PCD7.L121 -Input / Output „RIO" module with 4 digital inputs 24 VAC/DC and 2 Relays 250 VAC/16 A -Application module for operation mode "Light" and "Blinds"

Description The RIO module was developed as a S-Bus data node for local switching tasks. Via a DDC of the type PCDx / PCS1, inputs can be read and manual/auto function monitored. Two address switches $(\times 1 / \times 10)$ on the front panel allow module addressing and identification. Addresses can be set between 00 and 99 . Up to 100 RIO modules and a maximum of 3 PCD stations can be connected to one bus branch simultaneously. If the bus cycle time is critical, fewer than 30 slaves should be operated in one segment.

Technical data
Bus system
Transmission rate
Transmission mode
Bus length max.
Nominal voltage UN
Current consumption
Power consumption
Relative duty cycle
Reaction time
Recovery time
Operating temperature rang
Protective wiring
Input state indicator
Function indicator
Status indicator
Status indicator
Test voltage input / bus

Signal inputs

Input voltage max
Input current (24 VDC)
High signal recognition
Low signal recognition

Housing
Protection class
Plug-in terminal
Mounting position
Weight
Housing dimensions
Joining

S-Bus
1200... 38400

Parity / Data
1200 m (without repeater)
24 VDC (15 VDC... 32 VDC)
$<50 \mathrm{~mA}$
1.2 W

100 \%
15 ms (from receive data to send data reaction)
$<3 \mathrm{~s}$
$0^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Reverse battery protection of service voltage
Reverse battery protection of supply and bus Yellow LED Green LED for bus activity
Red LED for bus error message
Manual control level for relays with revertive communication via bus; Inputs electrically isolated Inputs electrically isolated
$2500 \mathrm{VAC} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$.

30 VDC	Relay outputs	
6 mA	Number of outputs	2 "make/break" contacts
>7 VDC	Turn-on voltage	250 VAC
<3 VDC	Constant current	$16 \mathrm{~A} /$ Relay - max. $80 \mathrm{~A} / 20 \mathrm{~ms}$
	Switching frequency	$360 / \mathrm{h}$

IP65
1.5 mm 2 / spring terminals
any
350 g
$W \times H \times D: 159 \times 41,5 \times 120 \mathrm{~mm}$
without space

Mounting and commissioning to be conform with current regulations:

1. Power-off the installation
2. Place module onto the place of destination
3. Cable with max. single wire $1,5 \mathrm{~mm}^{2}$ insert into
the unit. With consideration of the protection class.
4. Connect the wires into the spring terminals

Connect supply voltage and field bus to the dedicated spring terminals.

Caution!!

Do not exchange the bus and supply spring
terminals.

Connectiondiagramm

Operation behaviour "RIO" mode
The device works as an independent input/output module. The input information will be transmit to the master station by the S-Bus protocol. The relay output will switch on/off depending of the master station demands.
Operation behaviour "application" mode
The input information switches the relay outputs direct depending on the choosen application form. On a input information follows a direct relay reaction without delay time. Application forms "light" and "blind" are choosable. At every time the master station is able to have influence into the relay condition.
"Display Input "

Address	Information
1	$0=$ Status input 1 off
	1= Status input 1 on (Signal: >7 VAC/DC)
2	$0=$ Status input 2 off
	1= Status input 2 on (Signal: >7 VAC/DC)
3	$0=$ Status input 3 off
	1= Status input 3 on (Signal: >7 VAC/DC)
4	$0=$ Status input 4 off
	1= Status input 4 on (Signal: >7 VAC/DC)

