PCD (destination)
lo | F | rR | c |1 |8

Saia PG5® Instruction List, 2013-10-25 210

Saia-Burgess Controls AG Communications Instructions

SRXM - Receive Media (Mode S-Bus)

I X X
O X X
Slave PCD F X X
(source) R X X X X
C X X X X
T X X X X
K X
DB X X X
Special Function Codes
Code Function description Examples of result
KO0..7 Read PCD status: R Run
0..6: CPU number of slave PCD C Conditional Run
7: Own CPU status H Halt
S Stop
D Disconnected
K 1000 Read Clock The contents of the clock is
written
in two Registers (same format as
for RTIME instruction)
K 2000 Read Display Register
K 3000
Read Size of Data Block
K 5000 Read Device type in ASCII ASCII Decima| Type
K 5010 in decimal I
" D1" 1 PCD1
" D2" 2 PCD2
" D4" 4 PCD4
" D6" 6 PCD6
K 5100 Read Module type | in ASCII ASCII Decima| Type
K 5110 in decimal I
"M1_" 10 PCD1.M1
"M1_" 10 PCD2.M12
" M15" 15 PCD2.M15
" M11" 11 PCD4.M11
" M12" 12 PCD4.M12
" M14" 14 PCD4.M14
" M24" 24 PCD4.M24
" M34" 34 PCD4.M34
" M44" 44 PCD4.M44
"M1_" 10 PCD6.M1
" M2_" 20 PCD6.M2
"' M3_" 30 PCD6.M3
" M54" 54 PCD6.M5
K 5200 Read Firmware in ASCII Examples of valid responses :
K 5210 version " $4C", " 004", " X41"
in decimal E.g. : 5 dec for Version 005
-1 dec for any ‘$', ‘X, ‘B’
K 5300 Read CPU number | in ASCI ASCII Decima| Type

Saia PG5® Instruction List, 2013-10-25 211

Saia-Burgess Controls AG Communications Instructions

SRXM - Receive Media (Mode S-Bus)

K 5310 in decimal I

"0" 0 PCD1
"0" 0 PCD2
"0"or"1" [(Oorl |PCD4
"0"to"6" [O0to6 | PCD6

K 6000 Read S-Bus station number in BROADCAST
This telegram is always transmitted in broadcast mode (address = 255).
This will only work in point-to-point communication.

Example
Read I/O/F/R/T/C in a slave station:
LD R 100 ;load register defined in the SASI text
10 ;with the slave station nunber 10
SRXM 1 :read via channel 1
20 ;20 itens
R 100 ;fromR 100..119 of station 10
R O ;into RO0..19

Special function to read the slave clock from the master station:

LD R 100 ;load register defined in the SASI text
12 ;with the slave station nunber 12
SRXM 1 :read via channel 1
0 ; (must be 0)
K 1000 ;the slave's clock
R 20 ;into master registers 20 and 21
Flags
ACCU Unchanged
Status Flags E Error flag set if channel not correctly initialized, or SRXM executed while already
busy

Reading Data Blocks
The format of the SRXM instruction is slightly different for Data Blocks. To address a Data Block
element, both the DB number and the element number are needed.

SRXM X] channel ; channel nunber
count _position ;regi ster containing nunber of elenents and of fset
source (i) ; base address of source elenment (in slave) (note 1)
destination (i) ; base address of destination elenment (in master)

count +posi tion The number of a Register which contains the number of items to transfer
(count) 1..32 in the MS word (bits 31..16), and the starting item number
(position) in the LS word (bits 15..0). This Register can be loaded using LDL
first to load the position and LDH to load the count.

source The source and destination addresses must be compatible data types, see
destination the table abovwe.

Note 1) When using SRXMX in indexed mode, the source and destination are both indexed with
standard media IO F R T C),
but Data Blocks are not indexed.

Example

Saia PG5® Instruction List, 2013-10-25 212

Saia-Burgess Controls AG Communications Instructions

SRXM - Receive Media (Mode S-Bus)

To transfer Registers 2000..2031 (32 items) from the slave station into Data Block 7999 position 1000
of the master station via channel 3.

LDL R 100 ;initialize the Position in the DB
1000
LDH R 100 ;initialize the Count (nunmber of Registers)
32
SRXM 3 ;transfer
R 100 ; Regi ster containing count and position
R 2000 ;source Register in slave
DB 7999 ;destination DB in master

Error Handling

The "Range Error" of Diagnostic Register is set when:

Count = Oor> 32

Attempt to access beyond the limit of a type of media (e.g. > R 4095)

Data Block in the master station doesn't exist

Data Block in the master station is defined as a Text

Tried to get element beyond the end of the Data Block

Tried to access a Data Block in Extension Memory (DB 4000..8191) when there is no Extension
Memory in the master station

Read Data-Block size

SRXM channel : channel nunber
K 3000 : K 3000 neans "read DB size"
DB x : DB whose size if to be read
Ry ; Regi ster nunber to receive the DB size

The return value is written to Register in the 4th operand:

0 The Data Block does not exist in the slave station
1..16384 Size of a Data Block in the slawe station, in DWORDs
65535 (FFFF hex) means that the Data Block is in use as a Text in the slave station

Read the size of DB 3999 in the slave station into Register 100 in the master station using channel 2.

SRXM 2
K 3000
DB 3999
R 100
See also
SASI

STXM Transmit Media (Mode S-Bus)

Practical example for Serial-S-Bus

Inputs 0..31 are to be copied from slave station number 5 into Flags 500..531 of the master station.
Master station program

RECEI VE EQU PB
ERROR EQU PB

XOB 16
SASI 1 : channel 1

Saia PG5® Instruction List, 2013-10-25 213

Saia-Burgess Controls AG Communications Instructions

SRXM - Receive Media (Mode S-Bus)

100 ;definition text 100

TEXT 100 " UART: 9600; "
" MODE: SML, R500; "
"Dl AG F1000, R1000"

EXCOB
CcoB 0
0
STH F 1002 ;i f RDIA
ORH F 1005 ;or TDIA flag = High
CPB H ERROR ;then handl e error
STH F 1003 ;if TBSY flag = Low
CPB L RECEI VE ;then read data
ECOB
PB RECEI VE
LD R 500 ;1 oad station nunber
5 ; (station 5)
SRXM 1 ; channel 1
32 ;read 32 itens
I 0 ;I nputs 0..31 and copy
F 500 ;themto Flags 500..531
EPB
PB ERROR ;error handl er
EPB

Error handling

Testing the RDIA and TDIA diagnostic flags is optional, but recommended so that problems can be
identified and the appropriate remedial action taken.

During development there may be programming errors. Other errors may be one-off communications
errors caused by noise, or they may be more serious such as a broken wire.

Programming errors (Range Error, Program Error etc.) are usually recognized at the commissioning
stage and can be fixed immediately.

If the NEXE flag is set, this means that the last instruction was not executed (SRXM or STXM).

Slave station program

The slave station number must be configured from Device Configurator.

For the slave station it is only necessary to assign the interface with SASI. All S-Bus
communications is then handled in the background by the PCD.

It is not necessary to monitor the diagnostic flags because all communications errors are handled by
the master station and do not need to be monitored by the slawe.

X0B 16
SASI 1
100

TEXT 100 " UART: 9600; "
" MODE: SS1; "
"Dl AG F1000, R1000"

EXOB

Saia PG5® Instruction List, 2013-10-25 214

Saia-Burgess Controls AG Communications Instructions

SRXM - Receive Media (Mode S-Bus)

9.27 SRXM - Recieve Media (Mode D)

Description

Reads data from the remote PCD, and copies them into destination data in the local PCD.
Transfers canbe IO FtoOF, RTCtoRTC.

The 1st operand is the channel number.

The 2nd operand is the number of items to be transferred.

The 3rd operand is the lowest address of the source data in the remote PCD.

The 4th operand is the lowest address of the destination data in the local PCD.

The TBSY Flag is set High during the execution of SRXM, and it is set Low when the operation has

completed.
Format
SRXM X] [=] channel ; channel nunber
[=] count ;nunber of itens to transfer 1..16
[=] source (i) ;source address | OF R TC
[=] dest (i) ;destination address OF RT C
Example
SRXM 0 :read the contents of R 100..115
16 cinto R0O..15 via serial channel 0
SRXM 0 ; using channel O
16 ;read 16 registers
R 100 ;from R 100..115
RO cinto R O0..15
Flags
ACCU Unchanged
Status Flags E Error flag set if channel not correctly initialized, or SRXM executed while already
busy
See also
SASI

STXM Transmit Media (Mode D)

Practical example

Copy Inputs 0..15 from the remote PCD to Outputs 32..47 of this PCD. The two PCDs are connected
by a serial line.

This (local) PCD

X0B 16
SASI 1
0

TEXT 0 "UART: 9600, 7, E, 1; MODE: MDO; "
"Dl AG F1000, R1000; "

EXOB
COB 0
0
STH F 1003 ;1 f not already busy (TBSY)
JR H Next
SRXM 1 :then receive on channel 1
16 16 itens

Saia PG5® Instruction List, 2013-10-25 215

Saia-Burgess Controls AG Communications Instructions

SRXM - Recieve Media (Mode D)

;froml 0..15 of renmpte PCD
2 ;into O 32..47) of this PCD

o-—
w O

Next :
ECOB

Remote PCD: Only the serial line needs to be assigned

X0B 16
SASI 1
0

TEXT 0 "UART: 9600, 7, E, 1; MODE: SDO; "
"Dl AG F1000, R1000; "

EXOB

9.28 SRXM - Receive Media (Mode MM4)

Old protocol, not supported by new PCD models.

Description
Copies the receive buffer (received frame) into consecutive Registers in the PCD.

When a telegram has been received without errors: RFUL is set to 1, SRXM resets this flag to 0.

The 1st operand is the channel number.

The 2nd operand is always O.

The 3rd operand is a Register or a Counter which will contain (after the execution of the instruction)
the number of received characters.

The 4th operand is the address of the first Register to which the received characters will be copied.
Each received character uses 8 bits of a Register, so a Register can hold a maximum of 4 characters.

The characters are placed in the Registers as follow:

R 1: 11111111 22222222 33333333 44444444 Characters 1to 4

R 2: 55555555 66666666 77777777 88888888 Characters 5t0 8

If the number of received characters is not a multiple of 4, the rest of the last Register is set to 0.

The address of the station which sent the telegram is contained in the <repartner> Register defined in
the SASI text.

Format

SRXM [=] channel ; channel nunber
[=] O ;not used, always O
[=] regl ;regi ster containing the nunmber of characters to read
[=] reg2 ;first address of destination registers

After execution, regl contains the number of characters actually read. A Counter can also be used.
reg? is the address of the first Register into which the characters will be copied. A Register holds up
to 4 characters)

Example
SRXM 1 ;transfers the tel egramreceived on channel 1
0 ; (not used, always 0)
C 100 ; Counter 100 hol ds the nunmber of characters read
R 20 ; R 20 onwards receives the characters, 4 per Register

Saia PG5® Instruction List, 2013-10-25 216

Saia-Burgess Controls AG Communications Instructions

SRXM - Receive Media (Mode MM4)

Flags

ACCU Unchanged

Status Flags E Error flag set if channel not correctly initialized, or SRXM executed while already
busy

See also

SASI

STXM Transmit Media (Mode MM4)

9.29 SRXMI - Receive Media Indirect (Mode S-Bus)

Description

This instruction works in the same way as the SRXM instruction.

The only difference is that it uses indirect mode, which means that the addresses of the data for the
source and destination are supplied in a Register.

SRXMI can only transfer media (R T C 1 O F). Special function data, like the Real Time clock, Display
Register etc. cannot be transferred.

Notes

e For firmware versions earlier than 1.20.00, the max. Register address for indirect instructions is
8191.

¢ To use Register addresses 8192..16383 with firmware version 1.2.00 or later, set the Build Option
"Use 16-bit Register and Flag addressing" to Yes.

¢ This instruction cannot be used with Function Block parameters (= n).

e Temporary Registers, defined with TEQU, cannot be used.

Format

SRXM channel ; channel nunber or R containing the channel nunber
count ; R containing the Count or Count + Position
source ;source data type and reg nunber with source data base adds
dest ; dest data type and reg nunber with dest data base address

count count or count + position
The number of a Register which contains the number of items to transfer (count) 1..32 in
the MS word (bits 31..16), and the starting item number (position) in the LS word (bits
15..0). This Register can be loaded using LDL first to load the position, and LDH to load
the count.

source The data type of the source data, e.g. | O F R T C DB, and the number of the Register
which contains the source address, e.g. F 123.

dest The data type of the destination data, e.g. O F R T C DB, and the number of the Register
which contains the destination address, e.g. O 124.
The source and destination data types must be compatible.

Example
Transfer Output 200..231 (32 items) from the slave station to Flags 1000..1031 in the master station
via channel 3.

LD R 100 ;1 oad the Count
32 ;32 itens

LD R 101 ;1 oad the source base address
200 ; Qut put 200

LD R 102 ;1 oad the destination address
1000 ; Flag 1000

Saia PG5® Instruction List, 2013-10-25 217

Saia-Burgess Controls AG

Communications Instructions

9.30

SRXMI - Receive Media Indirect (Mode S-Bus)

SRXM 3 ; channel 3
R 100 ;count is in R 100
O 101 ;source type O, base address in R 101
F 102 ;destination type F, base address in R 102

Use the Diagnostic Flags and Diagnostic Register for detecting communications errors.

Flags

ACCU Unchanged

Status Flags E Error flag set if channel not correctly initialized, or SRXM executed while already
busy

See also

SASI

STXMI Transmit Media indirect (Mode S-Bus)

For more information, see the "S-Bus Manual" (Ref. 26/739)

STXM - Transmit Media (Mode S-Bus)

Description
Copies data from the master station to a slave station.

The slawe's station number must be loaded into the Register defined by the SASI Text.
The SASI instruction must be executed before this instruction.
This instruction can only be used by the master PCD.

The TBSY Flag is set High while it is being processed, and is reset once the data transfer is
complete.
Before executing the SRXM instruction, the TBSY Flag can be tested to ensure it is Low.

