1. Transformer Ratio AWD3

- 2x CT
- 1x CT Select

2. S-Bus Address

3. S-Bus Address

- 3x ALD1

Install Energy Meter

- Connect to S-Bus
- End-Box

Optional Power Supply

- 24 VDC 2.5A
- Q.PS-AD2-2402

Transformer Ratio AWD3

- Ø 1.5 – 16 mm²
- Ø < 2.5 mm² for Tariff E1/E2
- Ø CY 0.5...0.75 mm² for S-Bus

Install Guide

- Saia-Burgess Controls AG
- Bahnhofstrasse 18
- 3280 Murten, Switzerland
- T +41 26 672 72 72
- F +41 26 672 74 99
- info@saia-pcd.com
- www.saia-pcd.com

Tariff and Currency

- Tariff 1:
 - CHF 0.1700
- Tariff 2:
 - CHF 0.1600

Counter

- Counter 1
- Counter Name

Meter Connection

- Ø 1.5 – 16 mm²
- Ø < 2.5 mm² for Tariff E1/E2
- Ø CY 0.5...0.75 mm² for S-Bus

Optional

- Install Guide
- Pozi Nr. 1
- Flat Nr. 0

End-Box

- Ethernet
- TCP/IP Address
- Subnet Mask
- Default Gateway

Energy Meter

- SBC E-Controller
- SBC S-Monitoring
- Install Energy Meter

S-Bus Address

- Total
- Unit
- S-Bus 0...128
- +1
- +10

Connection Diagram

- L1 L2 L3 N PEN
- D1 D2 D3 E1 E2
- S-Bus 0...128
- +1 +10

Close/Open

- ALE3/AWD3
- ALD1

Diagram

- Diagram of energy meter installation and connections.

Diagram Reference

- Diagram number and page information.

Technical Details

- Technical specifications and ratings.

Contact Information

- Saia-Burgess Controls AG
- Bahnhofstrasse 18
- 3280 Murten, Switzerland
- T +41 26 672 72 72
- F +41 26 672 74 99
- info@saia-pcd.com
- www.saia-pcd.com
Optional Power Supply
24 VDC 2.5A
Q.PS-AD2-2402
Power Supply and I/O Connections

<table>
<thead>
<tr>
<th>X3 (Supply)</th>
<th>Pin</th>
<th>X0 (I/O’s)</th>
<th>Pin</th>
<th>X1 (Inputs)</th>
<th>Pin</th>
<th>X2 (Serial)</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24 VDC</td>
<td>30–32</td>
<td>PGND</td>
<td>0</td>
<td>Input 0–3</td>
<td>0</td>
<td>GND</td>
<td>20, 25</td>
</tr>
<tr>
<td>0VDC</td>
<td>33, 34</td>
<td>+24 VDC ext.</td>
<td>1</td>
<td>Input 4, 5</td>
<td>11–14</td>
<td>according inserted</td>
<td></td>
</tr>
<tr>
<td>WD relay</td>
<td>35, 36</td>
<td>PWM</td>
<td>2</td>
<td>AGND</td>
<td>15, 16</td>
<td>PCD7.F1xxx module</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td>37</td>
<td>Output 0–3</td>
<td>3–6</td>
<td>Analogue Input</td>
<td>18, 19</td>
<td>21–24, 26–29</td>
<td></td>
</tr>
<tr>
<td>RS-485 /D and D</td>
<td>38, 39</td>
<td>Mixed I/O 4–7</td>
<td>7–10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electromagnetic compatibility List (EMC)
This system is developed according to the international standard EN/IEC61131-2:2007 and complies with CE Directives 2004/108/EC (EMC), 2006/95/EC (Low voltage equipment).

Certificate
EAC Mark of Conformity for Machinery Exports to Russia, Kazakhstan or Belarus

Hardware
- Ship Approval is pending
- UL Approval is pending
- This version is fully approved for CE conformity
- To use the device in an electrical control cabinet, it is recommended to use a flexible or angled Ethernet cable. With a conventional network cable the mounting of the cover (electrical cabinet) cannot be guaranteed.

Firmware
- Needs FW version 1.20.25 or higher
The FW on the PCD can be updated via any S-Bus PGU port (serial line, USB, Ether-S-Bus).

Programming Tool PG5
To use this new product, PG5 V 2.1.100 or higher programming tool is necessary.

Battery Replacement
- Resources (registers, flags, timers, counters, character strings/DBs, etc.) are stored in RAM. To prevent this content from being lost during a power failure, and to enable the hardware clock (if present) to carry on running, PCD1 devices are equipped with a back-up battery.
- Type: Renata CR 2032 lithium battery
- Buffer time: 1…3 years
In order to prevent data loss, we recommend changing the batteries while the PCD is still connected to the power supply.

Access visualisation
The PCD1.M0160E0 is preconfigured with IP address: 192.168.12.250

Further information
If you have any problems, questions or remarks, please contact Saia-Burgess Controls.
http://www.sbc-support.com/

Disclaimer: The plant engineer contributes his share to the reliable operation of an installation. He is responsible for ensuring that controller use conforms to the technical data and that no excessive stresses are placed on it, e.g. with regard to temperature ranges, over voltages and noise fields or mechanical stresses. In addition, the plant engineer is also responsible for ensuring that a faulty product in no case leads to personal injury or even death, nor to the damage or destruction of property. The relevant safety regulations must always be observed. Dangerous faults must be recognized by additional measures and any consequences prevented. Consistent use of the diagnostic elements of the PCD, such as the watchdog, exception organization blocks (XOB) and test or diagnostic instructions shall be made.