„Register meaning" "Rear			"Register function"			Status register: Bit 0: 1= Device recognized last transmission	
Address	Information		Adress	Value F	Function(kbit/s)		
5	Baud rate (plain text => kBit/s)		5	4	1200	0= Device did not recognize last transmission	
6	Module address			5	2400	Bit 1: $\begin{aligned} \text { 1 } \\ \\ 0=\text { Last tast transmission was a broadcast } \\ \text { Las was not a broadcast }\end{aligned}$	
7	Status register			6	4800		
8	Bus timer			7	9600	Bit 2: 1 = Last transmission came from master	
9	Current transmission mode (data / parity)			8	19200		
10	Bus error counter (divided into 4 bytes)			9	38400	Bit 3: $\begin{aligned} 1=C R C & \text { of last message was correct } \\ 0 & =C R C \text { of last message was incorrect }\end{aligned}$	
11	Bustimeout						
12	Operation mode (RIO / Application)		Adress	Value F	Function	Bit 5: 1= Device has executed an internal reset	
13	Mode „Blind / Light"		9	1 P	Data Mode	Bit $0=$ Device function is OK	
14	Max. Blind running time			2 D		Bit 8: $\begin{aligned} 1 & =\text { Internal bus to EEPROM is OK } \\ 0 & =\text { Internal bus not working perfectly }\end{aligned}$	
15	Max. Lamella running time "angle"				Function		
16	Push-time limitation		$\frac{\text { Adress }}{10}$	$\frac{\text { Value }}{0}$		$0=$ EEPROM data memory is faulty	
"Write Output"					Function	Bit 10:1= Baud rate uploaded from EEPROM	
Address	Value In	mation	Adress	Value F		0= Baud rate is at default value (9600 Bd.)	
255		Autobaud Function not active	11	0 B	Bustimeout Defaultvalue ... up to 255 seconds	Bit 12: Switch 1: $0=$ Automatic 1=Manuel	
	0 A	baud Function active		.. 255 .			
						Bit 13: Switch 2: 0=Automatic 1=Manuel Bit 14: Not used	
			Adress	Value F	Function	Bit 15: Not used	
Input-/Output describtion for operation mode "application"			12	0 Op	Operation Mode "RIO" Operation Mode "Application"	All other bits are reserved for factory tests.	
Application: Light				1 (
Input	Terminal	Function			(Default) Function		
1	1	Light switch - input 1	Adress	Value \quad F			
2	2	Light switch - input 2	13	0 App	Application "Blinds"		
	3	Independent input		1 A	Application "'Light" (default)		
	4	Independent input					
Output:	Terminal	Function	Adress	Valuerange	- Function		
1	11/12/14	Lights part 1	14	0 <-> 254	Max. Blinds running time "up/down" (defaultvalue $30=30$ seconds)		
2	21/22/24	Lights part 2					
			Adress	Valuerange	Function		
Application: Blinds			15	0 <-> 254	Max. Lamella running time "angle" (defaulvalue $10=1.0$ second)		
Input:	Terminal	Function					
1	1	Switch "Up" function	Adress	$\frac{\text { Valuerange }}{0 \text { <-> } 254}$	Function		
2	2	Switch "Down" function	16		Max. Pushing time - Borderline shorttime to longtime pushing (default $20=2.0 \mathrm{sec}$)		
	3	Dor-/Windowcontact for safety stop		0 <-> 254			
	4	Storm input for blind safty opening					
Output:	Terminal	Function					
1	11/12/14	Blinds - opening direction					
2	21/22/24	Blinds - closing direction					

"Display / Write Output" Address Information
 $\frac{\text { Address }}{5} \quad \frac{\text { Information }}{0=\text { Status } r}$

$\frac{5}{0=\text { Status relay } 1 \text { off }}$
$6 \quad 0 \quad \begin{aligned} & 1=\text { Status relay } 1 \text { on } \\ & 0=\text { Status relay } 2 \text { off }\end{aligned}$
1= Status relay 2 on
$\frac{\text { Address }}{7} \quad \frac{\text { Information }}{0=r}$
$0=$ relay 1 switched via bus
$1=$ relay 1 switched via manual control
$8 \quad 0=$ relay 2 switched via bus
$1=$ relay 2 switched via manual control

0= Status input 3 off
$1=$ Status input 3 on (Signal: >7 VAC/DC)
$0=$ Status input 4 off
1= Status input 4 on (Signal: >7 VAC/DC)
"Register function"

Max. Blinds running time "up/down" (defaultvalue $30=30$ seconds)
Function

Function
Max. Pushing time - Borderline shorttime to longtime pushing (default $20=2.0 \mathrm{sec}$)

Application Light (Register 12-"1"/Register 13-"1")

Application Blinds (Register 12-"1" / Register 13-"0")

Switch shorttime pushing (Lamella-Angle rotation)

Switch longtime pushing (Up/Down Function)

Running time - Interruption (Up/Down Function)
 _