The instruction has four lines:

The 1st operand is the channel number.

The 2nd operand defines the number of items to be sent.

The 3rd operand defines the base address (lowest) of the source data in the master PCD.
The 4th operand defines the base address (lowest) of the destination data in the slave PCD.

Format

STXM X] [=] channel ; channel nunber or register containing the channel
[=] count ;nunber of itens to transmt
[=] source (i) ;base address of source data (in master)
[=] dest (i) ;base address of destination data (in slave)

Saia PG5® Instruction List, 2013-10-25

218

nunber

Saia-Burgess Controls AG

Communications Instructions

count

source

dest

1..32 Number of R T C to transmit
1..128 Number of | O F to transmit
0 Special function code, see below

Base address of data in the master PCD:

I OF Input, Output, Flag
R Register
TC Timer, Counter
DB Data Block
K K constant for special function
Base address of data in the slave PCD:
I OF Input,
Output,
Flag
R Register
TC Timer, Counter
DB Data Block
K 1000, Write clock in the slave PCD
K 17, 18, 19: Special functions, see below

Data source and destination
The following table shows which data can be copied from the slave station to the appropriate data in
the master station.

STXM - Transmit Media (Mode S-Bus)

Master PCD (destination)
O F R C T DB
I X X
@] X X
Slave PCD F X X
(source) R X X X
C X X X
T X X X
K X
DB X X X

When writing to the clock, two Registers are sent.

WTIME instruction.

Example

Copy | O F R T C values to a slawve station:

LD R 100 ;register as defined in the SASI
22 :with the slave station nunber
STXM 0 ctransmts via channel 0
100 100 itens
F 100 cfromF 100..199
O 32 to O 32..131 of station 22

Special function to execute an XOB in a slave station:

For the data format of the Registers, see the

t ext

Saia PG5® Instruction List, 2013-10-25

219

Saia-Burgess Controls AG Communications Instructions

STXM - Transmit Media (Mode S-Bus)

LD R 100 ;register as defined in the SASI text
12 ;with the slave station number 12
STXM 1 ; channel nunber O
0 ; (must be 0)
K 4000 ; special function nunber for XOB interrupt
K 17 ;nunber of the XOB to execute (17 | 18 | 19)

Special function to copy the master clock in a slave station:

LD R 100 ;register as defined in the SASI text
255 ;with broadcast node 255 = all slaves
RTIME R 20 ;copy Master clock to two registers 20 and 21
STXM 1 ;copy master clock fromR 20..21 to slave stn cl ock
0 ; (must be 0)
R 20
K 1000 ; K 1000 = cl ock

Broadcast mode

It is also possible to use the STXM instruction in broadcast mode. The slave address 255 means that
all the slaves on the network receive the telegram.

This allows the synchronization of events. (Broadcast telegrams are not supported with SRXM
instructions.)

Flags
ACCU Unchanged
Status Flags E Error flag set if channel not correctly initialized, or STXM executed while already

busy

Writing Data Blocks
The format of the STXM instruction is slightly different for Data Blocks. To address a Data Block

element, both the DB number and the element number are needed.

SRXM X] channel ; channel nunber
count _position ;register with nunber of elenments and of fset
source (i) ; base adds of source elenent (in slave) (note 1)
destination (i) ; base adds of destination elenment (in naster)

count +posi tion The number of a Register which contains the number of items to transfer
(count) 1..32 in the MS word (bits 31..16), and the starting item number
(position) in the LS word (bits 15..0). This Register can be loaded using LDL
first to load the position and LDH to load the count.

source The source and destination addresses must be compatible data types, see
destination the table abowe.

Note 1) When using STXMX in indexed mode, the source and destination are both indexed with
standard media 1O F R T C),
but Data Blocks are not indexed.

Example
Transfer 20 items from Data Block 4000 position 50 in the master station to register 1000..1019 in the
slave station via channel 1.

LDL R 100 ;1 oad the position in the DB
50

LDH R 100 ;1 oad the count
20

Saia PG5® Instruction List, 2013-10-25 220

Saia-Burgess Controls AG

Communications Instructions

STXM - Transmit Media (Mode S-Bus)

STXM 1 ;transfer via channel 1
R 100 ; R 100 contains the count+position
DB 4000 ; source DB
R 1000 ; base destination register

See also

SASI

SRXM Receive Media (Mode S-Bus)

Diagnostic Register

Practical example for Serial-S-Bus
Registers 150..165 are to be copied from the master station to Counters 500..515 of slave station 12.

Master station program

TRANSM T EQU PB
ERROR EQU PB

XOB 16
SASI 1 : channel 1

900 ;definition text 900
TEXT 900 " UART: 9600; "

" MODE: SML, R500; "
"Dl AG F2500, R4095"

EXOB
CcoB 0

0
STH F 2502 i f RDIA
ORH F 2505 ;or TDIA Flag = High
CPB H ERROR :then handl e error
STH F 2503 ;i1 f TBSY Flag = Low
CPB L TRANSMT ;then transnmt data
ECOB
PB TRANSM T
LD R 500 ;1 oad station nunber 12

12
STXM 1 : channel 1

16 ctransmt 16 itens

R 150 ;from Registers 150..165

C 500 :to Counters 500..515
EPB
PB ERROR ;error handl er
EPB

Error handling

Testing the RDIA and TDIA diagnostic flags is optional, but recommended so that problems can be
identified and the appropriate remedial action taken.

Saia PG5® Instruction List, 2013-10-25

221

Saia-Burgess Controls AG Communications Instructions

9.31

STXM - Transmit Media (Mode S-Bus)

During development there may be programming errors. Run-time errors may be one-off
communications errors caused by noise, or they may be more serious such as a broken wire.
Programming errors (Range Error, Program Error etc.) are usually recognized at the commissioning
stage and can be fixed immediately.

If the NEXE flag is set, this means that the last instruction was not executed (SRXM or STXM).

Slave station program

The slave station number must be configured from Device Configurator.

For the slave station it is only necessary to assign the interface with SASI. All S-Bus
communications is then handled in the background by the PCD.

It is not necessary to monitor the diagnostic flags because all communications errors are handled by
the master station and do not need to be monitored by the slave.

X0B 16
SASI 1
100

TEXT 100 " UART: 9600; "
" MODE: SS1; "
"Dl AG F1000, R1000"

EXOB
STXM - Transmit Media (Mode D)

Description
Transmits date from the local PCD to data in the Remote PCD.

The datacanbe IOFtoOF, orRTCtoRTC.

The 1st operand is the channel number.

The 2nd operand is the number of items to be transferred.

The 3rd operand is the lowest address of the source data in the local PCD.

The 4th operand is the lowest address of the destination data in the remote PCD.

The TBSY Flag is set High during the execution of STXM, and it is set Low when the operation has
completed.

Format
STXM X] [=] channel ; channel nunber
[=] count ;nunber of itens to transmt 1..16
[=] source (i) ;source address | OF RTC
[=] dest (i) ;destination address OF RT C
Example
STXM 0 ctransmts the contents of R 100..115
16 cinto R0O..15 via serial channel 0
R 100
RO
Flags
ACCU Unchanged

Status Flags E Error flag set if the channel has not been correctly initialized or does not exist,
or is already transmitting.

See also
SASI

Saia PG5® Instruction List, 2013-10-25 222

Saia-Burgess Controls AG Communications Instructions

STXM - Transmit Media (Mode D)

SRXM Recieve Media (Mode D)

Practical example
Copy Inputs 0..15 of the local PCD to the Outputs 32..47 of the remote PCD.

Program in local PCD

X0B 16
SASI 1
15

TEXT 15 "UART: 9600, 7, E, 1; MODE: MDO; DI AG: F1000, R1000; "

EXOB
COoB 0
0
STH F 1003 ;i1 f not already busy (TBSY)
JR H Next
STXM 1 ;then transfer on serial channel 1
16 ;16 itens
I 0 ;fromlnputs 0..15 of local PCD
O 32 ;to Qutputs 32..47 of renote PCD
Next :
ECOB
Remote PCD

Only the serial channel need to be assigned, see SRXM.

9.32 STXM - Transmit Media (Mode MM4)

Old protocol, not supported by new PCD models.

Description
Transfers Registers over the LAC/LAC2 network using the MM4 protocol.

This transfer can occur via a LAC/LAC2 network or point-to-point.

The 1st operand is the channel number.

The 2nd operand defines the transfer function.

The 3rd operand is a Register or a Counter which contains the number of characters to transfer.
The 4th operand is the address of the first Register containing the characters to transmit.

A Register can hold a maximum of 4 characters: each character needs 8 bits.
The characters must be loaded into the Registers as follows:

R 1: 11111111 22222222 33333333 44444444 Characters 1to 4
R 2: 55555555 66666666 77777777 88888888 Characters 5t0 8

The address of the partner is contained in the <trpartner> Register defined in the SASI Text.

The TBSY Flag is set High during the execution of STXM, and it is set Low when the operation has

completed.
Format
STXM [=] channel ; channel nunber
[=] fcn ;function to performO0..4
[=] regl ; Regi ster containing the nunber of characters to transmt

Saia PG5® Instruction List, 2013-10-25 223

Saia-Burgess Controls AG Communications Instructions

STXM - Transmit Media (Mode MM4)

[=] reg2 ; base address of source Register

fct Function to perform
0/2 Transmission of data
4 Broadcast
regl Register containing the number of characters to be transmitted
(a Counter can also be used).
reg2 Address of the first Register from where the information is to be transferred
(a Register holds up to 4 characters)

Example

STXM 1 ;transmt on channel 1
0 ;indicates a transm ssion
C 100 ;nunber of characters to transmit in Counter 100
R 20 ; 1st Regi ster containing the data

Flags

ACCU Unchanged

Status Flags E Error flag set if the channel has not been correctly initialized or does not exist,
or is already transmitting.

See also
SASI

SRXM Receive Media (Mode MM4)

9.33 STXMI - Transmit Media Indirect (Mode S-Bus)

Description
This instruction works in the same way as the STXM instruction.

The only difference is that it uses indirect mode, which means that the addresses of the data for the
source and destination are supplied in a Register.

STXMI can only transfer media (R T C | O F). Special function data, like the Real Time clock, Display
Register etc. cannot be transferred.

Notes

e For firmware versions earlier than 1.20.00, the max. Register address for indirect instructions is
8191.

¢ To use Register addresses 8192..16383 with firmware version 1.2.00 or later, set the Build Option
"Use 16-bit Register and Flag addressing" to Yes.

¢ This instruction cannot be used with Function Block parameters (= n).

e Temporary Registers, defined with TEQU, cannot be used.

Format

STXM channel ; channel nunber or reg containing channel nunber
count ;reg containing the Count or Count + Position
sour ce ;source data type and reg nunmber with source data base address
dest ;dest data type and reg number containing dest base address

count count or count + position
The number of a Register which contains the number of items to transfer (count) 1..32 in
the MS word (bits 31..16), and the starting item number (position) in the LS word (bits
15..0). This Register can be loaded using LDL first to load the position, and LDH to load
the count.

source The data type of the source data, e.g. | O F R T C DB, and the number of the Register

Saia PG5® Instruction List, 2013-10-25 224

Saia-Burgess Controls AG Communications Instructions

9.34

STXMI - Transmit Media Indirect (Mode S-Bus)

which contains the source address, e.g. F 123.

dest The data type of the destination data, e.g. O F R T C DB, and the number of the Register
which contains the destination address, e.g. O 124.
The source and destination data types must be compatible.

Example
Transfer 20 values from DB 4000 positions 50..69 in the master station to Registers 1000..1019 in the

slave station via channel 1.

LDL R 100 ;1 oad the DB position
50
LDH R 100 ;1 oad the Count (nunber of val ues)
20
LD R 101 ;1 oad the source DB nunber
4000
LD R 102 ;1 oad the destination register nunber
1000
STXM 1 ; channel nunmber 1
R 100 ; Count + Position: MSWof R 100 = 20; LSWof R 100 = 50
DB 101 ;R 101 = 4000
R 102 ;R 102 = 1000
Flags
ACCU Unchanged

Status Flags E Error flag set if the channel has not been correctly initialized or does not exist,
or is already transmitting.

See also
SASI|

SRXMI Receive Media indirect (Mode S-Bus)

SICL - Serial Input Control Line

Description
Reads a control signal from the serial channel and stores its state in the ACCU.
Format
SI CL [=] channel ; channel nunber
[=] signal ; signal nunber, 0=CTS, 1=DSR, 2=DCD
si gnal 0=CTS Clear To Send
1=DSR Data Set Ready
2=DCD Data Carrier Detect
Example
CTS EQU O
DSR EQU 1
DCD EQU 2
SI CL 3 ;1 f DSR of channel 1 is High
DSR
CPB H 25 ;then call PB 25

Saia PG5® Instruction List, 2013-10-25 225

Saia-Burgess Controls AG Communications Instructions

SICL - Serial Input Control Line

Flags

ACCU Set according to the state of the assessed control line.

Status Flags E Set if the channel does not exist or has not been correctly initialized with a SASI
instruction.

See also

SOCL Serial Control Output Control Line

Tips:

¢ For a channel configured for S-Bus Level 2 for Public Line Modem, the user can read the DCD
signal to detect whether the PCD is on-line with a remote modem or not.
According to the DCD state he can then execute different code in the user program.

¢ The connection of a programming unit can be detected by reading the DSR signal (DSR = 1).

e |t is not possible to detect whether the PCD is online with S-Bus Lewel 2 or not since the DSR
signal on the PGU port (PCD1/PCD2/ PCD4/PCD6M5/M3) is LOW for S-Bus Lewel 2 as well as if
the port is free for any user assignation (SASI).

9.35 SOCL - Serial Output Control Line

Description
The SOCL instruction sets a selected control signal of the serial channel given in the first operand to
the state of the ACCU (H or L)

Format
SOCL [=] channel ; channel nunber
[=] signal ; signal nunmber O0=RTS 1=DTR 2=RS- 232/ 422/ 485
si gnal 0=RTS Request To Send
1=DTR Data Terminal Ready
2 = RS232/422/485 Data Carrier Detect
Example
RTS EQU O
SOCL 0 ;sets DTR signal of channel 0 according to
RTS the ACCU st ate
Flags
ACCU Unchanged
Status Flags E Set if the channel does not exist or has not been correctly initialized with a SASI
instruction.
See also

SICL Serial Input Control Line

Practical examples

Port 0 on PCD2

A SASI for SM1/SS1 in the user program has configured Channel 0 to RS-485.

If the user wants to use RS-232 on the Channel 0 then the following instructions must be used (after
the SASI instruction):

ACC L

SOCL 0

Saia PG5® Instruction List, 2013-10-25 226

Saia-Burgess Controls AG Communications Instructions

9.36

SOCL - Serial Output Control Line

Switching from RS-485 to RS-422
The serial interface RS-422/RS485 switches automatically to RS-485 when certain modes are
assigned.

Mode Type
MCO0..MC3, MDO / SDO RS-422
MC4, S-Bus RS-485

It is sometimes needed to force the PCD to use S-Bus with RS-422.
In this case, the following instructions must be performed after the SASI instruction:
ACC L
SOCL channel
2

Force the RS-485 mode with MC0..MC3 or MDO0O/SDO

ACC H
SOCL channel
2

Switch from receive to transmit in RS-485
To set the RS-485 in the transmit mode perform the following instructions after the SASI instruction:
ACC H
SOCL channel
0

To set the RS-485 in the receive mode perform the following instructions after the SASI instruction:
ACC L
SOCL channel

0

SCON - Control Communication (Profibus-DP)

Description
For data exchange between PCDs on a Profibus-DP channel.

The 1st operand is the channel number.
The 2nd operand is a function code which defines the action to be taken.
The 3rd operand is a parameter dependent on the function code.

Format
SCON [=] channel ; channel nunber
[=] func_code ; function code, see bel ow
[=] paraneter ; paraneter for the specified function 0..255
Example
SCON 9 ; Profi bus-DP channel 10
1 ;function 1=read sl ave di agnostic data
4 ; sl ave number 4
Flags
ACCU Unchanged

Status Flags E Set if the channel does not exist or has not been correctly assigned.

Function Codes

Saia PG5® Instruction List, 2013-10-25 227

Saia-Burgess Controls AG

Communications Instructions

SCON - Control Communication (Profibus-DP)

Function Parameter | Description Diagnostic
affected
Maste | Slav Fla | Reg
r e g
0 0 Stop data exchange between master and slaves| 2, 3| 1
1 Slave no. Read slave diagnostic data 0,2 3-6
0..126 0,7,8,9,10-
69
Start / Stop default data exchange between
image memory and the PROFIBUS-DP card
2 2 0 Stop default model data exchange for all slaves
between the entire image memory and the
Profibus-DP card (COB 0; ECOB)
1 Start default model data exchange for all slaves
between the entire image memory and the
Profibus-DP card (COB 0; ECOB)
2 Stop data exchange for all slaves between input
image memory and the Profibus-DP card (Start
of COB 0)
3 Start data exchange for all slaves between input
image memory and the Profibus-DP card (Start
of COB 0)
4 Stop data exchange for all slaves between
output image memory and the Profibus-DP card
(End of COB 0)
5 Start data exchange for all slaves between
output image memory and the Profibus-DP card
(Ende von COB 0)
6 Disable update of input media related to a DP
slave having an error.
7 Enable update of input media even if the related
DP slawe is in error (default on Power ON).
3 3 0 Force data exchange for all slaves between the
entire image memory and the Profibus-DP card
1 Force data exchange for all slaves between
input image memory and the Profibus-DP card
2 Force data exchange for all slaves between
output image memory and the Profibus-DP card
4 Slave no. Force data exchange for a slave device between
0..126 input image memory and the Profibus-DP card
5 Slave no. Force data exchange for a slave device between
0..126 output image memory and the Profibus-DP card
6 Slave no. Force data exchange for a slave device between
0..126 the entire image memory and the Profibus-DP
card
7 Slave no. Read status of a slave 2
0..126
8 Slave no. Deactivate slave 2 1
0..126
9 Slave no. Activate slave 2 1
0..126
10 Group no. Force data exchange for a group of slaves

Saia PG5® Instruction List, 2013-10-25

228

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

0..255 between input image memory and the Profibus-
DP card
11 Group no. Force data exchange for a group of slaves
0..255 between output image memory and the
Profibus-DP card
12 Group no. Force data exchange for a group of slaves
0..255 between the entire image memory and the
Profibus-DP card
13 Group no. FREEZE 1 0
0..255
14 Group no. UNFREEZE 1 0
0..255
15 Group no. SYNC 1 0
0..255
16 Group no. UNSYNC 1 0
0..255

SCON(I) 0: stop data exchange between master and slave

This instruction can be used to stop data exchange on the Profibus-DP network.

To restart data exchange, it is necessary to execute a 'Restart Cold' on the PCD.

This instruction sets all slave Outputs to O.

It is mainly used in XOB 0, so that slave Outputs are not left in an undefined state before powering off
the master.

Diagnostic Flag +2 is set High as soon as this instruction executes, and is set Low when complete.
This instruction may only be executed when Diagnostic Flag +2 is low.

When the instruction has been executed and the status of Diagnostic Flag + 2 is Low, the result of
the operation is written to Diagnostic Register + 1.

See Diagnostic Registers with Profibus-DP

Diagnostic Flag +3 shows the status of data exchange on the Profibus-DP network.

Diagnostic flag +3: L = Data exchange on the Profibus-DP. network has stopped.
H = Data exchange on the Profibus-DP. network is running.

Format
SCON channel 79, 8
func_code ; 0
par anet er ;0 = Stop data exchange on the Profibus-DP network
Flags
The Error flag is set if the channel is unassigned or if the instruction has been called when diagnostic
flag +2 is high.
Example
Stop data exchange on the Profibus-DP network:
STH SERV_BUSY ;i f diagnostic flag +2
JR H Next ;is not Hgh (is Low), then SCON
SCON 9 ; Profi bus-DP channel 9
0 ;function code 0O
0 ; stop Profibus-DP

Next :

Saia PG5® Instruction List, 2013-10-25 229

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

SCON(I) 1: Read slave diagnostic data

With this instruction the diagnostic data of the slave can be read.

Diagnostic data is mostly read when an error has been detected in the slawe.

This is indicated by setting diagnostic flag +0.

The user can then identify the faulty slave by means of diagnostic registers +3 to + 6 and read the
diagnostic data of that slave.

As soon as this instruction is executed, diagnostic flag +2 is set high and, when the instruction is
finished, reset low.

When the instruction has been executed and the status of diagnostic flag +2 is low, the result of the
operation is written to diagnostic register +1.

A description of the response code is given in section 5.2.1.2, 'Diagnostic registers with PROFIBUS-
DP".
This instruction may only be executed when the status of diagnostic flag +2 is O.

When the instruction is finished, in diagnostic registers +3 to + 6 the relevant bit for the slave to which
the instruction was addressed is set low.
The following values are stored in the diagnostic registers:

Diagnostic register +7: Length of expanded Profibus-DP diagnostic

Diagnostic register +8: Standard Profibus-DP diagnostic bytes 0 and 1

Diagnostic register +9: Standard Profibus-DP diagnostic bytes 2 to 5

Diagnostic register +10: Expanded Profibus-DP diagnostic bytes 6 to 9
etc.

A description of the response code is given in here Diagnostic Registers with PROFIBUS-DP.

Format
SCON channel 79, 8
func_code 01
par anet er ;0..126 = Station nunber
Flags
The Error flag is set if the channel is unassigned or if the instruction has been called when diagnostic
flag +2 is high.
Example
Read slave diagnostic data from slave 5:
STH SLAVE_ERR ;if diagflag +0 = High
ANL SERV_BUSY ;and no SCON is active
JR L Next ; (diagflag +2 = Low), then SCON
SCON 9 ; Profi bus-DP channel 9
1 ;function code 1 = read diagnostic data
5 ; sl ave nunber 5
Next :

SCON(I) 2: Start / stop default data exchange between image memory and the Profibus-DP
card

With this instruction default data exchange between the image memory and the Profibus-DP card can
be started or stopped.

Default data exchange refers to the data exchange that is executed automatically when COB 0 starts
up and when it ends.

This data exchange can be changed to the following function:

Saia PG5® Instruction List, 2013-10-25 230

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

Parameters

0 Stop default model data exchange for all slaves between the entire image memory and the
Profibus-DP card (COB 0; ECOB)

1 Start default model data exchange for all slaves between the entire image memory and the
Profibus-DP card (COB 0; ECOB)

2 Stop data exchange for all slaves between input image memory and the Profibus-DP card
(Start COB 0)

3 Start data exchange for all slaves between input image memory and the Profibus-DP card
(Start COB 0)

4 Stop data exchange for all slaves between output image memory and the Profibus-DP card
(End COB 0)

5 Start data exchange for all slaves between output image memory and the Profibus-DP card
(End COB 0)

Format

SCON channel 9
func_code ;2
par anet er 0..5 = Paraneter

Flags

The Error flag is set if the channel is unassigned.

Example
Stop data exchange for all slaves between input image memory and the Profibus-DP card (Start COB
0)
SCON 9 ; Profi bus-DP channel 9
2 ; func_code 2
2 ; paranmeter 2

SCON(l) 3: Force data exchange for all slaves between the image memory and the Profibus-
DP card

With this instruction, data exchange between the image memory of all slaves and the Profibus-DP
card can at any time be forced in the user program.

This forcing can take place in the following way:

Parameters
Force data exchange for all slaves between the entire image memory and the Profibus-DP
card

Force data exchange for all slaves between input image memory and the Profibus-DP card
Force data exchange for all slaves between output image memory and the Profibus-DP card

Format
SCON channel :9, 8

func_code ;3

paraneter ;0..2 = paraneter
Flags

The Error flag is set if the channel is unassigned.

Example
Force data exchange for all slaves between the entire image memory and the Profibus-DP card

SCON 9 : Profi bus-DP channel 9
3 :function code 3

Saia PG5® Instruction List, 2013-10-25 231

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

0 ;out put i mage nenory

SCON(l) 4, 5, 6: Force data exchange for a slave between the image memory and the
Profibus-DP card

With these instructions data exchange between the image memory of a slave and the Profibus-DP
card can at any time be forced in the user program.

This forcing can take place in the following way:

Function Codes
Force data exchange for a slave between input image memory and the Profibus-DP card.
Force data exchange for a slave between output imate memory and the Profibus-DP card.
Force data exchange for a slave between the entire image memory and the Profibus-DP card.

Format

SCON channel 79, 8
func_code 4, 5, 6
par anet er ;0..126 = Sl ave nunber

Flags

The Error flag is set if the channel is unassigned.

Example
Force data exchange for slaves 12 between output image memory and the Profibus-DP card.
SCON 9 ; Profibus-DP channel 9

5 ;function code 5

12 ;slave 12

SCON() 7: Read status of a slave

With this instruction the status of a slave can be read. After execution of the instruction, the slaw’s
status is written to diagnostic register + 2.
A description of diagnostic register + 2 is given in Diagnostic registers with PROFIBUS-DP.

Format
SCON channel 79, 8

func_code 0 7

par anet er ;0..126 = Sl ave nunber
Flags

The error flag is set if the channel is unassigned.

Example

Read status of slave 34.

SCON 9 . Profibus-DP channel 9
7 ;function code 7
34 ; Sl ave 34

SCON(l) 8. 9: Deactivate / activate slave

With this instruction a slave can be activated or deactivated.

When the instruction is executed, diagnostic flag +2 is set high and when the instruction finishes, it is
set low.

After the instruction has been executed and the status of diagnostic flag + 2 is low, the result of the
operation is written to diagnostic register + 1.

Saia PG5® Instruction List, 2013-10-25 232

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

A description of the response code is given in section 5.2.1.2, 'Diagnostic registers with PROFIBUS-
DP".

This instruction may only be executed if the status of diagnostic flag + 2 is 0.

The deactivation or activation of a slave is triggered by the following function codes:

Function codes

8 Deactivate slave

9 Activate slave
Format
SCON channel :9, 8

func_code ;8, 9 = deactivate / activate sl ave
paranmeter ;0..126 = Sl ave nunber

Flags
The Error flag is set if the channel is unassigned or if the instruction is called when diagnostic flag + 2
is high.
Example
Deactivate slave 32.
STH SERV_BUSY ;i f diagnostic flag +2
JR H Next ;is not Hgh (is Lowe), then SCON
SCON 9 ; Profi bus-DP channel 9
8 ;function code 8
32 ; sl ave 32
Next :

SCON(I) 10, 11, 12: Force data exchange for a group of slaves between the image memor
and the Profibus-DP card

With these instructions, data exchange between the image memory of one or more groups of slaves
and the Profibus-DP card can at any time be forced in the user program.

Assigning a slave to a group takes place with the Profibus-DP configurator.

Profibus-DP supports the formation of a maximum of 8 groups.

These groups can be assigned as many slaves as required.

The choice of group in the SCON parameter is bit-oriented according to the following pattern:

Parameters

Bit Number
0 Group 1
1 Group 2
2 Group 3
3 Group 4
4 Group 5
5 Group 6
6 Group 7
7 Group 8

Forcing can be applied here to more than one group at a time. This forcing can take place in the
following way:

Function codes
Force data exchange for a group of slaves between input image memory and the Profibus-DP

Saia PG5® Instruction List, 2013-10-25 233

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

card.
Force data exchange for a group of slaves between output image memory and the Profibus-DP
card.
Force data exchange for a group of slaves between the entire image memory and the Profibus-
DP card.
Format
SCON channel 9, 8
func_code 10, 11, 12
par anet er ; 0..255= Group nunber
Flags

The error flag is set if the channel is unassigned.

Example
Force data exchange for groups 1 and 2 between input image memory and the Profibus-DP card.

SCON 9 : Profi bus-DP channel 9
10 :function code 10
3 ; Goups 1 and 2 (00000011q)

SCON(I) 13, 14: Global Control Service Freeze, Unfreeze

With these instructions, the 'Freeze' and 'Unfreeze’ commands can be triggered for one or more
groups of slaves.

The instruction is used for the purpose of input synchronization.

With the 'Freeze' instruction, the master causes a slave or group of slaves simultaneously to freeze
inputs in their present state.

The slaves addressed therefore stop their inputs at exactly the same time. In the next data cycle
(Data_exch) the slaves transmit the frozen inputs to the master.

Any changes at the inputs are not recognized by the slaves and are also not passed on the the
master.

After the conclusion of this action, the master sends an 'Unfreeze’ instruction to the group. Input
changes are now sent again from the slave to the master in the normal data cycle.

It is permissible for the master, after one 'Freeze' instruction, to send further 'Freeze' instructions to
the slaves.

In this case the current status of inputs is frozen each time and sent to the master in the next data
cycle.

Diagnostic flag +1 is set high as soon as this instruction starts up.

When the instruction has finished, the flag is set low and the result of the operation is written to
diagnostic register +0.

A description of the response code in diagnostic register +0 is given in Diagnostic Registers with
Profibus-DP.

This instruction may only be executed if the status of diagnostic flag +1 is low.

Assigning a slave to a group takes place with the Profibus-DP configurator.

Profibus-DP supports the formation of a maximum of 8 groups.

These groups can be assigned as many slaves as required.

The choice of group in the SCON parameter is bit-oriented according to the following pattern:

Parameter

Saia PG5® Instruction List, 2013-10-25 234

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

Bit Number

0 Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8

~NOoO ok wWwN PR

A 'Freeze' or 'Unfreeze’ instruction can be executed here on several groups simultaneously.
Fct. code to trigger 'Freeze' or 'Unfreeze’ instructions:

13 Start freeze instruction.
14 Start unfreeze instruction.

Format
SCON channel :9, 8
func_code ;13, 14
paranmeter ;0..255 = Group nunber

Flags
The error flag is set if the channel is unassigned or if the instruction is called when diagnostic flag +1
is high.

Example
Execute freeze and unfreeze sequence for the slaves of group 5.

STL GCS_BUSY ;1 f diagnostic flag +1
;. is low, then continue
| SCON 9 : Profi bus-DP channel 9
13 . Freeze
16 ; Group 5 (00010000)
STL GCS_BUSY ;1 f diagnostic flag +1

;. is low, then continue

LD T 3 ;Load tiner with
100 ; value 100, delay so that
: the slaves transmt their

; frozen inputs to the

;. master
T STL T 3
STL F XX : Process the
: frozen |/ 0Os of sl aves
| SCON 9 : Profi bus-DP channel 9
14 : Unfreeze
16 ; Group 5 (00010000)

Saia PG5® Instruction List, 2013-10-25 235

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

STL GCS_BUSY ;1 f diagnostic flag +1
. is low, then continue

SCON(I) 15, 16: Global Control Service Sync, Unsync

With these instructions, the 'Sync' and 'Unsync' commands can be triggered for one or more groups of
slaves.

The instruction is used to synchronize the outputs.

With the 'Sync' instruction, the master causes a slave or group of slaves simultaneously to freeze
outputs in their present state. In the next data cycle (Data_exch) the master transfers the output
image to the slaves, without the slaves copying this image to their outputs. After the conclusion of
this action, the master sends an 'Unsync' instruction to the group. All slave outputs are now switched
on or off at precisely the same time and these outputs are again refreshed in the normal data cycle. It
is permissible for the master, after one 'Sync' instruction, to send further 'Sync' instructions to the
slaves. In each case the current output image is copied to the outputs at exactly the same time.

Diagnostic flag +1 is set high as soon as this instruction starts up. When the instruction has finished,
the flag is set low and the result of the operation is written to diagnostic register +0. A description of
the response code in diagnostic register +0 is given in section 5.2.1.2, 'Diagnostic registers with
PROFIBUS-DP'. This instruction may only be executed when the status of diagnostic flag +1 is low.

Assigning a slave to a group takes place with the Profibus-DP configurator. Profibus-DP supports the
formation of a maximum of 8 groups. These groups can be assigned as many slaves as required. The
choice of group in the SCON parameter is bit-oriented according to the following pattern:

Parameter

Bit Number

0 Group 1
1 Group 2
2 Group 3
3 Group 4
4 Group 5
5 Group 6
6 Group 7
7 Group 8

A 'Sync' or 'Unsync' instruction can be executed here on several groups simultaneously.
Function codes
to trigger 'Sync' or 'Unsync' instructions:

Start sync instruction.

Start unsync instruction.

Format
SCON channel 79, 8
func_code ;15, 16
paranmeter ;0..255 = G oup nunber
Flags
The Error flag is set if the channel is unassigned or if the instruction is called when diagnostic flag +1
is high.

Saia PG5® Instruction List, 2013-10-25 236

Saia-Burgess Controls AG

Communications Instructions

Example

SCON - Control Communication (Profibus-DP)

Execute a 'Sync' and 'Unsync' sequence for the slaves of group 3.

JF

JF

STL GCS_BUSY
SCON 9
15
4
STL GCS_BUSY
ouT F XX
LD T 5
400
STL T 5
SCON 9
16
4
STL GCS_BUSY

History List Messages
In case of problems with Profibus-DP the following error message is stored in the history log:

PROF DP FAIL xxx

;1 f diagnostic flag +1
is low, then continue

: Profi bus-DP channel 9
;o Sync

. Group 3 (00000100)

;1 f diagnostic flag +1

is low then continue
; Set out puts
;. of slaves
Load tiner 5 with
: val ue 400
cWait until timer =0
: Profi bus-DP channel 9

; Unsync
; Group 3 (00000100)

;1 f diagnostic flag +1

:is low, then continue

ERR#

Description

Keyword MODE: not found

Wrong mode specified

Keyword CONF: not found

DBX key word not specified

DBX number error

DBX number to large

DBX does not exist

Keyword DIAG: not found

Flag or output key word not specified in DIAG

Error in address of diag flag or output

Range error diag flag or output

Register keyword not specified in DIAG

Range error diag register

Profibus-DP HW card not present

Error in instruction

wWIN |k |[O]JlO|O|O|O|O|O|(OC|O|O |O|O |O

DBX structure error

Saia PG5® Instruction List, 2013-10-25

237

Saia-Burgess Controls AG Communications Instructions

SCON - Control Communication (Profibus-DP)

4 DBX type not for DP master (no PROFIBUS DBX)
5 FW-DBX version not compatible
6 No IN RING message after timeout on initialization
7 Semaphore error for data exchange (info to PCD support)
8 DBX error: data transfer function not implemented
9 Incompatible PCD7.F750 and PCD hardware
See also

For more information, consult the "Profibus-DP Manual"

9.37 SCONI - Control Communication Indirect (Profibus-DP)

Description
Controls data exchange between PCDs on a Profibus-DP channel. This is the same as SCON, but
the operands are passed in Registers.

Notes
e This instruction cannot be used with Function Block parameters (= n).
e Temporary Registers, defined with TEQU, cannot be used.

Format
SCONI reg_chan ; channel nunber or reg containing channel nunber
reg_func ;register containing function code
reg_param ;register containing paraneter
Example
SCONI R 100 ; channel from R 100
R 101 ;function fromR 101
R 102 ;paranmeter fromR 102
Flags
ACCU Unchanged
Status E Error flag set if the channel has not been correctly initialized or does not exist.
Flags

Practical example
Data is to be exchanged between the PCD controller's process image memory and that of the
Profibus-DP card, controlled by the user program.

LD R 2000 ;1 oad Register 2000
9 :wi th channel 9
LD R 2001 ;1 oad Register 2001
3 ;with function code 3 = Force data exchange
LD R 2002 ;1 oad Regi ster 2002
0 ;wWith paraneter 0 =
SCONI R 2000 ;transfer process inmage nenory
R 2001 ;function code in R 2001
R 2002 ; paraneter in R 2002
See also

SCON Control Communication (Profibus-DP)
For more information, search for Profibus-DP in the SBC website http://www.sbc-support.com.

Saia PG5® Instruction List, 2013-10-25 238

http://www.sbc-support.com

Saia-Burgess Controls AG Control Instructions

10

10.1

Control Instructions

These instructions control the execution of the program.

JR Jump Relative
JPD Jump Direct
JPI Jump Indirect
HALT Halts the CPU
LOCK Lock Semaphore

UNL OCK Unlock Semaphore

NOTE
Jump instructions are common causes of errors (infinite loops etc.) and should be used with care.
COBs should not contain code which causes long loops - COBs are cyclic tasks.

JR - Jump Relative

Description
Conditionally or unconditionally jumps a specified number of program lines forwards or backwards

from the current program line number.

The number of lines that can be jumped is 4095 (backwards) to +4095 (forwards), the program line
jumped to is calculated by adding this value to the number of the program line containing the JR
instruction. It is illegal to jump out of the current block (COB, PB, FB, ST, TR or SB): the destination
MUST be in the current block.

The following condition codes can be used:

blank Unconditional jump (condition code blank)
H Jump if Accumulator = H (1)

L Jump if Accumulator = L (0)

P Jump if Positive flag = H (Negative flag = L)
N Jump if Negative flag = H

z Jump if Zero flag = H

E Jump if Error flag = H

If the condition is not true, the jump is not made; execution continues with the instruction following
JR.

It is usual to use Labels (symbolic names) for jump destinations.

Format
JR [cc] offset ;cc = condition code, HL P Z NE
;offset is the relative nunber of |ines
;to be junped (4095.. +4095)
Example
JR H-2 ;junp 2 line above
JR H Repeat ;junp to | abel "Repeat"
Repeat : ; | abel

Saia PG5® Instruction List, 2013-10-25 239

Saia-Burgess Controls AG Control Instructions

10.2

JR - Jump Relative

Flags
ACCU Unchanged

Status Flags Unchanged

Tip: Awoid creating program loops using jumps. Loops can slow the operation of COBs (tasks) within
the PCD.

Instead, use linkages based on the ACCU, or consider using Graftec.

Or if a condition is not satisfied, continue processing other conditions.

Practical example

STH | 15 STH | 15

ANL XBSY ANL XBSY

DYN F 15 CPB H 25

JR H Next - >

STXT 1

57 PB 25

- STXT 1

Next : 57
EPB

JPD - Jump Direct

Description

Jumps conditionally or unconditionally to a program line number relative to the start of the current
block (COB, XOB, PB, FB, ST or TR).

The destination line number is always positive, between 0 and the number of lines in the current block
(max 8191 lines).

Labels can also be used.

The following condition codes can be used:

blank Unconditional jump (condition code blank)
H Jump if Accumulator = H (1)

L Jump if Accumulator = L (0)

P Jump if Positive flag = H (Negative flag = L)
N Jump if Negative flag = H

Z Jump if Zero flag = H

E Jump if Error flag = H

If the condition is not true, the jump is not made; execution continues with the instruction following
JPD.

Format

JPD [cc] offset :cc = condition code, HL P Z N E
;offset fromstart of block (0..8191)

Example

JPD L 10 ;if the ACCU is Low, a junp is nade

:to 10th line of the current bl ock

Saia PG5® Instruction List, 2013-10-25 240

Saia-Burgess Controls AG

10.3

JPD - Jump Direct

Flags
ACCU Unchanged

Status Flags Unchanged

See also
JR
JPl

JPI - Jump Indirect

Description
Similar to JPD: jumps conditionally or unconditionally to a program line number relative to the start of

the current block (COB, XOB, PB, FB, ST or TR).

The program line number is read from the given Register number (only the least 13 bits are
significant). Since this instruction utilizes a condition code, the 'R' data type code is omitted.
This useful for creating jump tables and 'case' statements.

Notes

e The destination of the jump cannot be outside the current block.

e For firmware versions earlier than 1.20.00, the max. Register address for indirect instructions is
8191.

¢ To use Register addresses 8192..16383 with firmware version 1.2.00 or later, set the Build Option
"Use 16-bit Register and Flag addressing" to Yes.

e Temporary Registers, defined with TEQU, cannot be used.

¢ This instruction cannot be used with Function Block parameters (= n).

The following condition codes can be used:

blank Unconditional jump (condition code blank)
H Jump if Accumulator = H (1)

L Jump if Accumulator = L (0)

P Jump if Positive flag = H (Negative flag = L)
N Jump if Negative flag = H

Z Jump if Zero flag = H

E Jump if Error flag = H

If the condition is not true, the jump is not made; execution continues with the instruction following
JPI.
The value of a label can be loaded into a Register using the LD instruction.

Format
JPI [cc] reg ;cc = condition code, HL P Z NE
;reg = Register (max. 8191) containing
;the offset fromstart of block (0..8191)
Example
JPI H 300 ;if the ACCU is High, a junp is nade
:to the line of the current block stored in
; Regi ster 300
Flags
ACCU Unchanged
Status Flags Unchanged
See also
JR
JP

Saia PG5® Instruction List, 2013-10-25

Control Instructions

241

Saia-Burgess Controls AG Control Instructions

JPI1 - Jump Indirect

LD

104 HALT - Halts Program Execution

Description
Conditionally or unconditionally Halts the PCD. If the condition is not true, the HALT is not made and
execution continues with the following instruction.

The Halt state is not the same as the Stop state. After a HALT the PCD can only be set to Run by a
Restart operation, or by powering the PCD off and on.

The state of the Outputs after the HALT is defined by jumpers in old PCD types, or from the Device
Configurator for new models.

Use HALT only for processing fatal non-recoverable errors.
The following condition codes can be used:

blank Unconditional jump (condition code blank)
H Halt if Accumulator = H (1)

L Halt if Accumulator = L (0)

P Halt if Positive flag = H (Negative flag = L)
N Halt if Negative flag = H

Z Halt if Zero flag = H

E Halt if Error flag = H

Format
HALT [cc] :cc = condition code, HL P Z N E

Example
HALT E ;halt if the Error (E) flag is set

Flags
ACCU Unchanged

Status Flags Unchanged

Practical example
If the Error (E) flag is set, diagnostic information is stored and the PCD halts.

X0B 13

DI AG R 1000
HALT

EXOB

Saia PG5® Instruction List, 2013-10-25 242

Saia-Burgess Controls AG Definition Instructions

11

111

Definition Instructions

These instructions are executed on power up, and are executed ONCE only. If an instruction is
executed again it is ignored.

Normally these instructions will be placed in the start-up XOB 16.

The operands of these instructions cannot be supplied as Function Block parameters.

DEFVM Define Volatile Memory (Flags)

DEFTC Define Timers/Counters
DEFTB Define Timebase
DEFTR Define Timer Resolution

DEFTMP Define Temporary Data Size

DEFVM - Define Volatile Memory (Flags)

Description

Defines the area of Flags which are to be nonwolatile (battery-backed). Nonwolatile Flags retain their
values even after power to the PCD is lost.

Volatile Flags are all set to 0 on power-up of the PCD. All Flags from the Flag address in the operand
upwards are defined as being non-volatile.

If the instruction is not used, all Flags are non-wolatile by default.

Note

The PG5 generates this instruction from the Project Manager's 'Build Options' as part of the build
process, so you do not normally need to use the DEFVM instruction in your program.

If you have imported an old PG3 project, just delete the DEFVM instruction and set the number of
nonwolatile flags in the 'Build Options'.

Format
DEFVM fl ag ;flag = volatile/nonvolatile flag partition 0..8191

Example
DEFVM 200 ;Flags O 199 are volatile (set to zero on reset)

; Flags 200..8191 are nonvol atile (unchanged by reset)

Flags
ACCU Unchanged

Status Flags Unchanged

See also
DEFTC
DEFTB

Practical example
Flags 0..199 are to be declared to be wlatile (set to zero on start-up). Flags 200..8191 are non-
wlatile (battery-backed).

XOB 16 cold start XOB
DEFVM 200 ; Flags 200..8191 are nonvol atile
EXOB

Saia PG5® Instruction List, 2013-10-25 243

Saia-Burgess Controls AG Definition Instructions

11.2

11.3

DEFTC - Define Timers/Counters

DEFTC - Define Timers/Counters

Description
Defines the number of Timers for the PCD. Timers and Counters occupy the same addressing space.
All elements BELOW the operand value are Timers, all the others are Counters.

If the instruction is not used, the default is:
Timers: 0 31
Counters: 32 1599.

Note

The PG5 generates this instruction from the Project Manager's 'Build Options' as part of the build
process.

You do not need to use a DEFTC instruction in your program, instead define the number of Timers
from the 'Build Options'.

If you have imported an old PG3 project, just delete the DEFTC instruction and set the number of
Timers as described abowe.

The new SYSCMP instruction can also be used to create Timers with 1ms accuracy.

Format
DEFTC ctr lower limt for Counters, O..450

Example
DEFTC 64 cTimers are 0..63, Counters are 64..1599

Flags
ACCU Unchanged

Status Flags Unchanged

See also
DEFTB
DEFTR
DEFVM
SYSCMP

Practical example
Assume that 100 Timers are necessary for an application.

XOB 16 ;cold start XOB
DEFTC 100 :0..99 are Tiners
; 100. . 1599 are Counters

EXOB
DEFTB - Define Timebase

Description

Defines the timebase for the decrementing of the Timers. The operand indicates the timebase in 10's
of milliseconds.

Values of 1 to 1000 are valid (10 ms to 10 sec).

If the timebase is not defined (ho DEFTB), the default is 100 ms (1/10 sec).

If you load a timer with a certain time, then the time loaded into the timer depends on the value off the
system timebase, for example:
LD T 33

Saia PG5® Instruction List, 2013-10-25 244

Saia-Burgess Controls AG Definition Instructions

DEFTB - Define Timebase

5
With a timebase of 10ms, the time loaded into the timer 33 will be 5 * 10ms = 50 ms.
If you now change the timebase to 1000ms then the timer will be loaded with 5s.

In most of the cases you would like to have a time loaded to the timer that doesn't depend on the
Build Options setting.
You can do this by using the TIME data type:
LD T 33
t #5s
Now the timer 33 always is loaded with 5s. It doesn't depend on the timebase value anymore.

Note

The PG5 generates this instruction from the Project Manager's '‘Build Options' as part of the build
process.

You do not need to use a DEFTB instruction in your program, instead define the Timer Timebase from
the 'Build Options".

If you have imported an old PG3 project, just delete the DEFTB instruction and set the timer timebase
as described above.

Format
DEFTB tinebase ;timebase in 10's of mlliseconds, 1..10000

Example
DEFTB 100 ;timebase = 1 sec (100 * 10ns)

Flags
ACCU Unchanged

Status Flags Unchanged

See also
DEFVM
DEFTC
SETD
RESD

Practical example
Set the timebase to 1 second, for a very slow process!

XOB 16 ;cold start XOB
DEFTB 100 ;tinmebase is 100 * 10 ns = 1000 nB
EXOB

Tips

What happens with Fupla files?

Fupla still works with 100ms as the timebase even if the IL program uses a timebase other than
100ms.

You can hawe fast timers (timebase = 10ms) in the IL (Instruction List) file and a Fupla file in the same
project without running into problems.

Fupla does not support time declarations like: t #5

What happensif | load a time smaller than the timebase?
In this case the Timer will be loaded with the timebase.
Example: Timebase = 1s

LD T 54

Saia PG5® Instruction List, 2013-10-25 245

Saia-Burgess Controls AG Definition Instructions

DEFTB - Define Timebase

t #2738
The time is less that 1s so the Timer will be loaded with 1 second.

What happens if | load a time with a resolution smaller than the timebase?
Then you are a very naughty boy and don't deserve any Christmas presents.
But seriously folks...
Example: Timebase = 1s

LD T 54

T#1100ns

In this case Timer 54 will be loaded with a time of 1000ms only.
This is because the timebase is 1000ms, and the 100ms part of the 1100ms timer value is discarded.

11.4 DEFTR - Define Timer Resolution

Description
Defines the speed in milliseconds with which Timers will be decremented.

For example, if a "DEFTR 100" is specified, all non-zero Timers will be decremented by 100 every
100ms.

A "DEFTR 1000" will decrement all Timers by 1000 every 1000ms and so on.

If DEFTR and DEFTB are used in the same program, the message “DOUBLE TIME BASE” will appear
in the History List and the PCD will automatically put itself in "HALT" upon a restart cold or on power-

up.

The advantage of the DEFTR instruction (over the DEFTB) is that the values you specify when using
Timers are independent of the timebase or resolution and always introduced in multiples of 10ms.
The DEFTR instruction allows a maximum Timer resolution of 10ms which means that the value
specified in the instructions is rounded if necessary .

Example: DEFTR 25: a time base of 20ms will be set (25 rounded down to 20). The DEFTR
instruction, as with the DEFTB instruction, also acts on the instructions SETD, RESD and OUTD.
If the DEFTR instruction is present in the user program then the time base of these instructions is
fixed to 10ms independent of the specified value by DEFTB.

Note

The PG5 generates this instruction from the Project Manager's 'Build Options' as part of the build
process.

You do not need to use a DEFTR instruction in your program, instead define the Timer resolution from
the Build Options.

Format
DEFTR resol ution resolution x 10 ns

Example
DEFTR 100 cTimer resolution = 100 nsec

Flags
ACCU Unchanged

Status Flags Unchanged

See also
DEFTB

Practical example
The Output 20 will be set 150ms (15 * 10ms) after the instruction has been executed.

X0B 16

Saia PG5® Instruction List, 2013-10-25 246

Saia-Burgess Controls AG Definition Instructions

DEFTR - Define Timer Resolution

DEFTR 200
EXOB
coB 0
0
SETD O 20
15
ECOB

11.5 DEFTMP - Define Temporary Data Size

Description

When temporary data is defined using TEQU, S-Asm counts the number of temporary Registers and
Flags used in each block, and generates DEFTMP R and/or DEFTMP F instructions to define the
amount of temporary data used by the block. These instructions are inserted at the very end of the
block.

When the block runs, the firmware assigns the correct amount of temporary data and initializes it to
Zeros.

Note

Each COB and XOB (each task) needs its own memory for temporary data. This must be defined by
the instruction "DEFTMP M kbyt es" in each COB or XOB. If temporary data is used in the COB or
XOB, S-Asm will generate this instruction automatically with a default size of 2 KB. But if the COB or
XOB itself does not use temporary data, but some of the called blocks do use it, then you must
manually insert the "DEFTMP M kbyt es" instruction into the COB or XOB. If this instruction is not
there, the PCD will Halt with a TEMPDATA ILLEGAL error.

Format

DEFTMP R| F| M count ;count is the nunber of tenporary Registers or Flags,
;or Mis the size of tenp nmenory in KB

Example

PB 0

; Declare tenporary data, 2 Registers and 2 Fl ags
TenmpRl TEQU R
TenpR2 TEQU R
TenpFl TEQU F
TenpF2 TEQU F
;use the tenp data
EPB

For the above example, the assembler generates these instructions and inserts them at the end of the
block:

DEFTMP R 2 ;nunber of tenporary Registers, inserted by S-Asm
DEFTMP F 2 ;nunber of tenporary Flags, inserted by S-Asm
EPB

If this PB is called from a COB, the COB must define the total temporary data memory size for the
task. If the COB itself uses temporary data, this instruction will be generated automatically by S-Asm.
If the COB does not use temporary data, but one if its called blocks does, then you must enter the
DEFTMP M instruction manually, see Note abowe.

Saia PG5® Instruction List, 2013-10-25 247

Saia-Burgess Controls AG Definition Instructions

DEFTMP - Define Temporary Data Size

coB 0
0
CPB 0

DEFTMP M 2 ;defines 2K bytes of nenory for the tenp data stack
ECOB

See also
TEQU

Saia PG5® Instruction List, 2013-10-25 248

Saia-Burgess Controls AG Special Instructions

12

121

Special Instructions

These instructions perform miscellaneous operations.

NoP No Operation

RTI ME Read Time

WI'I VE Write Time

DsP Load Display Register
PI D P.1.D. Control

TEST Test Hardware

DI AG Read XOB Diagnostic

SYSRD System Read
SYSVR System Write
SYSCMWP System Compare

CSF Call System Function
RDP Read Peripheral

W\RP Write Peripheral
Note

The following instructions are not supported by the new PCD models (NT systems), PCD3, PCD2.
M480 etc.

These two instructions work only with the analogue card PCA2.W1x.
To read or write values to analogue cards PCD2, PCD4 and PCD6, consult the appropriate hardware
manual.

ALG Analogue Input
ALGO Analogue Output

These instructions were used for accessing slow /O modules such as the old PCA2.W2x / W3x.
STHS Start High Slow

QUTS Out Slow

ALGI - Analogue Input

Description
Reads a 12-bit value from a PCA2.W1x analogue module, and stores it in the specified Register.

The 1st operand contains both the A/D channel number (07) and the base address of the module.
The 2nd operand is the destination Register number.

If the first operand is supplied as an FB parameter, both the A/D channel number and the base
address must be supplied on the same line.

Note

This instruction is not supported by new PCD types (NT systems, PCD3, PCD2.M480 etc). This
instruction cannot be used for PCD4.Wxxx and PCD6.Wxxx modules (see the respective hardware
manuals).

Format
ALG [X]] chan base ; channel and base address

[=
[=] reg (i) ;destination Register R

Saia PG5® Instruction List, 2013-10-25 249

Saia-Burgess Controls AG Special Instructions

ALGI - Analogue Input

Example

ALG 2 64 ;read anal ogue value from channel 2, at nodul e base address 64
R 10 ;and save it in R 10

Flags

ACCU Unchanged

Status Flags E Always set Low
P Set according to the result
Z Set according to the result
N Set according to the result

See also

ALGO

122 ALGO - Analogue Output

Description

Outputs a 12-bit binary value from the specified Register to a PCA2.W1x analogue module.
The 1st operand is the Register to be output.

The 2nd operand contains both the D/A channel number, and the base address of the module.

If the second operand is supplied as an FB parameter, both the D/A channel number and the base
address must be supplied on the same line.

Note

This instruction is not supported by new PCD types (NT systems, PCD3, PCD2.M480 etc). This
instruction cannot be used for PCD4.Wxxx and PCD6.Wxxx modules (see the respective hardware
manuals).

Format

ALGO X]

] reg (i) ;source register R
] chan base ;channel and base address

[:
[:

Example
ALGO R 100 ;out puts the value in R 100

3 128 :to channel 3 of nodule at base |/ O address 128

Flags
ACCU Unchanged

Status Flags Unchanged
See also
ALGI
12.3 CSF - Call System Function
Description
Conditionally or unconditionally calls a System Function, which is a function in the firmware, or code
in a library.
The easiest way to call a System Function is to use the IL Editor (S-Edit), System Functions are
shown in S-Edit's 'Selector Window', from where function call can be drag-and-dropped into the code.

This adds the skeleton code for the call, and adds the required $include file to the program.

System Function calls can also be coded manually - examine the .LIB files for the SF library.

Saia PG5® Instruction List, 2013-10-25 250

Saia-Burgess Controls AG Special Instructions

12.4

CSF - Call System Function

Each System Function library has a unique "library number", and each function in the library has a
"function number". Each function can also have optional parameters.
These numbers are defined in the library's $include file, along with the function's parameters.

Usage

CSF [cc] lib_nunber ;i brary nunmber
func_nunber ; function nunber to call
[parms. . .] ;optional paraneters

Example

CSF L 10 ;call library 10 if ACCU = Low
3 ;function 3
F 10 ; paraneters for function 3
R 32

Flags

ACCU Unchanged

Status Flags E The Error (E) flag is set if the library or function does not exist.

See also
Condition codes

DIAG - Read XOB Diagnostic

Description

Fills a 12-Register block with diagnostic information relating to the last or the present Exception
Organization Block (XOB) executed.

The operand is the lowest Register number of the block of 12 Registers.

DIAG is normally used within an XOB.

Register block usage:

Register

0 XOB Number Number of last or present XOB

+1 Program Line Program Line when XOB was called
+2 Index Register Value of Index Register when called
+3 COB Program Line Program Line of Lewel O call

+4 Nesting Level 1 Program Line Program Line of Level 1 call

+5 Nesting Level 2 Program Line Program Line of Lewel 2 call

+6 Nesting Level 3 Program Line Program Line of Lewel 3 call

+7 Nesting Level 4 Program Line Program Line of Lewel 4 call

+8 Nesting Level 5 Program Line Program Line of Lewel 5 call

+9 Nesting Level 6 Program Line Program Line of Lewel 6 call

+10 Nesting Level 7 Program Line Program Line of Lewel 7 call

+11 Not Used Resened

The program line numbers of the block calls (Nesting level information) give the program line where the
previous call (CFB, CPB, etc) took place.
From these, it can be established exactly where the program was when the XOB was executed.

Saia PG5® Instruction List, 2013-10-25 251

Saia-Burgess Controls AG Special Instructions

DIAG - Read XOB Diagnostic

The operand cannot be supplied as a Function Block parameter.

Format
DI AG reg ;1 owest address of 12 Registers, RO .. rnmax-12

Example
DI AG R 1000 ;store diagnostic information in

; Regi sters R 1000..1011

Flags
Unchanged.

Practical example
The address of the line where an error occurs must be printed.

X0B 13
Dl AG R 1000
STXT 1 100

TEXT 100 "$D $ H : "
" Error Flag set at address $R1001<CR><LF>"

EXOB

125 EXTB/EXTW - Sign Extension

Description

Converts a signed BYTE or WORD in a Register into a signed DWORD by extending the sign bits.
Indexing can be used.

This can be useful if a BYTE or WORD has been loaded into a Register by using XLD Load Data or
MOV Move Data.

Format
EXTB[X] Rreg (i) ;sign-extends the BYTE in the register
EXTWX] Rreg (i) ;sign-extends the WORD in the register

Examples
; R 100 contains the WORD val ue -1 (OFFFFh)

;extend this to a DWORD val ue: OFFFFh -> OFFFFFFFFh
EXTW R 100

; R 200 contains the BYTE val ue 80h (-128)
;extend this to a DWORD val ue: 80h -> OFFFFFF80h (-128)
EXTB R 200

; R 300 contains the hex val ue 012345678h
;extending the LS WORD produces 00005678h, the MS WORD is set to zero
EXTW R 300

Flags
ACCU Unchanged

Status Flags E Unchanged

Set according to the result
Set according to the result
Set according to the result

ZNT

Saia PG5® Instruction List, 2013-10-25 252

Saia-Burgess Controls AG Special Instructions

EXTB/EXTW - Sign Extension

See also
XLD Load Data
MOV Mowe Data

126 LOCK - Lock Semaphore

This instruction is only needed in the old PCD4 and PCD6 which could have more than one CPU that
could share the same data.
It is not needed in PCDs with only one CPU.

Description
LOCK in conjunction with UNLOCK, is used to prevent access conflicts when several CPUs read or

write the same elements.

100 Semaphores (special flags) are available (099).

The LOCK instruction checks the Semaphore. If it is High (another CPU has executed a LOCK), then
the ACCU is set Low.

If it is Low, the ACCU and the Semaphore are set High.

It is the programmers responsibility to ensure that the CPU does not reference an element if the
associated Semaphore is High (ACCU = L (0) after LOCK).

The UNLOCK instruction clears the Semaphore.
An UNLOCK instruction MUST quickly follow a LOCK instruction so that no CPU is blocked from
accessing an element for too long.

Format
LOCK semaphore ; semaphore nunber 0..99

Example

; Semaphore 1 is used to protect data access

LOCK 1 ;i1 f Semaphore 1 is Low (data is not being
CFB H 100 ;accessed by another CPU), then call FB 100
Flags

ACCU Set High or Low according to the state of the Semaphore
Status Flags Unchanged

See also

UNLOCK

Practical example
A PCD4 is equipped with two CPUs. CPU 0 compares the contents of 2 registers while CPU 1

transfers BCD information into one of these two registers.

The use of semaphore 1 ensures that CPU 0 never compares the two registers while CPU 1 is
executing the DIGI instructions, and is altering the contents of the registers.

If CPU 0 were to compare the registers at the same moment that CPU 1 was updating them, it might
compare a new value with an old one.

Semaphore 1 also prevents CPU1 executing the DIGI instructions until CPU 0 has finished the CMP

instruction.

CPUO CPU1

LOCK 1 LOCK 1

CFB H 10 CFB H 100

Saia PG5® Instruction List, 2013-10-25 253

Saia-Burgess Controls AG Special Instructions

12.7

12.8

LOCK - Lock Semaphore

FB 10 FB 100
CwvP R 88 DM€ 2
R 89 | 16
UNLOCK 1 R 88
EFB DM€ 2
I 24
R 89
UNLOCK 1
EFB

NOP - No Operation

Description
Do-nothing instruction.

Used for patching out other instructions, for leaving space in the code for future additions or
modifications, or for introducing very short delays.

Format
NOP ; has no operand

Example
NOP ; does not hi ng

NOP ;space for 3 instructions, or short delay (depends on CPU speed)
NOP
NOP

Flags
Unchanged.

Practical example
An exciting program which, despite its complexity, does absolutely nothing at all.

coB 0
0

NOP

ECOB

OUTS - Set Element from ACCU Slow

Description
This instruction is not supported by new PCD types (NT systems, PCD3, PCD2.M480 etc), please

use OUT.

The specified element, usually an Output, is set to the state of the ACCU.

This is the same as the OUT instruction, except that the timing on the PCD I/O bus is slightly slower,
and it is therefore suitable for slow I/O modules.

Use this instruction to access Analogue modules PCA2.W2x/W 3x.

The program execution speed is not affected.

Format
QUTS[X] [=] elenment (i) 1 OF

Saia PG5® Instruction List, 2013-10-25 254

Saia-Burgess Controls AG

Special Instructions

Example

OuUTS

Flags
Unchanged.

See also

ouT

STHS

O 32

Practical example

The analogue value of channel 0 from a PCA2.W2x (base address 96) must be read and stored in
Register 100.
After the conversion is made with the OUTS instruction, 8 binary bits can be read starting from the

module base address + 8 (=104)

*) The analogue module PCA2.W2x has a conwersion time of <= 100 ms. This wait function can be
done by inserting a number of consecutive NOP instructions.

coB
AcC
OuUTS
cPB
ECOB
PB

BITIR

EPB

;ensure the ACCU is H gh so OUTS execut ed

0
0
H
O 96 ; sel ect anal og channel
; del ay about 100 ns *)
RD_ VAL ;read the anal ogue val ue
RD_VAL
8 ;read 8 bits binary in reversed order
| 104 ;fromI1/O address 104..111
R 100 ;into Register 100

The number of NOPs depends on the CPU's processor speed.

129 PID - PID Control Algorithm

Description

Implements a PID algorithm using data defined in an array of 13 Registers.
Register Meaning Symbol
+0 New Result Yn * size is 'm' bits
+1 Previous Result Yn 1 *
+2 New Controlled Variable Xn w size is 'm' bits
+3 Prev. Controlled Variable xXn 1 *
+4 Reference Variable Wn w size is 'm' bits
+5 Prev. Set point Variable Wn 1 *
+6 Proportional Factor Fp w * 256
+7 Integral Factor Fi W * 256
+8 Derivative Factor Fd w * 256
+9 Dead Range Dr W

OUTS - Set Element from ACCU Slow

Saia PG5® Instruction List, 2013-10-25

255

Saia-Burgess Controls AG

Special Instructions

PID - PID Control Algorithm

+10 Cold Start Y Ys w Starting value for Yn
+11 Precision in bits m W m = 8, 12 or 16 bits
+12 Workspace Zs *

* These values are handled by the PID instruction.
w These values must be written into the register by the user program.

Format
PI D [=] reg ;reg is the | owest address of 13 Regi

Example
PI D R 1000 ;use R 1000..1012 for the PID control

Flags
Unchanged.

Practical example
Flowchart of typical PID control loop:

' Start ’

ol

Read Fp, Fi, Fd, W, X, Zs
PID instruction for Cold start

A

Read the referance (W), the Dr para-
meters and the controlled value (X)

PID instruction
|

Cwutput of the result () onan
analogue cutpul

Wait for sampling time (To)

Fp. Fi, Fd
madified 7

PID Instruction Details

sters

dat a

Saia PG5® Instruction List, 2013-10-25

256

Saia-Burgess Controls AG Special Instructions

PID - PID Control Algorithm

Process

> pPID ——™

New Result Yn:
This is the actual result to control the process determined by the system program from the following
equation with Zs = Zs + (Wn - Xn):

KI: Fﬁ - W.'r—Xﬁ il "Z-. Fa #(Wa =Wy 1) — X.'.'_X.l.'—
2561 3567 256)=(Uy

If the result exceeds the declared precision in bits, it will be limited to its maximum value (m bits) or,
in case of a negative result, it will be set to 0.

Previous Result Ynl
This is the old result determined in the previous operation.

Controlled Variable Xn

The controlled variable Xn is read from the process and written to the register (R+2) by the user
program.

The controlled variable should be maximum 'm' bits

Previous Controlled Variable Xn1
This is the old controlled variable used in the previous arithmetic operation.

Reference Wn
The reference (setpoint) is written to the register (R+4) by the user program. The reference should be
maximum 'm’ bits.

Previous Reference Wn1l
This is the old reference used in the previous arithmetic operation.

Proportional Factor FP

This factor determines the proportional (amplification) characteristic of the regulator and is written to
the register (R+6) by the user program.

When calculating, only the 16 lower bits are used (0..65535)

The Proportional factor is determined as follows:

= i*256
A where Xp = Proportional band
Note: To enter a proportional band of 5%, the Fp factor must be set to:
(1/0.05) * 256 =5120

A cold start of the PID must be executed after a modification of Fp or Fi

Integral Factor Fi
This factor determines the integral characteristic of the regulator and is written to the register (R+7) by

Saia PG5® Instruction List, 2013-10-25 257

Saia-Burgess Controls AG Special Instructions

PID - PID Control Algorithm

the user program.
When calculating, only the 16 lower bits are used (0..65535)
The Integral factor is determined as follows:

Fi = (To / Ti) * 256

where
To : sampling time of the PID instruction
Ti : integral time
A cold start of the PID must be executed after a modification of Fp or Fi

Derivative Factor Fd

This factor determines the derivative characteristic of the regulator and is written to the register (R+8)
by the user program.

When calculating, only the 16 lower bits are used (0..65535)

The Derivative factor is determined as follows:

Fa = E>l<256
. To

where
To : sampling time of the PID instruction
Td : derivative time

Dead Range Dr
The dead range defines the range in which the variations of the controlled variable may occur without
causing a modification of the Result variable (Yn).

Cold Start YS

This value is used as starting value for Yn by the system program.

As soon as the user program writes a value other than 0 to the cold start register, a cold start
calculation is made: Yn = Ys

Ynl = Ys

Zs = [(Ys * 256/Fp) (Wn Xn)] *256/Fi
Wnl = Wn

Xnl = Xn

The value of Ys is automatically reset to 0 by the system program after being used once and will not
be used again.

For a Cold Start with an output value of 0, the Ys register must be set to -1.

When Fi = 0, the Yn value can not be initialised with a Cold Start. A Cold Start is however
recommended to initialise the workspace register.

In this case, the Ys value is ignored, the Zs register is set to 0 and Yn takes the value of the
proportional part of the algorithm.

Note: Changing from manual to automatic control is a typical application of a cold start calculation. In
order to achieve a smooth transition, Ys may be set equal to the currently output variable (Yn).

Resolution m

The maximum values of X, W, Yn and Ys are determined by the resolution.
If m = 8: 8 hits are used (0..255)

If m = 12: 12 bits are used (0..4095)

If m = 16: 16 bits are used (0..65535)

Saia PG5® Instruction List, 2013-10-25 258

Saia-Burgess Controls AG Special Instructions

12.10

12.11

PID - PID Control Algorithm

The resolution is mostly defined by the analog module used for the Result variable output.
If the resolution for the input and output are not the same, the Yn value must be adapted after the PID
instruction.

Sampling Time
The sampling time To must be done outside the PID instruction with a timer.
In practice: To » 0,1 time constant of the process (To must be at least 80 ms)

Calculation capacity

The workspace register Zs has a maximum capacity of 231.

When using 16 bits values (m = 16), an overflow can occur; in this case the PID will not work properly.
To awoid this problem, the factor Fp must be 2 2 if m = 16 (There is no problem when m = 8 or 12).

RDP - Read Peripheral

Description
Reads from a digital or analogue input.

This instruction is used by the Device Configurator's 10 Handling feature.

Choose the mnemonic according to the size of the data to be read:

RDP DWORD (32 bits), the default

RDPI As RDP but the peripheral_adds is in a Register
RDPB BYTE (8 hits), LS byte of source, other bytes set to 0
RDPBI As RDPB but the peripheral_adds is in a Register

RDPW WORD (16 bits), LS word of source, MS byte set to 0
RDPW As RDPW but the peripheral_adds is in a Register

Format
RDP [K] peripheral _adds ;0..65535, Kis optional but ignored
R destination_ reg ;destination register

RDPI R register ; peripheral _adds is in the Register
R destination_ reg ;destination register

Examples
RDP 8 ;read 32 bits from peripheral address 8
R 45 ;into Register 45
RDPW 16 ;read 16 bits from peripheral address 16
R 12 ;into Register 12 bits 15..0, bits 31..16 are set to zero

RDPBI R 100 ;read 8 bits fromthe peripheral address in R 100
R 101 cinto bits 7..0 of R 101, bits 15..8 are set to O

See also
I/O Handling
WRP

RTIME - Read Time

Description
Reads the contents of the internal hardware clock into two Registers. The first Register is specified in
the instruction. After the RTIME instruction, the Registers are set as follows:

Saia PG5® Instruction List, 2013-10-25 259

Saia-Burgess Controls AG Special Instructions

RTIME - Read Time

Digit 9 8 7 6 5 4 3 2 1 0
Reg 0 0 0 0 Hour |Hour |Min |Min [Sec Sec
Reg+1 0 Week |Week |WDay |[Year |Year [Mon [Mon |Day Day
Week Week of year 1..53

WDay Day of week 1..7 (Monday = 1, Sunday = 7)

Year Year 0..99

Mon Month of year 1..12

Day Day of month 1..28/29/30/31 (month dependent)

Hour Hour 0..23

Min Minute 0..59

Sec Second 0..59

The Register data is stored in binary, not in BCD, but can be moved or output in BCD using the DIGO
instruction.

Format
RTI ME [=] reg ; Regi ster nunber R

Example
RTI ME R 10 ;clock is copied into Registers 10 and 11

Flags
Unchanged.

See also
WTIME
DIGO

Practical example
After switching on Input 3, the actual minutes of the clock should be displayed in binary BCD format

on Outputs 32..39 :

32 33 34 35 36 37 33 39
L I I I F [[[|Minutes(BCD)

a0 40 z0 10 8 4 2 1

coB

STH
DYN
CPB

TT— oo
N W W

ECOB
PB
RTI ME

(31
o o

OX0VO0OX0OXO0AON
o

WNOONDNDN
©

Saia PG5® Instruction List, 2013-10-25 260

Saia-Burgess Controls AG Special Instructions

RTIME - Read Time

R 99

D1
DGR 2

R 99

O 32
EPB

12.12 STHS - Start High Slow

Description
This instruction is not supported by new PCD types (NT systems, PCD3, PCD2.M480 etc), please

use STH.

The ACCU is set to the logical state of the addressed element, usually an Input.

This is the same as the STH instruction, except that the timing on the PCD I/O bus is slightly slower,
and it is therefore suitable for slow I/O modules.

Use this instruction to access Analogue modules PCA2.W2x/W 3x.

Program execution speed is not significantly affected.

Format
STHS[X] [=] elenent (i) 1 OF

Example
STHS | 25

Flags
The ACCU is set to the logical state of the specified element.

See also
OuUTS

STH

Bit instructions

1213 SYSCMP - System Compare

Description

The SYSCMP instruction is able to transform any Register into a pseudo Timer with a resolution of 1
millisecond.

It compares the sum of the first and second operands to the System Counter and sets the ACCU
according to the result.

The System Counter is incremented every millisecond.

If the result of the addition is greater than the System Counter, the ACCU is set High (1).
If the result of the addition is smaller than or equal to the System Counter, then the ACCU is set Low

0).

The advantage of this instruction coupled to the instruction SYSRD K 7000 is that it is now possible
to have Timers with a resolution of Ims. It can also measure the time between two events to a
resolution of 1ms.

To use it, first read the current System Counter value into a Register, add the number of milliseconds
for the timeout, then compare the Register with the System Counter using SYSCMP.

Format
SYSCWP reg ; Regi ster R

Saia PG5® Instruction List, 2013-10-25 261

Saia-Burgess Controls AG Special Instructions

SYSCMP - System Compare

val ue ;value to conpare, K or R

Example
SYSCWP R 100 ;conpare contents of Register 100 + 1500

K 1500 ;to System Counter and set ACCU

SYSCVP R 100 ;conpare content of R100 + R101
R 101 ;to System Counter and set ACCU

Flags
The ACCU is set according to the result.

See also
SYSRD

Practical example
Programming a high resolution Timer (1Ims) with SYSRD and SYSCMP.

CcoB 0
0

LD R 100 ;load the tinme to wait in ns (1500)
K 1500 ;into R 100

SYSRD K 7000 ;read the System Counter in R 101
R 101

Vi t:

SYSCVP R 101 ; conpare System Counter to R100 + R101
R 100 ;and set ACCU accordingly

JR H Wi t ;i f ACCU = High (1) then | oop

ECOB

1214 SYSRD - System Read

Description

Reads PCD system parameters like: PCD Device type, Firmware version, User program name, S-Bus
parameters etc.

The data is transferred into Registers. Function codes, which are K constants or values in a Register,
define which parameters will be read.

Tip: All new system functions are implemented using CSE Call System Function, see the new
System Function libraries for details, using Project Manager's "Library Manager".

Format
SYSRD func_code ; function code, Kor R
result ; Regi ster for the result, or first of several Registers

The f unc_code can be a K constant, or a value in a Register.

Example

SYSRD K 5000 ;read the PCD npodel in ASCII
R 20 ;and put the result in R 20

Flags

If the function code does not exist, then XOB 13 is called and the Error flag is set.

Saia PG5® Instruction List, 2013-10-25 262

Saia-Burgess Controls AG Special Instructions

SYSRD - System Read

See also
SYSWR
CSFE

Read nonvolatile reqgister (user EEPROM)

Some PCD models contain nonwolatile registers in EEPROM (usually programmed in the factory),
which can be read into normal Registers.

Function Codes | 2000. 2000+(n- = For EEPROM registers 0..n-1

1) where n is the number of EEPROM registers to be read:
n =5 for PCD1.M1x0, else n = 50
Result Destination Register contains the data read from EEPROM

Read FlashCard Status
Reads the FlashCard status and stores it in the ACCU and a Register.

Function Codes @ 3000 For PCD with FlashCard
3100 For PCD with Onboard Flash (NT systems)
Result ACCU set Low if OK

ACCU set High if the Flash is busy and SYSWR was not executed,
e.g. erasing or storing.

Error Flag set is there's an error, see status bits.

Destination Register contains the status bits, see below

Note
Function code 9000 is now replaced by 3000, however the old function code (9000) is always
supported on the system :

PCD2.M170 and PCD4.M170:

Bugs fixed : > #15 or later

New functionality :> $17 or later
PCD2.M480:

Bugs fixed . > #13 or later

New functionality : > $15 or later
For other systems:
Only the function code 3000 is supported, and the function code 9000 is reserved for LEDs.

Status bits

Bit Description Cause

0 No flash No flash is fitted

1 No header config There is no header/user program copied on the FlashCard

2 SYSWR not enabled The DB/Text mode is not enable (memory allocation)

3 DB/Text does not exist | Incorrect DB/Text number

4 DB/Text size is not DB/Text size is different, has been changed

equal

5 Restored DB/Text on FlashCard were restored because an error was
detected

6 Buffer full To much DB/Text are saved, memory is full

7 Already started Last SYSWR 900x command was not finished before a new
one was started

*8 Flash error No backup DB is configured on the flash or on the SRAM.
Impossible to access the flash, the bit is updated during the

Saia PG5® Instruction List, 2013-10-25 263

Saia-Burgess Controls AG Special Instructions

SYSRD - System Read

“initializing backup” or the “copying DB to flash”.

*9 Flash busy Another job is working on flash.

*10 DB size error DB size is zero. The hit is updated during the backup and
restore DB.

11..15 | Not used

*16 Header different The “User Program Backup Size” of the Flash is different
from SRAM. The bit is updated during the “initializing
backup” process.

*17 No flash card Flash card is not present the bit is updated during the
“initializing backup” process.

*18 No flash free The “User Program Backup Size” >= ‘User flash size’. The
bit is updated during the “initializing backup” process.

19..31 | (for future use)

* not used by PCD2.M170 and PCD4.M170

Read device type

Function Codes | 5000 Read device type, ASCII format
5010 Read device type, decimal format

Result ASCIl or decimal value as shown in the table below.

Model ASCI Decimal

PCD1 ' D1 1

PCD2 ' D2 2

PCD3 ' <0><0>D3' |3

PCD4 D4 4

PCD6 ' D6’ 6

PCsS1 ST 101

Read PCD type

Function Codes | 5100 Read PCD type, ASCII format
5110 Read PCD type, decimal format
Result ASCIl or decimal value.

For ASCII, the first 3 digits of the subtype are returned.
e.g. for PCD3.M5540 the resultis * M5’

For decimal, the first two digit of the subtype are returned.
e.g. for PCD3.M5540 the result is 55

Read FW version

Function Codes 5200 Read FW wersion, ASCII format
5210 Read FW wersion, decimal format
Result ASCII or hex value as shown in the table below

Internal or experimental version numbers will be returned as OFFFFFFFFh (-1 decimal).

Saia PG5® Instruction List, 2013-10-25 264

Saia-Burgess Controls AG Special Instructions

SYSRD - System Read

ASCII Hex Decimal
Internal version $39 $ $39’ OFFFFFFFFh -1
Official version V080 ‘V080® |000000080h 128
Official version 1.14.31 '1.14 000011431h 7075

Read CPU number
(Only for PCD4 and PCD6, others have only CPU 0)

Function Codes | 5300 Read CPU number, ASCII format
5310 Read CPU number, decimal format
Result ASCII or decimal value
For ASCII format, ' o .. " 6'

For decimal format, 0..6

Read program name
Read the user program name into 2 Registers R+0 and R+1. Only the first 8 characters of the

program name are read.

Function Code | 5400 Read program name
Result R+0 Upper 4 characters of program name in ASCII
R+1 Lower 4 characters or program name in ASCII
Example

User program name is ‘MYPROGO01'.
After execution of SYSRD :

R+0 ="' MYPR

R+1="0&01"

Read S-Bus Slave station number

Function Code | 6000 Read S-Bus slave station number
Result Station number 1..254, or -1 if S-Bus not configured

Read S-Bus PGU TN delay

Function Code @ 6010 Read S-Bus PGU TN delay
Result Delay in ms, or -1 is S-Bus not configured

Read S-Bus PGU TS delay

Function Code | 6020 Read S-Bus PGU TS delay
Result Delay in ms, or -1 is S-Bus not configured

Read S-Bus PGU timeout

Function Code @ 6030 Read S-Bus PGU timeout
Result Delay in ms, or -1 is S-Bus not configured

Saia PG5® Instruction List, 2013-10-25 265

Saia-Burgess Controls AG Special Instructions

SYSRD - System Read

Read S-Bus PGU baudrate

Function Code @ 6040 Read S-Bus PGU baudrate
Result Baud rate, or -1 is S-Bus not configured

Read S-Bus PGU mode

Function Code @ 6050 Read S-Bus PGU mode
Result Mode, see table below, or -1 is S-Bus not configured
Mode Value

BREAK without modems 0
PARITY without modems 1

DATA without modems 2

BREAK with modems 10
PARITY with modems 11
DATA with modems 12
S-BUS not configured -1

Read S-Bus PGU port number

Function Code | 6060 Read S-Bus PGU port number
Result Port number, or -1 is S-Bus not configured

Read current S-Bus PGU level

Function Code | 6070 Read S-Bus PGU lewel
Result 1 = Level 1 S-Bus (Reduced Protocol)

2 = Lewvel 2 S-Bus (Full Protocol)

-1 = S-Bus not configured

Read current PGU owner (S-Bus or P8 protocol)
(Obsolete, old PCD4 and PCD6 only)

Function Code | 6080 Read current PGU port owner
Result CPU number, 0..6

Read modem status byte
Reads the current status of the modem connection.

This information tells the user at what stage the modem is at in the initialization procedure.

Function Code | 6100 Read modem status byte

Result 1 Init Port
2 PCD waiting for modem connection
3...39 PCD initialising the modem.
40 Reassign serial port for mode.

Saia PG5® Instruction List, 2013-10-25 266

Saia-Burgess Controls AG Special Instructions

SYSRD - System Read

45..49 Connection to modem has been lost. This is an intermediate
status before the modem in reinitialized.

50 Ewverything is OK and modem is ready to connect

51...90 Connect/Dial

100 Connected

Read modem initialization string
Read the specified modem string from the user program extended header into the block of registers
starting with base address Ry.

Function Codes | 6500 Read modem type string
6510 Read modem reset string
6520 Read modem initialization string
Result String is read into Register block, see example below
Example

; The nodeminitialization string is stored in the extended header

;in the PCD: "AT&QDS0=2\r"

; Predefined text greater than length of nobdem string, contains spaces (20h)
TEXT 100 " !

SYSRD K 6520

R 1000 ;read string into register block
PUT R 1000
X 100 ;move string to TEXT 100

; Text after execution contains string followed by spaces
TEXT 100 "AT&QDS0=2\r !

Note: The space character is ignored by modems so the space characters stored at the end of the
modem string will have no affect.

Read port mode
Read the mode of port 0..6. The mode is returned in a register in ASCII format.

If the port doesn't exist (no channel or the module Fxxx is not plugged in), the Error flag is set and the
Register value is 0.

Function Codes | 6600 Read Port 0 mode

6601 Read Port 1 mode

6606 Read Port 6 mode
Result Mode is returned in the lower 3 bytes of the Register, the MS byte is 0.
Mode Configured Assighed (SASI)
P8 PGO
PGU with S-BUS PG1
S-BUS PGU SPO SP1 SP2 *
MODEM MC2 (not connected) MC2 (not connected)
(data mode) (not ready) (not ready)

SP2 (connected) SP2 (connected)
(ready) (ready)

GATEWAY GWO0 GW1 GW2 * GMO GM1 GM2 *

Saia PG5® Instruction List, 2013-10-25 267

Saia-Burgess Controls AG Special Instructions

SYSRD - System Read

MC MCO..MC5

MD / SD MDO SDO

SM SMO0 SM1 SM2 *
SS SS0SS1S8S82*

GS GS0 GS1 GS2 *
MM MM4

* 0 = break, 1 = parity, 2 = data

Example
SYSRD 6600 :read channel 0 node
RO ;RO will contain "PGL" for PGU node with S-Bus protocol

Read system counter

The PCD has a 32-hit internal counter which is incremented every millisecond. It is reset to zero only
on power-up, it is not affected by a Restart.

The period of the counter is: 24 days 20 hours 31 min 23 sec 647 ms, after this period the counter
rolls over to O.

The SYSCMP instruction can also be used to access the system counter, this instruction also works
if a roll-over occurs.

Function Code | 7000 Read system counter
Result Any value between 0 and 2'147'483'647 decimal

Read real time clock, Local time or UTC time

For Local time use function codes 70xx, for UTC time use 71xx. (The Local time zone is defined by
the Device Configurator "Options -> Time Zone Code".)

Note: UTC time requires FW version 1.20.12 or later.

Date/time values can be read separately according to the function code.

The return value is always in decimal.

Function Code @ 7x50 Second
7x51 Minute

7x52 Hour

7x53 Minute and second

7x54 Hour and minute

7x55 Hour, minute and second
7x56 Hour, minute, second, millisecond
7x57 Minute, second, millisecond
7x58 Second, millisecond

7x59 Millisecond

7x60 Day

7x61 Month

7X62 Year

7x63 Month and day

7x64 Year and month

7x65 Year, month and day

7x70 Day of week

7x71 Week of year

7X72 Week of year and day of week

7x81 Time and date (in two Registers, time in 1st Register)

7x82 Time with ms and date (in two Registers, time in 1st Register)
7x90 * | Seconds elapsed since midnight (00:00:00) 01/01/1970

Saia PG5® Instruction List, 2013-10-25 268

Saia-Burgess Controls AG Special Instructions

SYSRD - System Read

x = 0 for Local time, x = 1 for UTC time (FW version 1.20.12 or later)
* With FW wersion 1.20.xx, SYSRD 7090 returns the number of seconds elapsed as UTC time, not
as Local time.

Examples

SYSRD 7055 ;read hour, mnute and second, local tinme
RO ;into Register O

Result: R 0 = 120203

SYSRD 7181 read tinme and date, UTC tine
RO ;into Registers 0 and 1
Result: R0 = 120203, R 1=991130

Read DIL switch (PCD1 only)
Read the DIL switch of the PCD1.RIO or the Push Button on the PC1.M1x5 (PCD1 redesign).
This instruction is present but serves no purpose on the PCD1.M1_ .

Function Code | 8000 Read DIL switch

Result PCD1.RIO The result is an 8-bit value with the 3 MS bytes set to zero.
The bits O - 6 are resened for the station number (0..127)
and bit 7 for the communications speed (38.4 Kbaud or 76.8

Kbaud).

PCD1.M1x5 Bit 0 indicates the Push Button activation
(1=released, O=pushed).
Bit1..7=0

PCD1.M1x0 Bit0..7=0

1215 SYSWR - System Write

Description
Allows modification of system information or initialization of system functions from the user program.

Tip: All new system functions are implemented using CSE Call System Function, see the new
System Function libraries for details, using Project Manager's "Library Manager".

Format
SYSVR func_code ;function code, Kor R
val ue ;value to wite, Kor R

The func_code and val ue can be K constants, or values in a Register.

Example
SYSVR K 4014 ;initialize XOB 14 with a frequency

K 10 ;of 10 ns

Flags
If the function code does not exist, the Error flag is set and XOB 13 is called if it exists.

See also
SYSRD
CSF

Saia PG5® Instruction List, 2013-10-25 269

Saia-Burgess Controls AG Special Instructions

SYSWR - System Write

Select PID algorithm
Selects between the new and old PID algorithms. By default the new PID algorithm is active.

Function Code | 998 Select PID algorithm
Value 0 New PID algorithm (the default)
1 Old PID algorithm
NOTE

The old PID algorithm is not included in NT systems, therefore function code 998 is not supported by
NT systems which use only the new PCD algorithm.

System Watchdog (not on PCD6 and PCD4 except M170
Activates and triggers the "watchdog". If not triggered every 200mS, a restart cold is done, preceded
by an optional call to XOB 0.

Function Code @ 1000 System watchdog
Value 0 Deactivate WDOG
1 Activate WDOG and make a restart cold if not retriggered within
200mSs
2 Activate WDOG and call XOB 0 before making a restart cold if not

retriggered within 200mS.

Once the watchdog is activated the instruction must be repeated continually within 200mS intenals.
A watchdog XOB 0 is distinguished from the power down XOB 0 from the initial error massage written
into the History List.

When the WDOG is activated the message “XOB0 WDOG START” is written into the History List, for
a power down XOB 0 the message is “XOB 0 START EXEC".

Write nonvolatile reqgister (user EEPROM)
Some PCD systems are fitted with nonwvolatile registers in EEPROM, which can be written with values
from normal Registers.

Function Codes | 2000..2000+(n-1) For nonwolatile registers 0..n-1
n = 50, or 5 for PCD1.M1x0

Value any K or source Register containing the value to be written
to EEPROM

WARNING

A maximum of 100,000 user writes are permitted to the EEPROM so do not execute this instruction
frequently (cyclically) in your program.

This SYSWR instruction takes 20mS to execute so cannot be used in XOB 0.

Copy to/from FlashCard
Copies Text/DB memory to/from RAM memory from/to the FlashCard. This is only for PCD types

which have a FlashCard or onboard Flash.
Note: Before using this function, please use SYSRD 3000 (Read Flash Status) to determine if the
Flash memory is busy.

Function Codes | 3000 Copy Text/DB from RAM to FlashCard
3001 Restore Text/DB memory from FlashCard to RAM
3002 Clear FlashCard, all Texts/DBs on the FlashCard are deleted)
3100 Copy Text/DB from RAM to onboard Flash (NT systems)
3101 Restore Text/DB from onboard Flash to RAM (NT systems)

Saia PG5® Instruction List, 2013-10-25 270

Saia-Burgess Controls AG Special Instructions

SYSWR - System Write

3102 Clear internal Flash, all saved Texts/DBs are deleted (NT systems)

Note
Function code 9000 is now replaced by 3000, however the old function code 9000 is still supported on
these systems :

PCD2.M170 and PCD4.M170:

Bugs fixed : > #15 or later

New functionality : > $17 or later
PCD2.M480:

Bugs fixed . > #13 or later

New functionality : > $15 or later
For other systems:
Only the function code 3000 is supported, and the function code 9000 is reserved for LEDs.

WARNING
This SYSWR instruction takes a long time to execute so cannot be used in XOB 0.

Set XOB overflow limit

XOBs 14/15/17/18/19/20/25 all work using a queuing mechanism.

If an XOB is active then the pending XOB is placed in a queue which has a maximum size of 127
entries per XOB.

If this limit is surpassed then XOB 7 is called and the queue is cleared. The error message ‘SYSTEM
OVERLOAD' is written into the History List.

This limit of 127 entries can sometimes be too large for real time applications so it is now possible to
define a user limit with this instruction.

This limit is common to all XOBs which can be queued.

Function Code @ 4000 Set XOB overflow limit
Value 0..127 New queue size

Enable/disable new XOB state change

Enable or disable the new state change mechanism for the XOB1/2 which is only called on state
change. NT systems only.

ACCU = 0 on change error, ACCU = 1 no error.

Function Code @ 4001 Enable/disable new XOB mechanism
Value 0 Disable new XOB mechanism
1 Enable new XOB mechanism

Enable/disable XOB 5/13

Enable or disable XOBs 5 or 13.

In some cases the execution of these XOBs after they have been called can complicate the execution
of the user program. For this reason it is now possible to disable these XOBs.

If the XOB is disabled but not programmed, the error LED will not be set.

Function Codes 4005 XOB 5
4013 XOB 13

Values 0 Disable the XOB
1 Enable the XOB
2 Clear the Error Flag in the current COB and in the active XOB

For XOB 13 only (4013)

Saia PG5® Instruction List, 2013-10-25 271

Saia-Burgess Controls AG Special Instructions

SYSWR - System Write

Install XOB 14 /15 (25 to 29 for NT systems, PCD3 and PCD2.M480)
Configure periodic XOB with the frequency defined in Ky or Ry.

It is possible to configure two periodic XOBs with a frequency from 5ms up to 1000s in 1mS steps.
The value in Ky or Ry is given in ms, if it's zero then the XOB is deactivated.

This instruction can be executed at any time.

If an XOB is already being executed when an XOB becomes pending then it will be queued until a time
when there is no XOB active and it can be executed.

The XOBs are only executed if the CPU is in Run or Conditional Run.

Function Codes | 4014 Configure XOB 14

4015 Configure XOB 15

4025..4029 Configure XOBs 25..29 (NY systems only)
Value 5..1'000'000 Time in milliseconds (min. is 1 for NT systems)

Execute XOB 17/18/19

Execute the XOB specified in Rx or Kx on the CPU specified in Ky or Ry.

The XOBs 17/18/19 are user XOBs which can be invoked using S-Bus telegrams or the user program.
The XOBs are only executed if the CPU is in Run or Conditional Run.

Function Codes | 4017 Execute XOB 17
4018 Execute XOB 18
4019 Execute XOB 19
Values 0..6 CPU number on which XOB will be invoked (PCD4 or PCD6 only)
7 Call XOB on this CPU
8 Call XOB on all CPUs

Write S-Bus station humber
Changes the S-Bus station number to the value in Ky or Ry.
The S-Bus station number is changed even if the user program is in write-protected RAM, Flash or

EPROM.
Function Code @ 6000 Write S-Bus station number
Value 0..254 New S-Bus station number
WARNING

A maximum of 100,000 user writes are permitted to the EEPROM so do not execute this instruction
frequently (cyclically) in your program.
The SYSWR instruction takes 20ms to execute so it should not be used in XOB 0.

Convert FFP to/from IEEE

Converts between FFP (Motorola Fast Floating Point format) and IEEE floating point format.

Once a value is converted to IEEE format then no FFP floating point operations (FADD etc) can be
carried out on the value.

Note
New PCDs now fully support IEEE values, see Floating Point Instructions.

Function Codes | 7000 FFP to IEEE format
7001 IEEE to FFP format
Value R Register containing the floating point value.

Saia PG5® Instruction List, 2013-10-25 272

Saia-Burgess Controls AG

Special Instructions

SYSWR - System Write

The result is stored in the same Register.
Only Registers are allowed, not K constants.

Write real time clock, Local time or UTC time

For Local time use function codes 70xx, for UTC time use 71xx. (The Local time zone is defined by
the Device Configurator "Options -> Time Zone Code".)

Note: UTC time requires FW version 1.20.12 or later.

Date/time values can be written separately according to the function code.

Each value uses 2 digits, for example: 12h 2mins and 3 sec is written as 120203.

Function Codes @ 7x50
7x51
7x52
7x53
7x54
7x55
7x56
7x57
7x58
7x59
7x60
7x61
7X62
7X63
7x64
7x65
7x81
7x82

Value R

Second

Minute

Hour

Minute and second

Hour and minute

Hour, minute and second

Hour, minute, second, millisecond

Minute, second, millisecond

Second, millisecond

Millisecond

Day

Month

Year (< 100)

Month and day

Year and month

Year, month and day

Time and date (in two Registers, time in 1st Register)
Time with ms and date (in two Registers, time in 1st Register)
BCD value which depends in Function Code
For example: 12h 2m 3s = 120203

Only Registers are allowed, not K constants.

x = 0 for Local time, x = 1 for UTC time (FW wversion 1.20.12 or later)

Examples

LD RO
120203 :12:02. 03

SYSWR 7055 cwrite hour, m nute and second, |ocal tine
RO

LD RO
120203 :12:02. 03

LD R 1
991130 :30/11/99

SYSWR 7181 cwite tine and date, UTC tine
RO

Control reset push-button on the PCD1 redesign

Function Code | 8000
Value 0
1

Control reset push-button

Deactivate push-button interrupt detection

Activate Push button interrupt detection with restart cold /halt at
push detection (default)

Saia PG5® Instruction List, 2013-10-25

273

Saia-Burgess Controls AG Special Instructions

SYSWR - System Write

Set LED color for PCS1.C8xx and PCD3.Mxxx

PCS1.C8

Controls the color of the LED on the PCS1.C8. The LED is always switched off when the PCD is in
Stop.

When the PCD runs, the LED will be turned on with the last used color.

Function Code | 9000 Control LED colour
Value 0 Yellow
1 Red
2 Green
3 Turn off
Notes

When the user program is stopped, the LED is switched off. It will be turned on with the same colour
when the program runs again.
This command only works in Run, it does not work in step-by-step mode.

PCD3.Mxxx

By default the LED is used as the Error LED.

Using SYSWR 9000 reconfigures it as the user LED, which is independent of the system state (run/
stop/error/halt).

After a restart it is re-initialized as the Error LED.

Function Code @ 9000 Turn on/off LED
Value 0 Turn OFF
1 Turn ON

Flash Copy SYSWR 9000
Function code 9000 is now replaced by 3000, however the old function code (9000) is still supported

on these systems :
PCD2M170 and PCD4M170:

Bug fix: > #15 or newer

New functionality: > $17 or newer
PCD2M480:

Bug fix: > #13 or newer

New functionality: > $15 or newer
Other systems:
Only the function code 3000 is supported, and the function code 9000 is reserved for LEDs.

Backup RAM or RAM+RTC for Compaktregler (PCS1.C8xx)
Configures how the backup capacitor is used. 20 days backup for RAM only, or 5 days backup for

both RTS and RAM.

Function Code 9001 Backup RAM or RAM+RTC
Value 0 RAM only (20 days)
1 RAM and RTC (5 days)

Enable serial port 0 (PCS1.C8xx)
Only for PCS1C8xx, FW 0AO or later.

Saia PG5® Instruction List, 2013-10-25 274

Saia-Burgess Controls AG

12.16

SYSWR - System Write

On the PCS1, port O can be used for the both the modem and the PGU connection.
Until FW version OAO the PGU port could only be used in PGU mode, but not in S-Bus PGU mode.
This was improved by introducing a new SYSWR instruction:

Function Code @ 9002 Enable/disable serial port 0

Value 0 Default setting, port 0 is used for the internal modem, the D-SUB
connector cannot be used
Port 0 uses the D-SUB connector, the internal modem cannot be

used
Examples
SYSVR K 9002 ;use port O for internal nodem
KO ;the D-SUB connector is disabled
SYSVR K 9002 ;use port O for the D SUB connect or
K1 ;the internal nodem can't be used

The user program can execute these instructions at any time to switch between the modem and the
D-Sub connector.

This means that in some cases communication is lost when executing the instruction, for instance
when online with S